
Towards a Scalable High Performance Application
Platform for Immersive Virtual Environments

Matthias Bues, Roland Blach, Simon Stegmaier, Ulrich Häfner, Hilko Hoffmann,

Frank Haselberger

Competence Center Virtual Environments

Fraunhofer Institute for Industrial Engineering (IAO)

Nobelstr. 12, D-70569 Stuttgart, Germany

phone: +49-711-970-2232, fax: +49-711-970-2213

Matthias.Bues@iao.fhg.de

http://vr.iao.fhg.de

Abstract. Software for the development and generation of virtual
environments used to run on specialized and expensive hardware. This
situation has dramatically changed in the last two years. This paper
describes a scalable high performance application platform for
immersive environments using commodity hardware. Scalability will be
obtained with a coarse cluster of specialized nodes, with emphasis on
distributed real-time rendering. As data synchronization method a
distributed shared memory approach is used. Dedicated to this hardware
setup, a modular component oriented design is presented.

1 Introduction

Virtual Reality (VR), in our understanding, is an interface technology which allows
direct multimodal interaction with dynamic and responsive computer generated or so-
called virtual environments. Immersive virtual environments (VE’s) should operate in
real-time and consider the spatial superposition of user and data-environment, that is,
the response time and update rate of the system is high enough that it generates an
experience of continuity and a perceptible 3D-environment. This requires not only
3D-based real-time computing and render systems but also real-time spatial
registration of the user and his behavior.

We see the main purpose of VR-technology in the enhancement of human computer
interaction. Especially in problem domains of high complexity the use of immersive
virtual environments enables more direct perception and manipulation. Obvious
application domains are complex evaluation or planning tasks like architecture or
design, medical training, fluid dynamics in engineering, assembly planning, etc..

http://www.eg.org
http://diglib.eg.org

One of the major obstacles for broader research and development was definitely the
usage of specialized and expensive hardware which does not scale adequately. Also
network bandwidth restricted the distribution of real-time systems.

Nevertheless there have been various approaches to distributed virtual environments.
Common usage were multi-user environments like the DIS/HLA [Kuhl99] based
military simulations which focus on large scale multi-user applications. Similar
systems are described in [Singhal99] which gives a good overview of the state of the
art. Another important domain was the coupling of super-computer-based simulations
with immersive visualization systems. But it was not very common to use these
distributed systems for single user purposes as an substitute for expensive high end
graphic real-time systems.

This has changed dramatically in the last two years. The availability of an open source
operating system on commodity hardware platforms with sufficient graphic power has
started a serious approach to commodity hardware based VE research and
development. On the one hand it promises more fine grained and cost effective
scalability as with specialized workstations. On the other hand new bandwidth
problems induced by the multi-purpose design of the hardware architecture require
new creative solutions for real-time systems. This suggests a design of virtual
environment system software closer dedicated to a commodity hardware based
computer cluster.

Our target application domain is a single/few user system in a local distributed
environment for the sake of pure performance scalability. We do not intend to create
large scale networked virtual environments.

2 Conceptual Overview

The choice of the granularity of system components seems to be a crucial factor for
the usability on the application development level, as we have experienced with the
Lightning VR System [Blach98].

Our approach tries to bundle functionalities to coherent units of hard- and software.
These units gain a certain autonomy and independency which makes the whole
system more robust and manageable. To spend a complete hardware system for even
simple but computationally intense tasks seems to be affordable because of the
comparative cheapness of commodity hardware. To achieve this level of
independence of the system components an asynchronous approach to communication
is necessary.

For many applications, the most important scalability aspect is the scalability of
graphics output, ranging from variable channel count of the display environment to
scalability of overall graphics throughput, and parallelization of special rendering

tasks. A distributed approach combining multiple graphics subsystems on multiple
hosts is pursued to overcome the limitations of the PC architecture.

Other important abilities are rapid configuration, run-time access and prototyping of
applications where the introduction of an interpreted scripting language has proven
useful. Therefore two levels of the application developer interface should be
considered:

• A C++ native object extension, to extend the system with a kind of plug-in
structure. As long as the shared memory based data pool can be accessed
other languages are also conceivable.

• A scripting layer for easy configuration and runtime access.

We will experiment further with a multi-language support. In real world applications
obviously only one language will be reasonable. The language of choice must be able
to build and maintain larger applications. Our experience with Tcl [Ousterhout93] has
shown that it is a very convenient choice for small and medium size applications but
seems not to be able to help structuring large scale applications.

