
Eurographics Symposium on Virtual Environments (2004)
S. Coquillart, M. Göbel (Editors)

Live Tuning of Virtual Environments: The VR-Tuner

Stefan Conrad

Hans Peter Krüger

Matthias Haringer

Fraunhofer Institut für Medienkommunikation, Sankt Augustin, Germany

Abstract
This paper describes a solution for the modification of virtual environment (VE) applications while being immersed
in the application scenario inside of an immersive projection environment. We propose an infrastructure which
enables developers to adjust object properties and change the structure of the scene graph and data flow between
nodes using a tablet PC. The interface consists of a two dimensional graphical user interface (2D GUI) brought
on a spacial aware touch screen computer, accompanied by a mixer console with motor faders. We discuss the
usability of the combination of different interaction modalities for the task of tuning of VE applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
H.5.2 [User Interfaces]: D.1.7 [Visual Programming]:

1. Introduction

The production of applications for virtual environments re-
quires a set of different skills and professions. Graphic de-
signers, 3D modellers and programmers are working to-
gether to produce a scenario in the core work flows of mod-
elling, application programming and VR-system program-
ming [CKS∗03]. The efficiency of the whole development
process depends on the synchronisation of the work flows
and successful composition of their artifacts in each project
iteration.

Creative professionals are usually dependent on program-
mers and modellers to transfer their ideas and apply changes
during project iterations. This can lead to enormous delays
in the development process. A worst case scenario would be,
that during a test run right before a presentation on a certain
projection environment, it turns out that the lighting or posi-
tion of some objects have to be adjusted or the chosen navi-
gation metaphor does not suite the setup of the specific dis-
play. Todays state of the art in VE content production would
require the skill of an expert in programming or modelling
to overcome this problem by changing the application or the
scene geometry source itself on a desktop system while the
results have to be controlled in the IPE.

The VR-Tuner proposes a solution to this problem by of-

fering a tool which allows users to change an already set
up application scenario without having to interfere with the
programming. It is part of the alVRed project (funded by
BMBF, the German ministry for education and research),
which aims to provide a set of tools for the creation of non-
linear storytelling content for VE [WGT∗02]. Though the
Tuners initial design was inspired by the needs of story-
telling content providers its use is not leashed to this. We
would like to broaden the view here from story telling to
scenario based applications in general. In the following we
will show, how the VR-Tuner enables developers as well as
non VE and programming experts to adjust a VE applica-
tions from within the virtual environment.

2. Related Work

Systems like VEDA [Ste96] and dVISE [div94] allow the
definition of interaction processing (VEDA) and manipula-
tion of symbolic object properties (dVISE) directly in 3D.
The programming interface is part of the VE scene. This
is a promising approach, especially for setups with head
mounted devices where real computer hardware is unavail-
able for interaction. The flip side of this principle is the fact,
that it ties the operating tool too tight to the operated subject.
If the property of an object is for example causing the sim-
ulation frame rate to drop down to 0.1 frames per second,

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org
http://www.eg.org
http://diglib.eg.org


S. Conrad & H.P. Krüger & M. Haringer / VR-Tuner

it will be hardly possible to use 3D interaction techniques to
change this property within that environment. Since we were
looking for a robust solution for use under real development
conditions, we did not take this approach into account.

It seems to be more promising to decouple the program-
ming tool from the VE itself as far as possible, without ban-
ning it on a desktop computer outside of the immersive pro-
jection environment (IPE). Interactive 2D GUIs which are
used for VE development are known from various virtual re-
ality (VR) development systems like Virtools [vir04] which
deals with behavioural modelling, xDVISE which provides
a view on the underlying VR systems scene graph and ob-
ject properties as well as EON Reality’s EON Studio [eon04]
which also allows interactive scenario creation based on vi-
sually wired building blocks. These approaches have in com-
mon, that they are dedicated to desktop use. Presenting these
interfaces on a touch screen computer inside of an immersive
projection environment (IPE) does not solve the problem.
Their design and structure do not allow full operation in the
absence of a mouse and keyboard.

The use of wearable touch screen computing devices in-
side of an IPE is documented by Watsen et al. [WDC99]. L.
C. Hill investigated the general usability of PDAs (Personal
Digital Assistants) and tablet PCs inside of IPEs [Hil00].
Tweek is a software architecture for the use of a PDA in a
projection environment [HBCN02]. These approaches deal
with GUIs for application control rather than for application
development as it is demanded for the VR-Tuner. The major
difference between application control and application de-
velopment is the higher amount of symbolic data which has
to be considered when doing the latter. Development ses-
sions inside of a VE also require methods for finding objects
with no or a non visible geometric representation like ab-
stract data processing scene graph nodes or sound sources.

