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Abstract.  Software for the development and generation of virtual 
environments used to run on specialized and expensive hardware. This 
situation has dramatically changed in the last two years. This paper 
describes a scalable high performance application platform for 
immersive environments using commodity hardware. Scalability will be 
obtained with a coarse cluster of specialized nodes, with emphasis on 
distributed real-time rendering. As data synchronization method a 
distributed shared memory approach is used. Dedicated to this hardware 
setup, a modular component oriented design is presented. 

 

1  Introduction 

Virtual Reality (VR), in our understanding, is an interface technology which allows 
direct multimodal interaction with dynamic and responsive computer generated or so-
called virtual environments. Immersive virtual environments (VE’s) should operate in 
real-time and consider the spatial superposition of user and data-environment, that is, 
the response time and update rate of the system is high enough that it generates an 
experience of continuity and a perceptible 3D-environment. This requires not only 
3D-based real-time computing and render systems but also real-time spatial 
registration of the user and his behavior.   

We see the main purpose of VR-technology in the enhancement of human computer 
interaction. Especially in problem domains of high complexity the use of immersive 
virtual environments enables more direct perception and manipulation. Obvious 
application domains are complex evaluation or planning tasks like architecture or 
design, medical training, fluid dynamics in engineering, assembly planning, etc..  
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One of the major obstacles for broader research and development was definitely the 
usage of specialized and expensive hardware which does not scale adequately. Also 
network bandwidth restricted the distribution of real-time systems.  

Nevertheless there have been various approaches to distributed virtual environments. 
Common usage were multi-user environments like the DIS/HLA [Kuhl99] based 
military simulations  which focus on large scale multi-user applications. Similar 
systems are described in [Singhal99] which gives a good overview of the state of the 
art. Another important domain was the coupling of super-computer-based simulations 
with immersive visualization systems. But it was not very common to use these 
distributed systems for single user purposes as an substitute for expensive high end 
graphic real-time systems.  

This has changed dramatically in the last two years. The availability of an open source 
operating system on commodity hardware platforms with sufficient graphic power has 
started a serious approach to commodity hardware based VE research and 
development. On the one hand it promises more fine grained and cost effective 
scalability as with specialized workstations. On the other hand new bandwidth 
problems induced by the multi-purpose design of the hardware architecture require 
new creative solutions for real-time systems. This suggests a design of virtual 
environment system software closer dedicated to a commodity hardware based 
computer cluster.     

Our target application domain is a single/few user system in a local distributed 
environment for the sake of pure performance scalability. We do not intend to create 
large scale networked virtual environments. 

2  Conceptual Overview 

The choice of the granularity of system components seems to be a crucial factor for 
the usability on the application development level, as we have experienced with the 
Lightning VR System [Blach98].   

Our approach tries to bundle functionalities to coherent units of hard- and software. 
These units gain a certain autonomy and independency which makes the whole 
system more robust and manageable. To spend a complete hardware system for even 
simple but computationally intense tasks seems to be affordable because of the 
comparative cheapness of  commodity hardware. To achieve this level of 
independence of the system components an asynchronous approach to communication 
is necessary.  

For many applications, the most important scalability aspect is the scalability of 
graphics output, ranging from variable channel count of the display environment to 
scalability of overall graphics throughput, and parallelization of special rendering 



tasks. A distributed approach combining multiple graphics subsystems on multiple 
hosts is pursued to overcome the limitations of the PC architecture. 

Other important abilities are rapid configuration, run-time access and prototyping of 
applications where the introduction of an interpreted scripting language has proven 
useful. Therefore two levels of the application developer interface should be 
considered: 

• A C++ native object extension, to extend the system with a kind of plug-in 
structure. As long as the shared memory based data pool can be accessed 
other languages are also conceivable. 

• A scripting layer for easy configuration and runtime access.  

We will experiment further with a multi-language support. In real world applications 
obviously only one language will be reasonable. The language of choice must be able 
to build and maintain larger applications. Our experience with Tcl [Ousterhout93] has 
shown that it is a very convenient choice for small and medium size applications but 
seems not to be able to help structuring large scale applications. 