3 An Early Prototype: Personal Immersion (Lightning 1.7
distributed)

Commodity hardware like the PC architecture implies some limitations in comparison
to classic graphics workstations, namely concerning bus bandwidth, memory
bandwidth, and multiprocessor capabilities. A PC-based scalable graphics architecture
therefore requires a distributed approach.

A first prototype of a scalable distributed VE System is the Personal Immersion
System. Based on the Linux port of Lightning 1.7, it is capable of driving single- or
multi-wall immersive projection environments. It is based on a distributed scene
graph/application approach. As a result, the network bandwidth needed for
synchronization is kept at a minimum, independent of the amount of actual per-frame
scene graph updates. Standard 100MBit Ethernet components are used for cluster
interconnection. To keep the synchronization of the buffer swaps of each graphics
channel as tight as possible, an additional light-weight synchronization using the
handshake lines of a serial port is established. One node in the cluster acts as a master;
it acquires tracking and input device data and propagates these data to the other hosts
in the cluster. Usually, the master node also runs a full application/rendering task. If
the data acquisition overhead is considerable, e.g. from computationally intensive
calibration tasks, the master can also be fully dedicated to data acquisition and
preprocessing.

In current configurations, passive stereo projection is used; a typical single-wall
configuration runs on two nodes, each generating one eye view. Each node is

equipped with one graphics card, allowing to exploit the immediate-mode throughput
of modern PC graphics accelerators to the maximum extent possible. Fig. 1 shows a
block diagram of this configuration.

Interaction
Devices

Projector Left Eye

Projector Right Eye

PC 1
(Master)

PC 2
(Slave)

Optical Tracking (Head)

EM Tracking (Interaction)

100BaseT Ethernet

Sync

Fig. 1 Personal Immersion configuration

The Personal Immersion System was evaluated in various application environments
[IPTW2000], proving its usability being comparable to traditional high-end
configurations. Advantage of the approach pursued with Personal Immersion is its
compatibility with existing Lightning Applications on high-end platforms. Since the
full set of the underlying scene graph API can be used, even applications performing
much run-time modification to the scene graph can be ported to the Personal
Immersion platform with minimum effort. An application example are immersive
surface or volume modeling systems.

Drawbacks are the replication of the computational tasks of the application on each
image generator node, which is unnecessary in most cases, and the limited granularity
in distribution of image generation and application-side computational tasks.

4 A Scalable Personal Immersion System

4.1 Interactive Core System

The interactive core system is able to model and therefore abstracts all components
and the communication behavior of immersive interactive applications in virtual
environments. It is in itself a complete system for the definition and description of the
interactive behavior of such environments. The specific device or render modules
should be as loosely coupled as possible.

The main goal is to achieve a real-time behavior of the application control module
with a timing being independent of I/O specific limitations, namely graphics
throughput.

Consider the situation that an independent device process is used and that this process
is fast enough to register all input events sent by any device subsystem, e.g. a spatial
tracking device. A commonly used scene graph API, OpenGL|PerformerTM, uses a
pipelined multiprocessing model consisting of the stages application, cull and draw,
each running in a separate process in the full multiprocessing configuration [Rohlf94].
However, theses processes are synchronized at frame boundaries, resulting in the
frame rate of the entire system being limited by the process with the longest frame
time. Preprocessing of interaction data and application control is performed in the
application stage. In practice, this means that in case of heavy graphics load, a double
click event can easily be lost. There are two main directions to tackle this problem. A
history buffer for input streams can be introduced, from which all events accumulated
during the last frame are processed in the current frame. Major drawbacks of this
solution are the immanent overflow problem, and the application process frame time
still limiting system frame rate. The second way, which is our approach, is to run the
application control loop asynchronously from the renderer main loop. [Grimsdale 91]
describes a similar method. The application control loop processes the inputs and
control related functions in real-time and possible render modules/devices sample the
specific system state at a certain time and processes it as fast as possible. This can
probably be applied to other function modules, e.g. collision detection or physical
simulation.

Although custom solutions for most load balancing problems as described above can
be found, these solutions do not apply for the general case.

