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Abstract
This paper describes the EVI3d framework, a distributed architecture developed to enhance interactions within
Virtual Environments (VE). This framework manages many multi-sensorial devices such as trackers, data gloves,
and speech or gesture recognition systems as well as haptic devices. The structure of this architecture allows a
complete dispatching of device services and their clients on as many machines as required. With the dated events
provided by its time synchronization system, it becomes possible to design a specific module to manage multimodal
fusion processes. To this end, we describe how the EVI3d framework manages not only low-level events but also
abstract modalities. Moreover, the data flow service of the EVI3d framework solves the problem of sharing the
virtual scene between modality modules.

1. Introduction

Currently available Virtual Environments (VE) are mainly
driven by conventional devices such as trackers or data
gloves for input and by visual and auditory feedbacks for
output. Our goal is to take advantage of every kind of
advanced interactions the Human-Machine Communication
domain is able to provide.

To this end, we are developing the EVI3d framework,
a distributed architecture to manage advanced interactions
within Virtual Environments. Actually, some devices require
sophisticated recognition processes while others suppose
real-time feedbacks and so on. Our purpose is to export such
heavy tasks on dedicated computers. Consequently, it is nec-
essary for VE applications to be embedded in a distributed
architecture over a network that allows the cooperation of
several computers possibly with different Operating Systems
(OS).

The base component of this architecture is the VEserver
that already manages several standard VE devices such as
6 DOF trackers as well as more exotic devices such as speech
recognition systems. The purpose of this paper is to de-
scribe how EVI3d manages multimodal fusion of events.
This kind of process can be considered as a client of the
VEserver according to the fact that it requires events pro-
vided by the available VE devices. More fundamentally, it
is a generic module of the EVI3d architecture that combines

multi-sensorial input events of any VE applications, accord-
ing to knowledge of their functional possibilities.

The outline of this paper is the following. First, we present
a short overview of the most advanced systems in the VR
field. Then, we describe the constraints of the devices we
use in order to reach realistic interaction within Virtual En-
vironments. After an overview of the VEserver and its place
in the EVI3d architecture, we finally describe the solution
used to manage fusion of multimodal events.

2. Overview of VE systems

2.1. Software architectures for VE applications

A thorough description of the main requirements and ap-
proaches for networked VE systems is presented in23. For
the management of VE applications, there are mainly two
kinds of architectures: the data-oriented distributed architec-
tures and the event-oriented systems.

A first category of VE distributed architectures uses share
memory approaches to distribute very large-scale databases.
It is the case of IP multicast-oriented systems such as DIS19,
NPSNET26 or HLA16. A second class of solutions is the
supplier/consumer approach, that the previous DIS-oriented
systems provide, as well as DIVE4 or AVIARY24. However,
this approach can induce higher latency, while some of these
systems do not allow preemptions between event processes.
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The main advantage of this method is that every nodes of the
application as a full knowledge of the whole database. Thus,
we don’t have to care about differences that could introduce
artefacts between two nodes.

Another kind of software architecture for Virtual Envi-
ronments is event-oriented systems. To this end, many li-
braries exist to provide device drivers services to VE ap-
plications. The most popular library is Trackd from VRCO.
It is included in many VE software such as CAVElib, Di-
vision dVise and WorldToolKit. However, Trackd is not an
open source software. Therefore, it is not easy to introduce
new kind of devices such as voice or gesture recognition
processes. Then, some laboratories developed and proposed
their own open source device manager. The most common
are the VRjuggler system10 and the Diverse Tool Kit (DTK),
this last one being a part of the DIVERSE library11. Con-
versely to the previous method where each node knows the
whole database, each node know only the interacters it re-
quires. However, this method requires much less bandwidth
and is equivalent to the previous one in the case of only one
node.

None of the previous systems include interaction through
haptic devices. The only system designed to manage hap-
tics within Virtual Environments is VRPN (Virtual Real-
ity Peripheral Network)9. Moreover, this system also pro-
vide a driver to connect voice recognition and timed events.
However, the system is restricted to one server with several
clients. Thus, there is no solution to have several servers (and
timing is provided by the unique server).