3  An Early Prototype: Personal Immersion (Lightning 1.7 
distributed) 

Commodity hardware like the PC architecture implies some limitations in comparison 
to classic graphics workstations, namely concerning bus bandwidth, memory 
bandwidth, and multiprocessor capabilities. A PC-based scalable graphics architecture 
therefore requires a distributed approach.  

A first prototype of a scalable distributed VE System is the Personal Immersion 
System. Based on the Linux port of Lightning 1.7, it is capable of driving single- or 
multi-wall immersive projection environments. It is based on a distributed scene 
graph/application approach. As a result, the network bandwidth needed for 
synchronization is kept at a minimum, independent of the amount of actual per-frame 
scene graph updates. Standard 100MBit Ethernet components are used for cluster 
interconnection. To keep the synchronization of the buffer swaps of each graphics 
channel as tight as possible, an additional light-weight synchronization using the 
handshake lines of a serial port is established. One node in the cluster acts as a master; 
it acquires tracking and input device data and propagates these data to the other hosts 
in the cluster. Usually, the master node also runs a full application/rendering task. If 
the data acquisition overhead is considerable, e.g. from computationally intensive 
calibration tasks, the master can also be fully dedicated to data acquisition and 
preprocessing. 

In current configurations, passive stereo projection is used; a typical single-wall 
configuration runs on two nodes, each generating one eye view. Each node is 



equipped with one graphics card, allowing to exploit the immediate-mode throughput 
of modern PC graphics accelerators to the maximum extent possible. Fig. 1 shows a 
block diagram of this configuration. 

Interaction
Devices

Projector Left Eye

Projector Right Eye

PC 1
(Master)

PC 2
(Slave)

Optical Tracking (Head)

EM Tracking (Interaction)

100BaseT Ethernet

Sync

 

Fig. 1  Personal Immersion configuration 

The Personal Immersion System was evaluated in various application environments 
[IPTW2000], proving its usability being comparable to traditional high-end 
configurations. Advantage of the approach pursued with Personal Immersion is its 
compatibility with existing Lightning Applications on high-end platforms. Since the 
full set of the underlying scene graph API can be used, even applications performing 
much run-time modification to the scene graph can be ported to the Personal 
Immersion platform with minimum effort. An application example are immersive 
surface or volume modeling systems. 

Drawbacks are the replication of the computational tasks of the application on each 
image generator node, which is unnecessary in most cases, and the limited granularity 
in distribution of image generation and application-side computational tasks. 



4 A Scalable Personal Immersion System  

4.1  Interactive Core System 

The interactive core system is able to model and therefore abstracts all components 
and the communication behavior of immersive interactive applications in virtual 
environments. It is in itself a complete system for the definition and description of the 
interactive behavior of such environments. The specific device or render modules 
should be as loosely coupled as possible.  

The main goal is to achieve a real-time behavior of the application control module 
with a timing being independent of I/O specific limitations, namely graphics 
throughput. 

Consider the situation that an independent device process is used and that this process 
is fast enough to register all input events sent by any device subsystem, e.g. a spatial 
tracking device. A commonly used scene graph API, OpenGL|PerformerTM, uses a 
pipelined multiprocessing model consisting of the stages application, cull and draw, 
each running in a separate process in the full multiprocessing configuration [Rohlf94]. 
However, theses processes are synchronized at frame boundaries, resulting in the 
frame rate of the entire system being limited by the process with the longest frame 
time. Preprocessing of interaction data and application control is performed in the 
application stage. In practice, this means that in case of heavy graphics load, a double 
click event can easily be lost. There are two main directions to tackle this problem. A 
history buffer for input streams can be introduced, from which all events accumulated 
during the last frame are processed in the current frame. Major drawbacks of this 
solution are the immanent overflow problem, and the application process frame time 
still limiting system frame rate. The second way, which is our approach, is to run the 
application control loop asynchronously from the renderer main loop. [Grimsdale 91] 
describes a similar method. The application control loop processes the inputs and 
control related functions in real-time and possible render modules/devices sample the 
specific system state at a certain time and processes it as fast as possible. This can 
probably be applied to other function modules, e.g. collision detection or physical 
simulation. 