Concerning control and data flow, we extend the data flow model of the VR system
Lightning [Blach98]. So-called Application-Objects hold the main functionality. The
state of the system is completely contained in so-called fields which are actually
attributes of the Application-Objects. These fields can be linked to other fields or
procedurally set from elsewhere. The structure of the linked objects and their behavior
describe the application. Every object has a central update function which reads
incoming data, processes it and updates the object state. This is similar to other data
flow oriented systems as e.g. [VRML97]. We introduced container objects which

control other objects and have the possibility to run their own autonomous simulation
loop via threading. One key container object type has the role of the update manager
of objects it owns. There is no central hidden update manager as in the VR system
Lightning because we found that in most applications, the sequence of the data
propagation is not only manageable by the application developer but wanted. Another
important container object type is the renderer which abstracts the various hardware
and library specific renderer.

The Object Database Pool resides completely in shared memory. Unrelated processes
can easily access this database. This offers the opportunity to modularize the
application components on binary level which makes them easier to develop, control
and maintain. The communication protocol is string based and timestamps are used
for synchronization. Reference counting is the only security mechanism which allows
to control the usage of the database objects. The synchronization of object state across
host boundaries relies on mirroring the shared data pool via a distributed shared
memory approach which can use various networking technologies for transportation,
as described in section 4.3.

Fig. 2 Shared memory data pool as central repository of system state

The scripting and configuration system consists up to now of four different language
bindings Tcl/iTcl, Java, Javascript and Python. Which one will be the language of
choice for productive application development has to be proven in the near future.
The interpreter is also an object which runs in its own thread where commands can
easily be sent from external processes. The usage of various interpreters in the same
application is conceivable but does not seem reasonable to us.

4.2 Graphics/IG System

On the graphics/image generation side, a coarse-grained scaling approach similar to
the granularity of Personal Immersion is pursued in a first approach. This means one
single node and graphics pipe per output channel; of course, multiple channels per
node are also possible if the respective node provides appropriate hardware resources.
The scene graph is completely replicated on all nodes; scene graph updates are
propagated on a per-frame basis. This approach can easily be implemented using the
distributed object database pool as described above, running multiple visual renderers
on the various nodes, each registering interest in the visual objects in the shared data
pool. The multiple visual renderers can be synchronized at frame boundaries to drive
stereoscopic and multi-channel displays.

To overcome the limitations of this distribution approach, a more fine-grained
distribution of image generation tasks is pursued in parallel, based on tiling a single
output channel and recombining the final image. An network protocol independent of
a particular Scene Graph API is designed to distribute scene graph updates across the
visualization cluster. This allows the rendering hosts to run on various operating
system platforms. For combining the final output image, commodity graphics
hardware allows two approaches of accessing frame buffer data. First one is reading
back the framebuffer through the host interface of the graphics card and conveying it
via a high speed network to the host being in charge of output image reassembly.
Samanta et al. [Samanta00] have shown the feasibility of such an approach. The
second way is to use the video or DVI output of the graphics card, using custom
hardware to reassemble the final image. An example of this is described by
Humphreys et al. [Humphreys2001]. Such solutions have the huge advantage of
yielding the entire system bus and networking bandwidth for other tasks; however,
the need for custom hardware contradicts to the commodity hardware paradigm of our
approach. This is the main reason for us to prefer the a system bus/networking based
architecture.

4.3 Distributed shared memory

A flexible and high-performing distribution and shared memory model is a key
building block of our system.

Interprocess-communication is simple and fast as long as the communicating
processes have access to the same physical memory. Distributed shared memory

(DSM) implementations aim at providing the same simplicity when communicating
between processes on different nodes with no shared physical memory.

Page-based DSM implementations extend the capabilities of the well known shared
memory mechanisms available in most of today's operating systems to inter-node
communication. That means a DSM segment is as usually first created with an API
call. Every statement of the programming language can then be used to manipulate
the segment's data. The modifications made by a process become visible to other
processes, which may - in contrast to ordinary shared memory - even reside on a
different node.

Most page-based DSM implementations use a pull scheme: A process works on the
local data as long as possible, requesting data from remote nodes only when needed.
Major drawback of this technique is that if multiple processes are interested in the
newly created data of another process, the data has to be transferred repeatedly to all
these nodes; no multicasting takes place. This algorithm provides the same strict
consistency as ordinary shared memory. But this strict consistency isn't needed. The
so-called "release consistency" is sufficient and allows multicasting. Release
consistency has already been implemented in the shared variable DSM-system Munin
[Bennet90].

Communication using shared memory requires synchronization. This means that prior
to any modification on a shared data object, a lock is set on this object. This lock is
released after modification. Propagation of the modifications is postponed until the
release operation is completed. This allows to accumulate the modifications made
between a pair of synchronization operations and multicast them together in one large
chunk via multicasting to all nodes sharing the respective object.

