Interacting with Simulation Data in an
Immersive Environment

Christian Knopfle

Department for Visualization & Virtual Reality
Fraunhofer Institute for Computer Graphics (IGD)
64283 Darmstadt, Germany
Christian.Knoepfle@igd.fhg.de
http://www.igd.fhg.de/www/igd-ad/

Abstract. In today’s automotive industry there is an increasing de-
mand for VR technology, because it provides the possibility to switch
from cost and time intensiv physical mock up’s (PMU) to digital mock
up’s (DMU). Furthermore the visualization and examination of simula-
tion results is a very important aspect during the whole development
cycle. Therefore tools are needed, which enable the users to work with
DMU’s, as well as simulation data sets in an efficient and intuitive way.
In this paper we present the design of a VR user interface for evaluating
simulation data sets. The design of the user interface is based on the
basic interaction tasks (BIT’s), introduced by Foley et. al.. This allows
to generalize the results presented herein and to apply them to other
domains.

1 Introduction

Today’s available computing power allows to simulate more and more aspects of
the whole development cycle and consequently there is an increasing demand for
tools, which are able to visualize these simulation results and allow to examine
them. Most simulation packages provide viewers, but they are only capable to
load a limited set of file formats and are operated in different ways. Since various
simulation packages are currently in use, a single tool is needed, which is capable
of loading data sets coming from different sources. Thus, the users have to master
only a single toolkit.

The examination of simulation data is part of the design review process of
upcoming products. During a design review, several experts discuss and investi-
gate the simulation. They try to identify design flaws and to find solutions for
them. The outcome of every design review session is a protocol, where the results
of the meeting are written down. This protocol is handed over to the responsible
person, to fix the problems. Therefore, a tool for interacting with simulation data
has to fulfill the basic requirements for design review applications too. Analyzing
today’s procedure of design reviews, the basic requirements to a system, can be
defined as follows:

1. easy to use and fast to learn interface



2. various functions for investigating the model, like clipping, changing visibility
and measuring

3. ability to create screenshots, placing markers and adding text for documen-
tation purposes. The documentation should be saved as HT'ML. Then the
documentation can be put in the Intranet, or PDM system, where the re-
sponsible person can easily access it without starting a specific tool

Using Virtual Reality techniques to build such a system seems to be a very
promising way, because VR offers specialized input and output devices, real-time
rendering of even very complex datasets and the possibility to build intuitive and
natural user interfaces.

Because of space constraints, we will mainly focus on the interaction with
simulation data. Since the proposed concepts are based on the basic interaction
tasks and are not tied to the functionalities itself, they can be easily adopted to
other types of design review applications.

Next we will describe the functional requirements for the interaction with
simulation data. Then we discuss the hardware setup, which may influence the
design of the user interface. Afterwards the basic interaction techniques are in-
troduced and their realization described. Finally the prototype is presented.

The development of the whole system was done in cooperation with the BMW
AG and based on the users input enhanced and improved.

2 The Basic Requirements

For the visualization of simulation data sets, the following requirements can be
defined:

. Visualization of the simulation data

. Translate and orient the whole model in an intuitve way

. Show and hide of different groups

. Playing back the different time steps of the data set. The direction and speed
should be defined by the user

. Data probe and display of the according data value

. Display the time dependant values of a data probe as a curve

. Changing the color-mapping interactively

. Documentation

=W N =

0~ O Ut

We focus on the visualization of 2D data in 3D space (surface model) with a
1D value per node, encoded as RGB color. Nevertheless, the presented metaphors
for interacting with simulation data can be easily adapted to any other type of
data.

3 Input and Output Devices

Each application area has its own requirements, which influence the software and
the hardware interfaces. In this chapter, we will examine briefly the demands of
a design review application to the hardware interfaces.



An input device is needed for the interaction with the virtual scene. Given
a permanent installation used for design review, which will be shared by several
working groups and used on a daily basis, the operability has to be guaranteed
and therefore robust devices are required. During a session, these devices have
to be easily handed over from one person to another, giving every participant
the opportunity to operate the system. Furthermore the number of triggers (e.g.
buttons, gestures) a device supports, is a very important factor for the ease of use,
because they are used for activation of the various functions of the VR system.
We investigated several devices, currently available on the market, but finally
had to develop our own device, the Flystick, because none of the commercially
available devices fulfilled all requirements. The Flystick has a very handy shape,
low weight, is robust and features three buttons, which are sufficient for most
applications. The Flystick is equipped with a Polhemus tracking sensor (see color
figure 1).