Regarding data fusion, the OpenTracker software20 fully
implements a system to fuse several informations from dif-
ferent trackers through XML language. The main drawback
of OpenTracker is that it is a big standalone software that
manages every thing in a centralized fashion. Our purpose is
to build a modular architecture so that our implementation
allows an application to disconnect the Multimodal fusion
system for specific applications as well as avoid the use of
the immersive kernel.

Many applications use flying menus with 3D widgets to
interact within Virtual Environments. This kind of interac-
tive paradigms obliges the user to frequently shift his at-
tention from the 3D working space to some user interface
sub-spaces: virtual objects as well as augmented ones are
mixed with 3D widgets that induce a very confusing work-
ing scene. According to previous works on multimodal in-
terfaces for CAD applications1, our point of view is to com-
bine “intelligent” devices within the virtual world to avoid
those widgets: vocal commands, gesture recognition, track-
ing post-processing to control navigation and so on. To this
end, we developped the VEserver2, an event oriented solu-
tion which manages standard workstation windowing events
of (keyboard, mouse, focus, motion, expose, ...), as well
as non-standard events such as those that are delivered by

VE devices or advanced recognition processes (voice, ges-
ture...).

2.2. Speech recognition systems

Speech is the modality most used in the communication be-
tween human beings6. It has many advantages, e.g. It autho-
rizes a significant flow of information (180 to 200 words per
minute), larger than keyboard input. It makes it possible to
refer and reach non-visible objects: contrary to pointing ges-
tures, it is not necessary, with speech, to see an object to be
able to point it out. Speech also makes it possible to refer to
it in a descriptive way by indicating attributes or particular
properties of the object to identify it. For instance, a graph-
ical object can be identified by its attributes such as color,
form, position, etc. Using graphical interfaces, it is some-
times necessary to descend a whole tree structure of menus
before reaching a particular command. Thanks to speech, it
becomes possible to reach it directly by naming it. More-
over, the replacement of keyboard shortcuts by words fa-
cilitates the memorization of the commands, because words
have their own semantic content. To speak occupies neither
the hands, nor the eyes. Consequently, it is possible, thanks
to speech, to communicate and act (on real or virtual objects
of the environment) at the same time.

To speak with a machine is not as simple as to speak with
a human being. At the present time, there are a certain num-
ber of technological constraints. For example, to obtain very
good recognition results, the size of the vocabulary should be
limited to a few hundreds of words. It is necessary, moreover,
to give a detailed attention to the choice of this vocabulary.
Too short words (figures, spelled letters), or too acoustically
close words (“led”, “let”) can be confused. A training phase
remains necessary for speaker-dependent systems. The con-
ditions under which the training was made (type of micro-
phone, distance between the mouth and the microphone, am-
bient noise7, etc.) influence enormously on the performances
of the system. It is thus significant to preserve the same con-
ditions during the training and using phases. Contrary to the
keyboard, the mouse, or the touch screen, which present no
risk of error (that does not mean that the user cannot do mis-
takes), the speech recognition systems are not deterministic
and constitute a new source of errors (in addition to the user).
Indeed, the rate of recognition never reaches 100%, even in
ideal conditions. The use of syntax or of an adapted dialog
model however can significantly increase the rate of recog-
nition.

2.3. Multimodal fusion process

The principle of combining several modalities and in partic-
ular speech with gestures, considerably increases the power
of expressions12, 13. A typical example of the contribution of
speech to improve interaction concerns the selection task.
A common problem with this task is the granularity of se-
lection. For instance, in 3D design applications1, 5, there are
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different selection levels: point, curve, surface, volume, etc.
Thanks to speech, it becomes possible to perform different
types of selection with the same pointing operation. The de-
sired granularity level is simply indicated with a word while
performing the pointing operation.