3. Developing Scenario Based VE Applications

The term scenario based denotes here all kinds of appli-
cations which rely on a scenery of well defined geomet-
rical objects which is explorable using moving metaphors
like walking or flying. Typical examples of scenario based
applications come from the field of story telling, architec-
tural design and industrial engineering, design review and
assembly simulation. The exploration of a volumetric med-
ical data set would not fall into this category. The core of a
VE application framework is typically a scene graph based
graphical renderer together with a set of device drivers for
interaction devices and support for display of other sensual
representations like sound and haptics. Support of script-
ing for fast prototyping is another feature of a mature VE
system. Some systems enforce also the definition of data
flow networks on the scene graph nodes according to rout-
ings between VRML (Virtual Reality Modelling Language)
fields. AVANGO [Tra99] is a representant of a VR framework
which supports scripting as well as the data flow program-

ming paradigm based on scene graph nodes with fields and
connections between these fields. The core work flows in the
production of scenario based applications in such kind of
systems are authoring (in the case of a storytelling applica-
tion), modelling, application programming and VR-system
programming. In the case of AVANGO, application program-
ming means writing scripts in Scheme where the scene is
constructed, nodes are instantiated, routings between fields
are defined and callbacks to the scripting system are in-
stalled.Scripting and data flow based programming with vi-
sual tools as mentioned above are powerful concepts for
rapid prototyping. When it comes to a later phase in the de-
velopment process, when the code base of the application
is grown and the scene is complex, these approaches show
weak points in supporting further small development and
testing iterations.

4. Design and Implementation of the Tuner

The Tuner follows the idea of presenting the interns of a run-
ning VE application to the person who is immersed in an
IPE. For the presentation of the huge amount of symbolic
data the use of a wearable touch screen computer is the first
choice. Tests with a PDA showed that the screen is too small
to perform the necessary tasks with an acceptable amount of
context switches. We were using a PaceBlade and an inter-
mec tablet computer to run a 2D GUI which is optimised for
touch screen use. The PaceBlade (see fig.1,left) has a bigger
screen with higher resolution (1024*800). The screen was
big enough to realise touch screen interaction with bare fin-
gers without pen for most tasks. The intermec (Fig.1,right)
has a resolution of 800*600 on a smaller screen, but it is
much lighter and provides numeric and cursor keys. In a fur-
ther step during the design of the Tuner design, we combined
the touch screen with a standard MIDI (Musical Instrument
Digital Interface) mixer console with motor faders (see fig.
2). The touch screen can be attached to the mixer in a dedi-
cated case and then be used stationary (see fig. 3).

Figure 1: Two touch screen computers which are used for
tuning.

Figure 4 shows the basic software infrastructure of the
Tuner interface. The VR system exposes its internal state
to the outer world through the RUI (Remote User Interface)
Server. The RUI protocol allows clients to get and set node
and field states, and to retrieve and change the structure of
the scene graph and the data flow network defined by field

c© The Eurographics Association 2004.

124



S. Conrad & H.P. Krüger & M. Haringer / VR-Tuner

Figure 2: A MIDI mixer with motor faders for hands on con-
trol of node properties.

Figure 3: The touch screen attached to the MIDI mixer in
the iCone VE display.

connections. It also provides meta information about the
fields like default value and min/max range for numerical
values. These operations work independently from the ren-
der loop, to avoid clients to be blocked by low frame rates.
The RUI client is running on the touch screen device with
an 11Mbit wireless LAN card and connects to the server via
TCP/IP sockets. Server as well as client are implemented in
C++ and use low level socket communication to gain the best
performance on the wearable computer. The client provides
a binding to a 2D GUI toolkit (Qt) and a MIDI binding to
support the optional use of a standard MIDI mixer console
with motor faders to control field values. The RUI client sub-
scribes as an observer to specific nodes in the VR system.
The RUI propagates changes of field values directly to ele-
ments of the 2D GUI and motor faders and back and thus
provides a continously updated view on the VR-System.

Figure 5 shows a snapshot of the GUI with a browser for
the scene graph nodes on the left side, showing the nodes of
the current scene which the user is in. In the default mode

Figure 4: The software architecture of the Tuner interface.

the list is sorted by object classes. In a second mode the ob-
jects are listed in a hierarchical tree view, according to their
arrangement in the scene graph tree. The tree view can be
given in a file browser like style or as picture of the directed
acyclic graph. On the right hand side of the main window,
the fields of the currently selected node are listed with their
name and a dedicated control element for each value and
type. They can set field values and receive immediate update
information about field changes. The observer pattern guar-
antees a consistent interface across the GUI, motor faders
and the VE system itself. The third main part of the GUI is a
view on the data flow network built by the field connections
presented as a directed graph. A 2D map view on the envi-
ronment is used for navigation and selection of objects. The
graph views on the scene graph hierarchy and the data flow
network can be used to change the scene graph hierarchy and
remove or establish field connections.