Although custom solutions for most load balancing problems as described above can 
be found, these solutions do not apply for the general case.  

Concerning control and data flow, we extend the data flow model of the VR system 
Lightning [Blach98]. So-called Application-Objects hold the main functionality. The 
state of the system is completely contained in so-called fields which are actually 
attributes of the Application-Objects. These fields can be linked to other fields or 
procedurally set from elsewhere. The structure of the linked objects and their behavior 
describe the application. Every object has a central update function which reads 
incoming data, processes it and updates the object state. This is similar to other data 
flow oriented systems as e.g. [VRML97].  We introduced container objects which 



control other objects and have the possibility to run their own autonomous simulation 
loop via threading. One key container object type has the role of the update manager 
of objects it owns. There is no central hidden update manager as in the VR system 
Lightning because we found that in most applications, the sequence of the data 
propagation is not only manageable by the application developer but wanted. Another 
important container object type is the renderer which abstracts the various hardware 
and library specific renderer.  

The Object Database Pool resides completely in shared memory. Unrelated processes 
can easily access this database. This offers the opportunity to modularize the 
application components on binary level which makes them easier to develop, control 
and maintain. The communication protocol is string based and timestamps are used 
for synchronization. Reference counting is the only security mechanism which allows 
to control the usage of the database objects. The synchronization of object state across 
host boundaries relies on mirroring the shared data pool via a distributed shared 
memory approach which can use various networking technologies for transportation, 
as described in section 4.3. 

 

 

Fig. 2  Shared memory data pool as central repository of system state 



The scripting and configuration system consists  up to now of four different language 
bindings Tcl/iTcl, Java, Javascript and Python. Which one will be the language of 
choice for productive application development has to be proven in the near future. 
The interpreter is also an object which runs in its own thread where commands can 
easily be sent from external processes. The usage of various interpreters in the same 
application is conceivable but does not seem reasonable to us. 

4.2 Graphics/IG System  

On the graphics/image generation side, a coarse-grained scaling approach similar to 
the granularity of Personal Immersion is pursued in a first approach. This means one 
single node and graphics pipe per output channel; of course, multiple channels per 
node are also possible if the respective node provides appropriate hardware resources. 
The scene graph is completely replicated on all nodes; scene graph updates are 
propagated on a per-frame basis. This approach can easily be implemented using the 
distributed object database pool as described above, running multiple visual renderers 
on the various nodes, each registering interest in the visual objects in the shared data 
pool. The multiple visual renderers can be synchronized at frame boundaries to drive 
stereoscopic and multi-channel displays. 

To overcome the limitations of this distribution approach, a more fine-grained 
distribution of image generation tasks is pursued in parallel, based on tiling a single 
output channel and recombining the final image. An network protocol independent of 
a particular Scene Graph API is designed to distribute scene graph updates across the 
visualization cluster. This allows the rendering hosts to run on various operating 
system platforms. For combining the final output image, commodity graphics 
hardware allows two approaches of accessing frame buffer data. First one is reading 
back the framebuffer through the host interface of the graphics card and conveying it 
via a high speed network to the host being in charge of output image reassembly. 
Samanta et al. [Samanta00] have shown the feasibility of such an approach. The 
second way is to use the video or DVI output of the graphics card, using custom 
hardware to reassemble the final image. An example of this is described by 
Humphreys et al. [Humphreys2001]. Such solutions have the huge advantage of 
yielding the entire system bus and networking bandwidth for other tasks; however, 
the need for custom hardware contradicts to the commodity hardware paradigm of our 
approach. This is the main reason for us to prefer the a system bus/networking based 
architecture. 

4.3  Distributed shared memory 

A flexible and high-performing distribution and shared memory model is a key 
building block of our system.  