However, combining speech with gestures in the same
system requires certain characteristics of speech as well
as gesture recognizers and the ability to provide some
specific information which is important at the application
level15, 18, 22, 17. In order to correctly interpret the statements
produced by the user, it is necessary to handle the events
produced by the devices in a sequence that corresponds to
the real chronological sequence. However, the difference be-
tween the response times of the different devices can be very
important. This implies that, in general, the system receives
an information stream in a temporal order which is not cor-
rect and therefore can lead to a bad interpretation of the state-
ments (Even for human beings, it can be hard to understand
the meaning of a sentence when the words are mixed up).
To solve this problem, it is first necessary to know the pro-
duction instants of each word (beginning and end times), so
it will be possible to retrieve the right chronological order
of events. Then, an event must be handled only after ensur-
ing that no other event is currently being produced by an-
other device, because it is possible that the other event can
have an earlier start time. So, we will ensure that the next
event produced will have a later time production and we can
be sure that events from all devices will be handled in the
real chronological order. Consequently, precise timing has a
great importance in multimodal interfaces since it can con-
vey information and have effects on the interpretation pro-
cess of statements. The sequence alone does not allow mul-
timodal statements to be correctly interpreted. It is necessary
to have precise information about the temporal distribution
of events, in particular the beginning and end times of each
word or each gesture. In this way, it will become possible to
detect temporal proximity between events, and then to de-
cide if a fusion must occur or not.

3. EVI3d framework and VEserver

VE I/O
manager

DB network
interface

kernel
VEserver DB network

interface

VE I/O manager

VEserver kernel

VEnode

Client
Client

VEnode

Data flow networkEvent network

Figure 1: The general EVI3d framework.

The EVI3d framework (figure 1) is a general distributed

architecture which combines the advantages of an event ap-
proach with a data flow one. In a previous IEEE paper25, we
presented the data flow approach of the EVI3d architecture.
This part of EVI3d allows sharing large databases between
a scene generator and the computers requiring the full scene
such as the graphics rendering computer. Among others, the
haptic feedback computers require the full scene to be able
to generate the right feedback according to the current scene.

However, in this section we describe two main compo-
nents of the VEserver to satisfy the requirements of multi-
modal fusion of events.

3.1. Distributed structure

As of today, many programs that manage special events
coming from speech or gesture recognitions systems are
platform dependent. Moreover, a voice recognition system
fully uses the CPU (of a PII 450MHz) during 400 millisec-
onds to recognize a single vocal command. Consequently, it
is necessary to dispatch the processes managing this kind of
drivers on several machines over a network. The VEserver
manages the connections between those processes.

To this end, the VEserver has a distributed structure ac-
cording to several instantiations of a same class: the VEn-
odes. A VEnode is the software module composed of one
VEserver kernel and managing one or several devices of a
single machine. To provide complete and correct informa-
tion to the VEserver clients, each VEnode has to know at
any moment all the services that the other VEnodes are sup-
posed to deliver. It is the goal of the VEserver kernel of each
VEnode to distribute this service information over the other
VEnodes. On the other hand, each client of the VEserver
includes a special component that manages the connection
of the client to its own VEnode. This component, called VE
I/O manager, also allows the client to send messages to any
device or client managed or connected to the VEserver.

For each client, the VEserver is a single software object
represented by the VEnode the client is connected to. This is
possible with the VEserver kernel and the VE I/O manager
that mask the connections and all the needs of communica-
tion between the VEserver and its clients.

3.2. Driver manager

The VEserver was designed to perform all the tasks inher-
ent to a device manager (i.e.: it must be able to load, launch,
kill and change the configuration of any driver). Due to the
problem of asynchronous events, all the drivers have to run
as different concurrent tasks. To avoid the problem of mem-
ory sharing, threads were preferred to processes in our im-
plementation. Thus, each driver has its own detached thread
within a same process, while the main thread of this process
is dedicated to the VEserver kernel.