In practice the user selects a scene graph node via the
scene graph browser, the 2D map or by 3D selection tech-
niques. The fields of the node will be listed on the touch
screen and the motor faders will move to the positions ac-
cording to the values of the assigned fields. Now the user
can change parameters with the faders or the GUI controls.
At the end of a tuning session the set of changes are made
persistent in an XML based file format. This tuner file is
loaded on the next start of the application after the scripts
for scene setup have been executed and restores the applica-
tion to the tuned state. Different sets of tunings can be stored
and retrieved on demand.

The Tuner provides a non expert mode for users without
dedicated VR system programming. This enables creative
members of the development team to adjust object proper-
ties without the indirection via a core developer who has
to work on the source code. In this non expert mode only
certain node and field types are visible and tuneable. The
graph editors for the scene hierarchy and the data flow are
not available. Following variables turned out to be useful as
subject of the tuning process for non experts:

Transformation of objects in space: Translation, scaling
and rotation can be adjusted.

Visual material properties of objects: Material properties
as they are supported by the renderer.

c© The Eurographics Association 2004.

125



S. Conrad & H.P. Krüger & M. Haringer / VR-Tuner

Figure 5: A screenshot of the VR-Tuner GUI.

Light colour, position, orientation and intensity
Sound source properties: AVANGO offers sound sources

as nodes which can be arranged in the scene graph and
have position and direction, volume and filter parameters.

Navigation properties: Selection and parametrisation of
the navigation model like flying, walking, viewpoint
height of walker.

An important issue is the awareness of the user to what
extent he is changing the environment from its original state.
With the described interface a user can easily change a lot of
critical properties with a few moves on the touch screen or
the mixer console. On the level of fields, a toggle button for
each field indicates whether this field has already been tuned
manually. The tuning for a particular field can by reset to its
initial value by pressing this button. The toggle button has its
counterpart in a hardware button on the mixer console. The
scene graph and data flow view indicates tuned nodes by a
dedicated colour. The RUI server detects the overwriting of
tuned values from script callback code as a conflict. This is
also indicated by colouring the conflicting field or node in
the GUI.

5. Practical evaluation

The Tuner has been used in three different projects and 9
developers have been reporting about their experiences with
the setup. In a first evaluation round we used the touch screen
together with a 3D stylus and the motor faders in a cylindric
display. The styles was used for pointing in 3D and as a pen
on the touch screen. Feedback from the developers lead to
the following major results:

Combination of stylus and touch screen in hand: The
use of the stylus for pointing as well as for pen interaction
on the touch screen was not as useful as expected.
Pointing in 3D and using GUI controls with the stylus tip
requires two different hand positions (see fig. 6). Switch-
ing between these positions takes time and disturbs the
flow of actions.

Combination of touch screen and mixing console: Hill
discovered in his user study [Hil00] two needs of users
who are using a PDA inside of a virtual environment
which we could reproduce in our tests. Users wanted to
be able to change continuous values with sliders blindly,
without having to look at them. With GUI sliders the
user has to switch its focus between the GUI to trigger
the slider and the virtual environment to see the result.
Another issue was the possibility to put the touch screen
device down from time to time. The mixer console
addresses these needs. The motor faders provide tactile
feedback of the position and progress while moving them
and can be used without switching the eye focus between
controllers and environment. This was experienced
as very positive by all users. Since the touch screen
computer was also accessible without a dedicated pen,
switching between mixer controls and GUI elements did
not require a big change in hand posture. For the switch-
ing between mixer and GUI it was irrelevant whether
the user was using the touch screen stationary attached
to the mixer or standing next to the mixer, holding the
touch screen in one hand. The biggest drawback of this
combination is the absence of 3D interaction possibilities
since a simultaneous use of a 3D interaction device
with touch screen and mixer is not practicable. For 3D
interaction a dedicated device has to be taken in hand,
used separately and put back in place after the task has
been performed. Experienced developers who did most
selection tasks with the scene graph browser considered
this lack as less severe.

Usability of the GUI on the touch screen: Some GUI in-
teractions use the metaphor of mouse dragging (click-
ing on an item and moving the mouse with the button
pressed). An example is the drawing of field connections
in the data flow diagram. On the touch screen this is im-
plemented by touching the surface of the screen and mov-
ing the pen or hand while keeping the pressure on the
screen. Dragging on the touch screen requires continuous
attention for the screen and was experienced disturbing
inside of the virtual environment.

