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Abstract
Parallel image compositing has been widely studied over the past 20 years, as this is one, if not the most, crucial
element in the implementation of a scalable parallel rendering system. Many algorithms have been proposed and
implemented on a large variety of supercomputers. Among the existing supercomputers, InfiniBandTM (IB) PC
clusters, and their associated fat-tree topology, are clearly becoming the dominant architecture, as they provide
the scalability, high bandwidth and low latency required by the most demanding parallel applications. Surpris-
ingly, very few efforts have been devoted to the implementation and performance evaluation of parallel image
compositing algorithms on this kind of architecture. We propose in this paper a new parallel image compositing
algorithm, called Shift-Based, relying on a well-known communication pattern called shift permutation. Indeed,
shift permutation is one of the possible ways to get the maximum cross bisectional bandwidth provided by an IB
fat-tree cluster. We show that our Shift-Based algorithm scales on any number of processing nodes (with peak
performance on specific counts), allows overlapping communications with computations and exhibits contention-
free network communications. This is demonstrated with the image compositing of very high resolution images at
interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics I.3.8 [Computer
Graphics]: Applications—Image compositing

1. Introduction

1.1. Parallel Rendering

Both in the industry and in the academic worlds, larger and
larger numerical datasets are being produced on a daily ba-
sis, whether they are large Computer Aided Design (CAD)
assemblies, results of numerical simulations or 3D scanned
information, just to cite a few. Unless a considerable prepro-
cessing can be applied to the data, a single computer cannot
accomplish real-time rendering of these data. In most cases,
high-end parallel visualization solutions must be designed
to tackle these ever-increasing amounts of data, sometimes
on-the-fly as they are being produced.

Sort-last parallel rendering, as introduced by Molnar et
al. [MCEF94], is an efficient technique to render very large
datasets in parallel. In this kind of parallel applications, the
dataset to be visualized is first partitioned and distributed
across multiple processors. Each processor renders its sub-
set of the dataset independently using its local resources;

this stage does not imply any communication between the
processors and scales perfectly. Then the computed images
are composed together by a parallel image compositing al-
gorithm and the final image is delivered. The parallel image
compositing stage requires a lot of inter-processor communi-
cation, and may become the bottleneck of a sort-last parallel
pipeline if it is not designed with sufficient care.

Since the early 1990’s, parallel image compositing has
been widely studied, and numerous algorithms have been
developed and experimented on many parallel computing
architectures, ranging from supercomputers to PC clusters.
These image compositing algorithms are commonly clas-
sified into three categories: Direct Send [Neu94], Binary
Swap [MPHK94] and Parallel Pipeline [LRN96]. The two
latest advances in the field include 2-3 Swap by Yu et
al. [YWM08], which is an extension of the Binary Swap to
non-power of two numbers of processors, and the Radix-k
algorithm by Peterka et al. [PGR∗09, MKPH11] which uni-
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fies the Direct Send and Binary Swap and enables numerous
other configurations.

The 2-3 Swap and Radix-k algorithms have been success-
fully deployed on very large supercomputer configurations.
Yu et al. report compositing times of 2 seconds per image for
a 16 Mega-pixels (16 bytes per pixel) resolution with 1024
processors of a Cray XT4 system connected to a SeaStar 2
router. Peterka et.al report compositing times of 0.7 seconds
per image for an 8 Mega-pixels (16 bytes per pixel) resolu-
tion with up to 34,816 processes on an IBM Blue Gene/P.

1.2. Multistage Interconnection Networks

A large majority of high performance computing clusters
today rely on the central switch network architecture. This
network architecture considerably simplifies the work of the
programmer, since each node of the cluster can communi-
cate with every other node. In the particular case where the
central switch is a true crossbar, the network has almost ideal
properties: constant latency between all pairs of nodes and
full bisection bandwidth (any half of the nodes can simulta-
neously communicate with the other half at full speed).