We were also looking for the ability to start drivers while
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the server is running. This is done by using dynamic shared
objects via the dlopen() C system function. A nice side-
effect is that the VEserver allows us to develop and test new
drivers without having to recompile or to restart it. Thus a
driver of a device is a shared object, dynamically loaded
by the VEserver and designed to be launched as a separate
thread.

3.3. Timing events

The section 2.3 shows the necessity of timing the events
uniquely in order to process them adequatly.

However, the distributed structure of the VEserver sup-
poses to provide solutions to have a homogeneous timing of
events. Furthermore, internal timers of each computer are
not synchronized together and have specific clock devia-
tions. Therefore, the VEserver includes a time synchroniza-
tion system. This system provides a clock whose accuracy
is about 1 ms over a 10 mb/s Ethernet network. This preci-
sion is generally enough, because our concern is the “inter-
action time”: under 1ms, users cannot distinguish between
two events.

The aim of the time synchronization system is to get a uni-
versal time from one master. According to the localization of
the time synchronization system within the VEserver kernel,
each event is straight dated by the VEnode of its driver, while
each message of a client is timed during its travel through the
first VEnode.

The chosen paradigm is the master/slave one. Our timing
system is quite similar to the Network Time Protocol (NTP)
system14. However, conversely to NTP that provide an abso-
lute time all around the real world, we only require a relative
time between our servers. Moreover, we want to map the hi-
erarchical structure of the different nodes on the distributed
timing system to merge the re-election of masters in the case
of failure.

3.4. Data flow services

Some applications, such as scientific simulations are work-
ing on large and/or dynamical data. Those data are generally
processed by a supercomputer, while a dedicated machine is
used for graphics visualizations. A standard network cannot
provide enough bandwidth to transfer the millions of objects
required by these applications. For instance, it is typically
the case for Fluid Mechanics applications such as the one
we develop at the LIMSI-CNRS laboratory (figure 2), where
iso-surfaces are standalone objects composed of millions of
triangles (figure 3).

In the spirit of the MPEG-2 data file format, the EVI3d
framework architecture provides two kinds of data formats:
those fully computed from scratch, the other ones produced
from the first one by a delta of modifications. Consequently,
our distributed architecture manages two channels:

Figure 2: One of the 50 frames of the 3D database of a com-
pressible turbulent mixing visualized within our Virtual En-
vironment.

Figure 3: During the simulation of a compressible turbulent
mixing, example of one frame of a dynamic iso-surface.

• The event network (for instance, a 10 mb/s Ethernet). This
channel is completely controlled by the VEserver kernel
and the VE I/O manager components. The data traveling
through it are structured as events that only update the
current state of a database.

• A data flow network (typically a gigabit Ethernet connec-
tion). This channel must be seen as a stream. The data
concerned are heavy ones, such as large 3D databases,
movies or sound signals. Those data can be considered as
initial data or key frames needed to regenerate completely
the scene. This channel is generally independent from the
VEserver but requires it, for instance in order to initialize
the protocol.

The general EVI3d framework for a VE application is
shown figure 1. Each of the four boxes of this figure is de-
signed to reside on separate machines. If only some modules
of the EVI3d architecture are connected to the data flow net-
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work, all modules are linked together via the VEserver ker-
nel and the VE I/O manager components. In other words, the
VEserver is the backbone of the EVI3d architecture.

4. Multimodal fusion of events

This section explains how some advanced interactions are
designed within the EVI3d framework. First, we describe the
management of modalities from low-level events. Accord-
ing to these considerations, it becomes possible to define the
functional structure of a multimodal fusion process within
our architecture.

4.1. Pre-processing of modalities

As we will see in the following sub-section, the multimodal
fusion process is independent from the application. Conse-
quently, the events provided to it must not only be correctly
dated, but also have to carry high-level information. As ex-
plained in section 3.3, each event is already timed when it
travels through the VEserver kernel of the device driver. To
be semantically augmented, these events are preprocessed by
interpreters depending on each modality.