In the context of design review, there are several requirements concerning the
output devices. Since multiple persons attend a meeting, single person devices
like HMD, or Boom are not suitable. Furthermore it should be possible to display
the models in a 1:1 scale and to interact with them in an intuitive way. Here,
CAVE-like environments, for example Powerwall, CAVE and Virtual Tableare
well suited.

Taking all advantages and disadvantages into account, Powerwall and the
Flystick were chosen as hardware interfaces for the prototype implementation.

4 Basics

In general, each function carried out using a given user interface, can be seen as
a sequence of atomic elements chosen from a predefined set of possible actions.
Therefore we have to investigate how people act and afterwards which minimal
set of atomic actions is required to fulfill all tasks.

To understand how people carry out actions, we take the action model of
Norman [Nor90] into account. It consists of seven stages. His assumption that
even complex interaction tasks can be broken down into basic tasks is consis-
tent with the taxonomy of interaction tasks for computer graphics interfaces,
suggested by Foley et. al. [FvDFHO0]. Initially they were targeted to desktop
applications, but several researchers have shown that this assumption holds for
VR user interfaces too [Min97, PWBI97]. The following five basic interaction
tasks are proposed:

1. position: The scope of the position-task is to move objects from one place
to another

2. selection: The selection task is defined as choosing an element from a choice
set. Foley distinguish between the selection of wvariable sized set of choices
and the selection of relative fized-sized choice sets. The first denotes object
instances choice sets and the latter command and attribute choice sets, like
menu selection



3. quantify: The quantify interaction task involves specifying a numeric value
between a minimum and maximum value

4. text: The text input task entails entering character strings to which the
application does not ascribe any special meaning. Thus, typing a command
name is not a text-input task

5. orient: The orient task is defined as orienting objects in space

5 Realizing the BIT’s

In the following chapters, we will discuss, how the BIT’s should be realized, to
fulfill the requirements of the described application domain and the proposed in-
put and output devices. Nevertheless the presented concepts are general enough,
to be adapted to other domains.

5.1 Positioning and Orienting

Especially in VR, there is no real separation between the position task and the
orient task and most interaction techniques realize both of them. Therefore, both
tasks will be described together in that section.

There are various metaphors known from literature [Bow97, Min97], for po-
sitioning and orienting the model. Nevertheless we introduced a technique called
World Point Grab, which turned out to be very easy to use: The user grabs a
point in the scene, which is not necessarily covered by an object. Then he moves
his hand and the whole scene is moved accordingly. The grabbing and releasing
is triggered by an event, like pressing a button on the input device. The center of
rotation is the grabbed point. With this technique the user can interact in a very
natural and direct way with the given model. One disadvantage is that during a
single grab-move-release sequence, the maximum displacement is bound by the
size of the user’s arm. Larger displacements need numerous grab-move-release
sequences, but for models of the size of a car body this is still feasible.

5.2 Object Selection

In our scenario object selection is currently needed for changing the visibility of
the selected objects, as well as placing data probes in the scene to acquire the
according simulation values.

In general we can distinguish between three different types of techniques.
The most simple technique is ”grab and select”, where objects are selected by
grabbing them. If objects are out of reach, arm extension, or GoGo techniques
can be applied [Bow97].

Image plane techniques, like Sticky finger, or the framing hands [Pie97] are
another possibility to select objects. Here the line of sight between the user’s
eye, the real hand or input device and the objects is used to determine the
selection. For unambiguous selection results, an accurate tracking is needed and



the devices have to fulfil several requirements (e.g. a device with a small tip for
Sticky finger).

The third well-known technique is ray casting, where a virtual laser beam is
emitted from the hand in the direction the user points to. An object is selected,
if the beam penetrates it and the user triggers an event, like pressing a button on
his input device. Using this technique, it is very intuitive to select objects, which
are not too far away. To improve accuracy when selecting distant objects [Fit54],
the beam can be replaced by a cone (spotlight-technique).

Furthermore ray casting using a beam is the only technique, where it is
possible to not only select objects, but also to select a single point on the surface
of the models. In the context of simulation visualization, this allows to place a
data probe on the surface and acquire the corresponding value. Because of the
small size of the beam, the position of the probe is definite.

We choose the ray casting technique for our implementation, because it is a
reliable technique, easy to use and it supports data probing. Consequently, only
one metaphor for relative fized-sized choice sets is needed.