Most parallel applications and communication libraries
typically treat central switch network architectures as if they
were true crossbar switches, and do not take into account the
actual internal characteristics of the switch. However, practi-
cal central switches are generally implemented as multistage
interconnection network (MIN), and do not truly provide the
latency and full bisection bandwidth characteristics of cross-
bars, as shown in [HSL08]. In particular, the routing policies,
needed to route connections in a MIN, can greatly affect the
performance of a given communication pattern. The fat-tree
topology is a class of MIN and is one of the most commonly
used topologies for high performance computing clusters. In
particular for InfiniBandTM (IB) based clusters, this topol-
ogy is the dominating one. This includes large installations
such as CEA Tera-100, LANL Roadrunner, TACC Ranger
or FZJ-JuRoPA (Source: http://www.top500.org/).

For IB fat-trees, as with most other topologies, the rout-
ing algorithm is crucial for efficient use of the underlying
topology. IB provides a deterministic static-destination rout-
ing that is computed offline and loaded into the different
switches of the MIN. Several options are offered to the sys-
tem administrator to compute the routing tables, depending
on the physical network architecture of the cluster. A given
communication pattern can either achieve satisfactory per-
formance or on the contrary can lead to heavy contention for
different routing strategies.

1.3. Our Contributions

In this paper, we start in Section 2 with an overview of fat-
tree IB clusters, which represent a significant part of today’s
high-performance supercomputers, and with a presentation

of existing parallel image compositing algorithms. Surpris-
ingly, we have not found any study of these algorithms on
this ever-growing class of supercomputers. In Section 3, we
introduce a new parallel image compositing algorithm called
Shift-Based, relying on a very well-known parallel commu-
nication pattern called shift permutation. Indeed, a lot of ef-
forts have been dedicated to efficiently support this com-
munication pattern on fat-tree IB clusters. We continue in
Section 4 with an analysis of the theoretical communication
and computation costs of our new algorithm, and we com-
pare them to those of the existing parallel image composit-
ing algorithms, in an ideal environment. Then, we show how
network contention, appearing in real-life environments, can
negatively affect the expected performance of these algo-
rithms. In Section 5, we experiment our algorithm on a 144-
node fat-tree IB cluster and we show how it maximizes the
utilization of the bandwidth made available by the IB cluster.
We demonstrate that our algorithm scales very well on any
number of processors (with peak performance on specific
counts) and performs at least twice better as compared to
existing algorithms. We conclude and present future work in
Section 6, anticipating similar performance results at larger
scales.

2. Background

2.1. Fat-Tree IB Clusters

The dominant architecture of scalable high-performance su-
percomputers has clearly become the clustered architecture;
the latest (36th) edition of the TOP500 list reports 414 clus-
tered systems (82.8 %). For these clusters, as well as for
other systems, a scalable, high bandwidth and low latency
network is a key. The InfiniBandTM (IB) architecture stan-
dard [IBT04] meets all these requirements and is the inter-
connection network of choice for such systems: the same
TOP500 list reports 213 IB based systems (42.6 %) in total,
including 178 IB clusters.

Large IB clusters are commonly built with multiple fixed-
arity crossbar switches (up to 36x 40 Gbps ports) and host-
channel adapters (HCAs) providing up to 40 Gbps links. The
fat-tree topology is the most commonly used to interconnect
the nodes and IB switches, providing varying ratios of cross-
bisectional bandwidth (CBB). Closely related to the chosen
topology, the routing algorithm, used to route the data be-
tween switches from one node to the other, is of particular
importance when one wants to maximize the utilization of
the network.

We focus in this paper on large scale fat-tree IB clusters,
as they are sufficiently representative of today’s supercom-
puters, and we will review their main characteristics in the
remaining of this Section. However, a similar analysis could
be conducted on the other types of interconnection networks
and supercomputers architectures.

c© The Eurographics Association 2012.

130

http://www.top500.org/


X. Cavin & O. Demengeon / Shift-Based Parallel Image Compositing

2.1.1. IB Clusters

The basic building blocks of large IB clusters are integrated
non-blocking switch elements (i.e. crossbars) with a rela-
tively low number of ports. As an example, QDR (40 Gbps)
IB switches come in 8, 18 and 36 ports configurations.
Crossbar switches exhibit almost ideal network properties:
constant latency between all pairs of endpoints and full bi-
section bandwidth (any half of the nodes can simultaneously
communicate with the other half at full speed, i.e. without
contention).