The function of the interpreters is to translate the low level
events issued by the devices (2D co-ordinates for the touch
screen, character strings for the voice recognition system...)
into higher level information. When events have been inter-
preted and dated, the resulting higher level information is
sent to the multimodal fusion system. An interpreter is thus
associated to each input modality. It uses its own language
model and specific domain information to achieve the trans-
formation of events:

• Language models are static. They contain a set of invari-
ant (fixed) semantic information necessary for interpreta-
tion operation. For example, for the data glove, it will be
a model of gestural language composed of the semantics
of each gesture of the language. For the voice recognition
system, it will be a spoken language model containing the
meaning of each word or sentence.

• Domain information is dynamic. It represents the envi-
ronment description of the application. This environment
evolves in time following the evolution of the task. It con-
tains a description of each “object” of the application. The
dynamicity of the domain information requires its update
every time the database is modified. To allow such up-
date, the interpreters must be connected to the data flow
services.

However, other modules can be clients of the low-level
driver management. It is typically the case of “lexical” feed-
backs such as the visualization of hand avatars. But more
fundamentally, some modalities require a recognition step
between the driver management and the interpreter mod-
ule. Thus, a generic modality preprocessing is composed of
the driver itself, the recognition process and the interpreter.
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DriverVE server
kernel

manager
VE I/O
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loader
DB network

manager
VE I/O
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Figure 4: Preprocessing of events for a generic modality be-
fore the multimodal fusion.
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Figure 5: Preprocessing of vocal modality.

The figure 4 shows the whole preprocessing of events before
sending them to the multimodal fusion system. An important
point on this figure is the dashed lines that illustrate the abil-
ity of each component of this process to reside on different
machines.

Please note that some of these components can be merged
or splitted according to specific modality cases:

• Speech recognition. The low-level information provided
by the driver is a heavy flow. Moreover, for some systems,
we cannot manage the voice signal directly. In this case,
the driver layer and the recognition process are combined
to provide only the recognized words. The figure 5 shows
the instantiation of the preprocessing for this modality.

• Gesture recognition. From another point of view, some
modalities such as gesture recognition can require more
than one device. The figure 6 shows that for gesture recog-
nition there are two informations for a single hand: the
data glove (hand configuration) and its 6 DOF tracking
(hand global position). Furthermore, to make full recog-
nition of the two hands, we need four devices.
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Figure 6: Preprocessing of gesture modality.

4.2. Multimodal fusion system

The multimodal fusion system is composed of two main
parts: a waiting queue and a fusion manager.

4.2.1. The waiting queue

The waiting queue receives information from the modal-
ity interpreters. This information is classified in three cat-
egories corresponding to the three basic operations of inter-
action, following the user interaction model: <commands,
arguments, values>. It is sorted by the starting time of pro-
duction of each information.

4.2.2. The fusion manager

The fusion manager is the heart of the multimodal process.
Its activity consists of analyzing information contained in
the waiting queue with the aim to build the original user
command and to execute it. First, the command is identified
in the waiting queue, then the application model (figure 7)
gives the description of this command. After analyzing other
informations in the waiting queue, the manager assigns val-
ues to arguments. When all arguments are valued, the man-
ager starts the command execution.

The fusion manager handles the pieces of information one
by one when they arrive in the waiting queue. To perform
that process the fusion manager uses a set of rules defined
from the analysis of the different possible configurations that
can appear in the waiting queue. The result of the processing
depends on the type of the current information, the state of
precedent information and matching conditions.

The main problem to be treated by the manager is to
assign right values to the corresponding arguments. The
matching conditions are driven by three constraints: the logic

complementarity, the type compatibility and the time proxim-
ity.

• Logic complementarity. To match 2 informations there
must be a logic complementarity between them. For in-
stance, it is not possible to match 2 values or one value
and one command. However, it is possible to match one
value and one argument.

• Type compatibility. To match an argument and a value, the
type of the value must be compatible with the argument
type.

• Temporal proximity. This condition means that events
corresponding to an input value and to an argument ref-
erence must be produced closely enough in time. In that
case, we can affirm that the input value must be matched
with the referenced argument.