5.3 Menu selection

Menu selection is the central part of any system with large set of functionality,
because it is needed to switch between the various functions in a very simple and
fast manner. Especially with command selection, speech input comes in mind.
Speech recognition heavily matured during the last few years, but based on
some experiments with commercially available software, it turned out, that these
systems are still not robust enough for that type of application. Furthermore
additional devices have to be carried around during the design review. For that
reason we stick to a software only solution, using menu systems for the selection
of commands and the invocation of various system functions.

Traditional versus pie menus Generally we can distinguish between two
types of menus: 3D menus and 2D menus. 3D-menus are part of the scene, while
2D menus are rendered as overlay and therefore never encounter the problem
of penetrated by the scene. The following concepts are based on 2D menus, but
can be easily adapted to 3D menus.

Our first approach for the layout of the menu was to follow well-known con-
cepts of desktop user interfaces. We introduced a menu system, which looked
similar to the Windows(tm) menu system. The advantage is obvious: Since most
people are used to Windows(tm) and it’s applications, they will not have a long
training period, to understand how they have to use that kind of menu system. It
turned out, that the familiarity could not compensate the biggest disadvantage,
its usability. Selecting a specific menu item required a very exact positioning
of the virtual cursor and therefore performance and acceptance were very low.
Nevertheless when used in a desktop style scenario with a mouse, that type of
menu system was easy to use.

To avoid the need for high accuracy, we came up with pie menus, first intro-
duced by [CHWSSS] for desktop applications. A pie menu is defined as a circle



with 4, or 8 evenly distributed menu items (see color figure 5). When opening
the menu, the cursor is in the center of the circle. The advantage of that type of
menu is that all items are at the same distance from the initial position of the
cursor and that the size of an entry increases with the distance from the center.
Each menu item can be a button, or a link to a submenu. The type of the item
is visually encoded in the menu.

Any simulation data set used in a Design Review, consists of several 100K
polygons, which decreases rendering speed. Since the visual update of menu and
cursor are bound to the framerate, interaction gets more difficult. Replacing the
whole scene with a texture, or bitmap during menu selection, raises the frame
rate up to 60 frames per second and interaction gets much easier.

The Speed-Bar In most software systems, only a few functions are always
needed. In the simulation visualization scenario, data probing and playback con-
trol are often in use and activated in alternated order. Using the menu to switch
between these modes is too costly and takes too much time. Therefore we need
a possibility to rapidly switch between 2, or 3 functions, avoiding the standard
menu selection. For this, we developed the so called speed-bar. The speed-bar
stores the last recently used (LRU) functions and when activated, the user can
choose one from this set. This is by far more flexible than a fixed set of functions,
defined by the user.

The speed-bar is activated and displayed, as soon as the user points the fly-
stick away from the projection screen and presses the menu button. The last
activated function is selected. Through a horizontal translation, previous acti-
vated functions can be accessed. As soon as the button is released, the selected
function is executed. Especially when only two functions are used in an alter-
nating way (see above), activation of the previous function is straightforward:
First point device away from projection screen, then click the button. Using the
flystick as input device, the act of ”pointing away” is very easy to carry out and
supported by the proprioception.

Furthermore, the direction the user points to could be taken into account, to
call other functions than the speed-bar.

5.4 Quantify

In that section we will present two interaction techniques for the quantification-
task. Both are targeted to the interaction with simulation data, but can be used
for other purposes too.

Color-Mapping A basic requirement is the ability to change the color mapping
of the simulation values in real-time. For this we need a color gradient and
several sliders to modify the mapping. Since the color gradient is one of the most
important tools for evaluation of simulation data, it should be always visible.
The general idea to realize that requirement is using a geometrical objects,
a pillar with connected handles. The height of the pillar represents the range of



possible values, where the top of the pillar is the maximum value and the bottom
the minimum value. For CAVE style environments, the pillar is attached to the
cart. The cart is part of the flying carpet paradigm, introduced by [Zac96]. The
advantage is, that the pillar resides roughly at the same position, even when the
user turns his head, or moves around in front of the projection screen. When
using HMD, the pillar should be attached to the camera to stay in view. One
way to move the handle could be by grabbing and dragging it. For this, the pillar
has to be in reach of the user, which is not always given, especially not in front
of a large projection screen.