This approach may perform a little bit worse compared to common implementations
of DSM that delay the transmission until the data is really needed when
communication only takes place between two nodes but should perform much better
when applied to an environment like ours, where interest of multiple nodes to a
particular data object is a common case.

By combining usual UNIX shared memory and the techniques described it is possible
to achieve latencies nearly as low as and throughput nearly as high as those using the
UNIX shared memory API system calls. The implementation therefore may well
eliminate the need for using this API as an application programmer. This is – indeed -
the very goal of our efforts.

For inter-node communication, both latency and throughput will suffer considerably
when using off-the-shelf networking hardware. Nevertheless we intend to support
Ethernet networks to provide a low-cost communication layer for applications with
modest requirements. For applications with high bandwidth and tight synchronization
requirements, we need something "with a little more kick". We have chosen SCI, the

Scalable Coherent Interface, for this purpose. SCI not only provides extremely low
latencies of a few microseconds and a throughput of more than 100 MBytes/,) but also
has the advantage of implementing DSM directly in hardware. Using SCI, the main
task in implementing the DSM is therefore reduced to the design of an abstraction
layer and the implementation of a DSM mechanism for low-cost networking
hardware.

4.4 Implementation details

The current core system prototype runs on x86-based Linux Systems. For special
purposes (e.g. image generation or audio) the usage of other hardware-software
combinations are likely. The basic node configuration is

• AMD Athlon at 1 GHz

• VIA KT133 chipset.

• NVidia GeForce2 or Quadro gfx card

• Dolphin DC330 SCI card, Dolphin Interconnect

The current implementation of the visual renderer uses OpenGL|PerformerTM from
SGI.

5 Conclusion and future work

Our approach has lead to a scalable, simple and lightweight system for interactive
applications in immersive virtual environments. The core system is small and has the
freedom for maximal extensibility. Nearly all components can easily be exchanged
because of the quasi-autonomous approach of the communication.

First prototypes are already implemented and the further modularization has proven
already very helpful for the development process, especially control user interfaces,
which are not part of the immersive simulation loop.

The next steps are the evaluation of the adequate scripting language and extensive
testing and performance evaluation, especially in real world application contexts.
Here we hope to gain insight how to distribute and modularize application
components on the cluster. Do we need specialized nodes and which are these? How
complex can such systems and applications grow to stay manageable?

All these topics will be questions for the next stage of the virtual environment
research - the personal immersion stage

6 References

[Bennet90] Bennet, J.K, Carter, J.B., and Zwaenepoel, W., Munin: Distributed

Shared Memory Based on Type-Specific Memory Coherence. In:
Proc. Second ACM Symp. on Principles and Practice of Parallel
Programming, ACM 1990, pp. 168-176

[Blach98] Blach, R.; Landauer J., M.; Simon, A.; Rösch, A.: A Flexible
prototyping Tool for 3D Real-Time User-Interaction. In: Virtual
Environments 98, Proceedings of the Eurographics Workshop, 1998
pp. 195-203

[Grimsdale 91] Grimsdale, C. (1991). dVS-Distributed Virtual Environment

System. In Proceedings of Computer Graphics, Computer
Animation, Virtual Reality, Visualisation, (pp. 163-170): Blenheim
Online.

[Humphreys01] Humphreys, G., et al.: WireGL – a Scalable Graphics System for

Clusters. Submitted to SIGGRAPH ’01.

[Kuhl99] Frederick Kuhl, Richard Weatherly, and Judith Dahmann, Creating

Computer Simulation Systems - An Introduction to the High Level
Architecture, Prentice Hall, Upper Saddle River, NJ. 1999.

[Ousterhout93] Ousterhout, J., Tcl and the Tk Toolkit, Addison-Wesley, Reading,

Massachusetts, 1993

[Rohlf94] Rohlf, J., Helman, J.: IRIS Performer: A High Performance

Multiprocessing Toolkit for Real-Time 3D Graphics, Proceedings of
ACM SIGGRAPH ’94, Orlando, FL, pp. 381-394.

[Samanta00] Samanta, R., et al.: Hybrid Sort-First and Sort-Last Parallel

Rendering with a Cluster of PC’s. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, Interlaken, Switzerland - August,
2000

[Singhal99] Singhal, S.; Zyda M.: Networked Virtual Environment – Design and

Implementation, Addison Wesley acm Press, 1999

[VRML97] The Virtual Reality Modelling Language (VRML) Specification 2.0

ISO/IEC CD 14772, 1997