Application
Model

�������
�

Process

Interpreter �������
�

n

waiting
queue

"Multimodal fusion" module

manager
VE I/O fusion

manager

manager
VE I/O

manager
VE I/O DB network

loader

DB network
loadermanager

VE I/O

Modality

Data flow network

Event network

"Application" module

Figure 7: The multimodal system in the EVI3d architecture.

The figure 7 shows the integration of the whole multi-
modal fusion process in the EVI3d architecture. Each box
may be seen as distinct process. Moreover, these different
boxes can reside on different machines.

5. Current instanciation

This section will describe an example application using the
EVI3D framework. Moreover, we will describe the bench-
marks we have performed to assess the performances of our
architecture.
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Figure 8: Current instantiation of the EVI3d framework.

5.1. EVI3d showcase: Nautilus

The figure 8 shows the current instanciation of the EVI3d
framework on our demonstration application: Nautilus. This
application is a 3D scene interacter that includes every inter-
active paradigm we have developped.

This application uses different devices: the body track-
ing includes a head tracking that is used by our free hand
navigation module3. The data glove signal is send through
the VEserver to a gesture recognition system. This system is
based on a Rubine approach21.

The entire signals are sent to the immersive kernel for
visual feedbacks (rendering of avatars of the interacters).
Moreover they are also sent to the multimodal kernel.

As seen in section 4.1, the interpreters require the whole
scene. To avoid the use of one data flow connection per
modality, we merge all the interpreters in a single application
that also includes the waiting queue and the fusion manager.
This application concentrate the whole database as well as
the scene management required by the detection collision to
find the intersection between a tracker and the objects.

For example, the tracker of a laser beam can generate sev-
eral different informations: the pointed direction of the beam
and one information per object that the laser intersects. The
system can fuse the high level event provided by this inter-
preter with a speech event that asks to “move” the pointed
object to the position described by another position pointed
by the same tracker immediately after. From another point
of view, this task can be done by the designation gesture that
our gesture recognition system “knows”: the user points a
direction, the system recognizes the designation gesture and
sends a message that also contains the orientation to the mul-

timodal kernel. The interpreter process this information like
the previous one: one direction or several designations of ob-
jects.

5.2. Time synchronization precision

A first benchmark used three computers (see figure 9): a
client under Linux was directly connected to a server under
Linux (both distributed on different computers). This server
was also connected to a master VEnode under IRIX.

The protocol of this benchmark is to use the keyboard
driver for the slave and the master servers. We just do a key-
board interaction on the client computer and compare the
time between the two events produced by the drivers respec-
tively managed by the master and the slave servers.

First
server

Second
server

Time
synchronization

X−window events

VEserver events

Client

Figure 9: Benchmark for time latency measurement.

The main result (done on 100 iterations) is a latency of
(0.9±0.1)ms, that matches our requirements for multimodal
fusion of events.

However, the keyboard driver is based on the X connec-
tion between an X-window client (the keyboard driver) and
the X-window server (the VEserver client computer). Thus,
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due to latency of the X-window protocol and the differ-
ent path from the VEserver client to each VEnode (switch,
hub...) this protocol has to be improved.

We plan to implement another benchmark with a special
RS-232 device that split specific information on two differ-
ent ports simultaneously. Then, we will have the same signal
on two computers and will be able to make better tests on
time latency.

5.3. Latency between a server and a client

This second benchmark (figure 10) used three computers as
well: three VEnodes and one VEserver client. However, in
this protocol a single path connects each VEnode. The fur-
thest VEnode resides on the same computer as the VEclient,
and the messages travel through two remote servers before
reaching the client. On the other hand, the VEnode that is on
the same computer as the VEserver client as a special driver
that simulates events with different frequencies. In this pro-
tocol, events are not timed through the time synchronization
system, but through the gettimeofday function that pro-
vides the local time. Then, the events go through the two
other VEnodes before arriving to the VEserver client. This
client also gets the local time through the same function and
compares the two dates.