Thus, we use a laser beam for selecting the handle. Nevertheless it is too
complicated to switch the beam on via a speech command, or menu item, and
too disturbing, when the beam is always visible. Therefore we tried to adapt
the way people act in real world to the virtual world: If someone wants to
”select” an item in the distance, he points at it. Taking this into account, the
beam is automatically switched on and off, depending whether the user points
to the pillar, or not. Technically, the intersection of the beam and the bounding
box is tested. For an improved ease of use, we scaled the bounding box by a
factor of 1.5. Since the pillar is located at the right side of the screen, it is
out of reach of unintentional selection. Then as soon as the beam gets visible,
only the manipulation of the pillar is possible and any other function of the
system is disabled. Consequently, all buttons of the interaction device change
their behavior. To be consistent, the button, which moves the scene, is used for
dragging the pillar handles.

Since the pillar and its handle should not waste too much screen space, their
maximum size is limited. On the other hand, small objects are hard to select and
even when pressing the button on the device, the device slightly shakes and the
beam moves to another place. Therefore we are not using the selection paradigm
”click to select”, known from desktop software applications, where the cursor has
to point to an object, when the button is pressed. Instead we use ”click and drag
to select”. Here, the user presses the button and then the first object is selected,
which is penetrated by the beam. Then according to the beam, the handle is
moved up and down. As soon as the user releases the button, the selection ends.

We implemented that color gradient as a colored pillar, with low values (blue)
at the bottom and high values (red) at the top. For changing the color mapping,
two handles are connected to the pillar, which represents the lower and upper
boundary of the color gradient. All values smaller than the lower boundary, are
rendered in blue, all values greater that the upper boundary, are rendered in red.
This enables the user to squeeze the color gradient to improve investigation of
smaller intervals. A third handle controls the transparency-boundary: All values
below or over that boundary, are rendered transparent (see see color figure 3 and
color figure 4).

Since the mapping should change in real-time, it is realized through texture
coordinates referencing a 1D texture, the color gradient. As soon as the mapping
changes, the OpenGL texture matrix is adapted accordingly. This is a very fast
and cheap operation.



Simulation-control Since we have to visualize simulation results with various
time steps, we need a possibility to switch from one time step to another and
also to continuously play back the whole set of time steps at different speeds.

Again, we tried to adapt real world metaphors for the use in virtual en-
vironments: In the real world, a jog-dial can be found on a number of video
recorders, to control the playback-speed of the video. The jog-dial is a rotational
button, where the rotation is limited to typically +/- 90 degrees. The speed of
the playback is mapped onto the angle and the direction on the sign of the angle.

The Jog-Dial for VR is a semicircle and an indicator, both attached to the
virtual hand of the user (see color figure 2). The semicircle represents the range
of possible values and the indicator points to the current value. The indicator ro-
tates around the center of the semicircle and is controlled intuitively by rotating
the wrist around the axis defined by the forearm. In contrast to the pillar, the
Jog Dial is activated through a speech command, or menu item. When activated,
a button on the device controls the jog-dial. As soon as the button is pressed,
the indicator rotates according to the wrist, until the button is released. Fur-
thermore we can take advantage of proprioception, when resetting the indicator
to a default position (e.g. center), each time the button is pressed. Then the user
always knows the start-value of the indicator, and can easily control the jog-dial,
even when not in sight. Bringing the jog-dial back in sight means levering the
forearm, which may result in earlier fatigue.

For the playback control, we did not use a linear mapping of angle to speed.
Instead the semicircle was divided into seven evenly sized areas. If the pointer is
in the middle area (green), the animation stops. Through the behavior mentioned
above, a short press-release cycle of the button is enough to set the indicator
to the default position and to stop the animation. The following areas (yellow)
return a fixed value and the outmost areas interpolate linearly between two given
values. In our case, the yellow area sets the speed to one time-step per second,
which can be either used for continuous playing, or for going through the data
set step by step. For the continuous-mode, the indicator is set to the yellow area
and the button is released. For step-mode the indicator is set to the yellow area
and as soon as the next time step is displayed, the indicator is set to the center
area and the button released. The outmost area returns speed values between 1
and 10 frames per second for rapid playback.

5.5 Text

In the context of design review applications, the text task is used for the doc-
umentation and therefore we need the possibility to insert a large amount of
text in a very natural way. Since we abstain from speech input, the efficient and
easy way for text input is using a keyboard and window on a separate computer.
Since many text lines are typed, it does not make real sense to display the text
directly in the scene.