Interprocess-communication is simple and fast as long as the communicating  
processes have access to the same physical memory. Distributed shared memory  



(DSM) implementations aim at providing the same simplicity when communicating 
between processes on different nodes with no shared physical memory. 

Page-based DSM implementations extend the capabilities of the well known shared 
memory mechanisms available in most of today's operating systems to inter-node 
communication. That means a DSM segment is as usually first created with an API 
call. Every statement of the programming language can then be used to manipulate 
the segment's data. The modifications made by a process become visible to other 
processes, which may - in contrast to ordinary shared memory - even reside on a 
different node. 

Most page-based DSM implementations use a pull scheme: A process works on the 
local data as long as possible, requesting data from remote nodes only when needed. 
Major drawback of this technique is that if multiple processes are interested in the 
newly created data of another process, the data has to be transferred repeatedly to all 
these nodes; no multicasting takes place. This algorithm provides the same strict 
consistency as ordinary shared memory. But this strict consistency isn't needed. The 
so-called "release consistency" is sufficient and allows multicasting. Release 
consistency has already been implemented in the shared variable DSM-system Munin 
[Bennet90]. 

Communication using shared memory requires synchronization. This means that prior 
to any modification on a shared data object, a lock is set on this object. This lock is 
released after modification. Propagation of the modifications is postponed until the 
release operation is completed. This allows to accumulate the modifications made 
between a pair of synchronization operations and multicast them together in one large 
chunk via multicasting to all nodes sharing the respective object. 

This approach may perform a little bit worse compared to common implementations 
of DSM that delay the transmission until the data is really needed when 
communication only takes place between two nodes but should perform much better 
when applied to an environment like ours, where interest of multiple nodes to a 
particular data object is a common case. 

By combining usual UNIX shared memory and the techniques described it is possible 
to achieve latencies nearly as low as and throughput nearly as high as those using the 
UNIX shared memory API system calls. The implementation therefore may well 
eliminate the need for using this API as an application programmer. This is – indeed - 
the very goal of our efforts.  

For inter-node communication, both latency and throughput will suffer considerably 
when using off-the-shelf networking hardware. Nevertheless we intend to support 
Ethernet networks to provide a low-cost communication layer for applications with 
modest requirements. For applications with high bandwidth and tight synchronization 
requirements, we need something "with a little more kick". We have chosen SCI, the 



Scalable Coherent Interface, for this purpose. SCI not only provides extremely low 
latencies of a few microseconds and a throughput of more than 100 MBytes/,) but also 
has the advantage of implementing DSM directly in hardware. Using SCI, the main 
task in implementing the DSM is therefore reduced to the design of an abstraction 
layer and the implementation of a DSM mechanism for low-cost networking 
hardware.      

4.4  Implementation details 

The current core system prototype runs on x86-based Linux Systems. For special 
purposes (e.g. image generation or audio) the usage of other hardware-software 
combinations are likely. The basic node configuration is  

• AMD Athlon at 1 GHz 

• VIA KT133 chipset. 

• NVidia GeForce2 or Quadro gfx card 

• Dolphin DC330 SCI card, Dolphin Interconnect 

The current implementation of the visual renderer uses OpenGL|PerformerTM from 
SGI.  

5 Conclusion and future work  

Our approach has lead to a scalable, simple and lightweight system for interactive 
applications in immersive virtual environments. The core system is small and has the 
freedom for maximal extensibility. Nearly all components can easily be exchanged 
because of the quasi-autonomous approach of the communication.    

First prototypes are already implemented and the further modularization has proven 
already very helpful for the development process, especially control user interfaces, 
which are not part of the immersive simulation loop.  

The next steps are the evaluation of the adequate scripting language and extensive 
testing and  performance evaluation, especially in real world application contexts. 
Here we hope to gain insight how to distribute and modularize application 
components on the cluster. Do we need specialized nodes and which are these?  How 
complex can such systems and applications grow to stay manageable? 

All these topics will be questions for the next stage of the virtual environment 
research  - the personal immersion stage 
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