Figure 6: Two different hand positions for pointing in 3D
(left) and for use on the touch screen surface (right).

After this evaluation we translated the experiences in
changes to the system. The GUI was optimised for touch
screen use by decomposing actions which required dragging
before, in several simple pointing actions. A field connec-

c© The Eurographics Association 2004.

126



S. Conrad & H.P. Krüger & M. Haringer / VR-Tuner

tion for example, which was drawn between fields in the
data flow diagram before is now established by selecting the
source and destination field separately and confirming the
connection by pointing on a ’connect’ button.

As a main improvement we attached a tracker sensor to
the touch screen device. By doing this we overcome the
problems of the simultaneous use of touch screen and dedi-
cated 3D interaction devices. The touch screen computer can
now be used for 3D interaction tasks directly. The most im-
portant 3D interactions during tuning are selection and nav-
igation. For selection, the touch screen device is sending a
virtual pick ray as known from stylus use. It can be moved
around like a Tricorder, showing the properties of objects,
intersecting the pick ray. Because of its low weight and a fix-
ing strap on the back of the device, the intermec was more
useful for this kind of interaction than the bigger PaceBlade.
Map based navigation and selection was improved by align-
ing the map with the virtual environment, independent from
the current spatial orientation of the touch screen computer.
Direct navigation is performed by using the current direc-
tion of the of the wearable computer together with hardware
buttons on the intermec and software buttons on the screen
of the PaceBlade. The user points into the moving direction
and presses the buttons for forward or backward movement.
This technique is applied for walking as well as for flying
navigation models.

This setup is currently used in project development. The
use of the touch screen device for direct 3D selection was
evaluated as useful by the developers. Direct navigation with
the touch screen was capable of replacing other temporarily
not available navigation techniques (flight stick) for the du-
ration of the tuning process. Its general usability has to be
investigated in more detailed tests.

6. Conclusion and Future Work

With the VR-Tuner we have shown an instrument which en-
ables users to adapt VE applications interactively. The use
of a touch screen computer and hardware faders inside of
the immersive projection brings WYSIWYG (What You See
Is What You Get) to VE application development. The spa-
tial aware wearable computer enables the user to perform
3D interactions during the tuning process without having to
switch to other dedicated interaction devices. The next step
will be, to use the VR-Tuner already in earlier steps of the de-
velopment process as a main development tool. Rather than
tuning an already programmed application it is also desir-
able to use the Tuner concept for primary programming. An
in depth evaluation of the described interaction techniques
is planned to explore their usability for general tasks beside
the Tuner application.

References

[CKS∗03] CONRAD S., KRUJIFF E., SUTTROP M.,
HASENBRINK F., LECHNER A.: A storytelling
concept for digital heritage exchange in virtual
environments. In Proceedings of the 2nd In-
ternational Conference on Virtual Storytelling,
ICVS2003 (Toulouse, nov 2003).

[div94] DIVISION LTD.: dVISE User Guide. 19 Apex
Court, Woodlands, Almondsbury, Bristol, NS12
4JT, UK, 1994.

[eon04] Eon reality website. http://www.eonreality.com,
feb 2004.

[HBCN02] HARTLING P., BIERBAUM A., CRUZ-NEIRA

C.: Tweek: Merging 2d and 3d interaction in
immersive environments. In 6th World Multi-
conference on Systemics, Cybernetics, and In-
formatics (jul 2002).

[Hil00] HILL L. C.: Usability of 2D Palmtop Interac-
tion Device in Immersive Virtual Environments.
Master’s thesis, Iowa State University, Ames,
Iowa, USA, 2000.

[Ste96] STEED A.: Defining Interaction within Immer-
sive Virtual Environments. PhD thesis, Univer-
sity of London, 1996.

[Tra99] TRAMBEREND H.: Avango: A distributed vir-
tual reality framework. In Proceedings of the
IEEE VR 1999 (1999).

[vir04] Virtools website. http://www.virtools.com, feb
2004.

[WDC99] WATSEN K., DARKEN R., CAPPS M.: A hand-
held computer as an interaction device to a vir-
tual environment. In Third International Work-
shop on Immersive Projection Technology (IPT)
(Stuttgart, Germany, 1999).

[WGT∗02] WAGES R., GRÜTZMACHER B., TROGEMANN

G., MOSTAFAWY S., JAIN R., HASENBRINK

F., CONRAD S.: Nichtlineare Dramaturgie in
VR-Umgebungen. In Tagungsband der 2. Inter-
nationalen Statustagung ’Virtuelle und Erweit-
erte Realität’ des BMBF (Leipzig, Germany,
nov 2002). german.

c© The Eurographics Association 2004.

127