6 Results

In this chapter we will shortly describe the developed prototype, based on the
results discussed so far. The target platform was a SGI ONYX2 with Infinite-
Reality Graphics, a large screen projection using active stereo (approx. 3m by
2m), a magnetic tracking system and the Flystick as an input device. For text
input a PC was available.

Beside the user interface, the integration of the simulation results in the
system was an important aspect. This was done through the finite element ker-
nel, developed by Fraunhofer-IGD. FEK is based on the Model View Controller
(MVC) concept and is able to store various kinds of time dependant data, rang-
ing from 2D elements in 3D space (surface models), to 3D elements in 3D space
(volume models) with different types of attributes attached to each node and/or
element. FEK features several visualization objects (VO), which transform the
raw data into visible objects. The result of that transformation depends on the
type of VO. There are VO'’s for surface models, which display 1D values as colors,
or textures, 3D values as arrows, etc. VO's for flow simulation, cutting planes and
iso-surfaces are currently under development. Furthermore FEK is able to split
a data set into several groups, where one group represents a specific part of the
simulation data. For example, when a simulation is based on a whole car body,
the various parts (e.g. door, hood) can be assigned to different groups. Then
any manipulation can be done locally on these groups, like changing visibility.
Otherwise any manipulation would affect the whole car body.

Since we have numerous possible functions, but only a limited set of buttons
on the Flystick, the buttons can trigger one out of n possible functions. Which
actual function is chosen is determined by the function-mode. Using the menu
system, the user can activate different function modes, like data probe. The
active mode is shown on the left side of the screen enriched with information
supplied by these functions. In the case of data probe, the value is displayed. The
Flystick offers three buttons. Two buttons are predefined and never change their
behavior. The third one, the ”action button”, is used to activate the different
functions according to the current function mode, like setting a data probe, or
manipulating the jog-dial. The first button is used to move the scene using the
grab world point metaphor. The second button opens the pie-menu as soon as it
is pressed and closes and executes the selected item as soon as it is released.

Data probes can be placed using ray casting and an additional curve is dis-
played, which represents the values of that probe as a function of time (see color
figure 6). Playback and changing the mapping are implemented according to the
concepts presented in the previous chapters. For documentation purposes, the
ability to place markers using ray casting and to generate snapshots was added
to the system.

7 Conclusion

In this paper we presented a concept for an intuitive VR user interface for inter-
action with simulation data. We compared different approaches, to realize the



basic interaction tasks (BIT). We developed new metaphors for the quantifica-
tion, the jog-dial and the pillar-slider. Known menu concepts were evaluated
and adapted to VR. Finally the whole functionality was realized in a prototype
implementation.

For the future it could be very interesting to add more functionalities to the
system and to adapt the user interface to the increasing requirements.

8 Acknowledgments

Parts of this project are funded by the European Commission (AIT DMU-VI,
Brite Euram Project BRPR-CT97-0449). We thank all our colleagues and stu-
dents at our laboratory, especially H. Haase, M.Lux, D. Reiners and G. Vo,
without their work we would not have been able to achieve the results presented
herein. Finally we thank D. Keller for his valuable input and feedback.

References

[Bow97] D.A. Bowman. An Evaluation of Techniques for Grabbing and Manipulat-
ing Remote Objects in Immersive Virtual Environments. In Symposium
on Interactive 8D Graphics, 1997.

[CHWS88] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical
comparison of pie vs. linear menus. In Proceedings of SIGCHI 1988, pages
95-100, 1988.

[Fit54] P. M. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Fxperimental Psychology,
(47):381-391, 1954.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics, Principles and Practice. Addison-Wesley Publishing
Co. Inc., 2 edition, 1990.

[Min97] M. Mine. Moving objects in space: Exploiting proprioception in virtual
environment interaction. In Proceedings of SIGGRAPH 1997, 1997.

[Nor90] D. Norman. The design of everyday things. Currency Doubleday, 1990.

[Pie97] J. Pierce. Image Plane Interaction Techniques in a 3D immersive envi-

ronment. In Symposium on Interactive 3D Graphics, 1997.

[PWBI97] 1. Poupyrev, S. Weghorst, M. Billighurst, and T. Ichikawa. A framework
and Testbed for stying manipulation techniques for immersive VR. In
Proceedings of ACM Conference VRST, pages 21-28, 1997.

[Zac96] G. Zachmann. A Language for Describing Behaviour of and Interaction
with Virtual Worlds. In Proceedings of ACM Conference VRST, July
1996.