VE node VE node

Client VE node

Driver
Generator

Computer two Computer three

Computer one

Figure 10: Benchmark for latency measurement through the
server.

However, we have discovered a dysfunction in IRIX that
can increase time latency of about 100 ms with high fre-
quency data transfer. To avoid this problem, the VEserver
includes a patch that may slow down the transfers. Using
this patch, the main result of this benchmark is an aver-
age latency of (3 ± 0.2)ms for a range of 1Hz to 10kHz
for the three connections between the main VEnode and the
VEserver client.

Similar benchmarking remains to be done on other OSes
(Windows NT).

6. Improvements with haptic devices

Conversely to visual feedbacks, which only require a low
frame rate of 25 frames per second (mainly due to the retinal

persistency), haptic feedbacks typically require 1000 sam-
ples per second. Each time step includes several computa-
tions, including that of the distance between the virtual po-
sition of the device and each object of the scene.

VRPN is one of the first networked device managers that
allow such interaction. Its haptic management is based on the
use of libraries like GHOST(software manager for detection
collision provided with Sensable technology’s phantom de-
vice), Virtual Hand Toolkit (provided with the CyberGrasp,
from VTi) and H-COLLIDE8. Int VRPN, the interactions be-
tween the client and the drivers use the same connection for
all the devices of a VE application. Then, the entire scene is
managed using this connection. This system fully works in
the case of a static scene that only needs to be moved. How-
ever, in the case of dynamic data, a single connection will
overload such a standalone network.

The double channel used by our distributed architecture
proposes a generic solution for the software management of
haptic devices. Actually, within the EVI3d framework the
driver of an haptic device is connected to the two channels.
In the case of small updates, such as moves of a static scene,
the information is provided through the VEserver by the
event network. Conversely, when the database is changing
drastically during a process, the driver is subscribed to the
multicast group of the simulation calculator that will pro-
vide this dynamic data. The data flow network via the DB
network loader routs those stream of data.

���
�

3D position
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haptic
device

VE node

DB network
loader

VE server
kernel

Data flow network

Event network

Figure 11: Integration of the Phantom device.

Figure 11 shows that the VEserver allows to directly in-
clude the DB network loader within the driver of a VE
node, like in the case of our Phantom’s driver. Moreover,
the EVI3d framework includes the case of devices where the
haptic part is physically dissociated from the input part. For
instance, with the CyberGrasp, the VEserver allows the com-
munication between the data glove drivers (the hand input
part of the bottom VE node of figure 12) and the force feed-
back driver of the exoskeleton. Thus, input can be located on
a computer to manage gesture recognition and its modality
interpreter (cf. figure 6), while the feedbacks are managed by
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Figure 12: Integration of the CyberGrasp device.

another machine to deliver the necessary robotic command
rate.

7. Conclusion

This paper has described the management of some advanced
interactions by the way of the EVI3d framework. With this
architecture, we implemented a complete multimodal fusion
system. The interaction between the VEserver and this mul-
timodal module is done by the introduction of modality in-
terpreters distributed over several machines.

To validate the VEserver and its framework architecture,
we developed several applications. To manage the func-
tional commands of these applications, one VEnode of the
VEserver drives a speech recognition system under Win-
dows. Other VEnodes, running under IRIX, deal with track-
ing systems (for head and pointing movements).

As seen section 6, we are interested in the use of out-
put feedbacks. However, the haptic devices can be combined
with auditory feedbacks according to the available devices.
Thus, one of our future works will be to design a specific
client, which can manage multimodal fission processes. For
instance, the behaviors of virtual objects are able to provide
message events that have to be dispatched over several feed-
back modalities (visual, auditory, haptic...). Moreover, ad-
vanced processes (such as: sound effects, cinematic behav-
iors, scene generator...) can be dedicated to specific EVI3d
modules.

This work is sponsored by the PERF-RV platform, a large
Virtual Reality project of the French RNTL program that
promotes research in software technologies.
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