The IB standard does not impose any particular network
topology. In other words, switches can be connected together
in any arbitrary way. IB switches use oblivious destination
based distributed routing, meaning that a switch routes a
packet out a particular port based solely on the destination
address of the packet. This decision is determined via a sim-
ple static routing table (Random or Linear Forwarding Ta-
ble) that defines which port leads to which endpoint. On
startup, or after a topology change, a central entity called
the Subnet Manager (SM) discovers the network topology
using special packets computes the routing table for each
switch and uploads them into the switches. As this opera-
tion requires network downtime, it cannot be performed too
frequently.

The current implementation of OpenSM offers five
routing engines: Min Hop, UPDN Unicast, Fat-tree Uni-
cast [ZJKL10], LASH Unicast, DOR Unicast. Additionally,
OpenSM also supports a file method which can load routes
from a table. The interested reader can refer to the OpenSM
documentation for more details about these methods.

2.1.2. Fat-Tree Topology

The fat-tree topology is an indirect interconnection network
based on a complete binary tree [Lei85]. The processors of a
fat-tree are located at the leaves of a single-rooted complete
binary tree, and the internal nodes are crossbar switches. Un-
like traditional trees in computer science, fat-trees are more
like real trees, because they get thicker near the root. Going
up the fat-tree, the number of wires connecting a node with
its father increases. The rate of growth influences the size
and cost of the hardware, but also the communication band-
width it can support. As the arity of the internal switches of
the fat-tree increases as we get closer to the root, the physical
implementation of this topology is impractical.

To overcome this limitation, the concept of a multi-rooted
topology was introduced. The non-blocking nature of the
single rooted tree is replaced by a weaker attribute: given
a permutation of source and destination pairs, the routing on
the tree can be made non-blocking (i.e. rearrangeably non-
blocking). Several families of fat-trees have been introduced.
The k-ary n-tree [PV97] is the basic type of tree built out of
switches with an equal number of connections going up or
down the tree. A k-ary n-tree is composed of kn processing
nodes and nkn−1 k×k constant arity commutation switches.

The k-ary n-tree topology has been extended with the in-
troduction of Generalized Fat-Trees (GTF) which allow for
a different number of up and down connections [OIDK95].
Extended Generalized Fat-Trees (XGFT) further extends the
possible topologies allowing for different number of con-
nections at each level. XGFTs cannot capture existing real
life topologies, since they allow only a single connection be-
tween switches: the resulting family does not preserve cross
bisectional bandwidth (the bandwidth towards the top of the
tree is not equal to that of the leaves).

The latest topology introduced to represent fat-trees is
the Parallel ports Generalized Fat Tree (PGFT) and its
sub-classification into Real Life Fat-Tree (RLFT) [Zah10].
PGFT allows multiple connections between the switches and
support a large variety of topologies, including some unprac-
tical to build. RLFT is a subclass of PGFT with several re-
strictions (detailed in [Zah10]), and it encompasses the ma-
jority of real life configurations.

2.1.3. Hot Spots in Fat-Tree IB Clusters

Fat-tree IB clusters with full cross-bisectional bandwidth
have been measured to provide an effective bisection band-
width in the range of 55-60 % for MPI communication pat-
terns [HSL08]. This performance degradation is due to cases
where multiple sources congest a particular network link,
creating a hot spot. Indeed, even if enough physical links are
available to support any communication pattern, the routing
mechanism might oversubscribe some physical links while
others remain idle. The probability of interconnect hot spots
increases with the size of cluster and might degrade the la-
tency and effective bandwidth experienced by MPI opera-
tions.

One possible solution to the hot-spot problem is the IB Lid
Mask Control (LMC) mechanism. The LMC mechanism as-
signs multiple Local Identifiers (LIDs) to hosts and enables
multiple routes for every pair of peers. However, for multiple
reasons discussed in [HSL08], LMC-based routing strategies
can be seen as counter-productive at large scale.

In this paper, we will focus on single-path static rout-
ing. Consequently, the chosen routing engine must be taken
into account when designing a parallel algorithm in order
to avoid hot spots and benefit from most of the theoretical
cross-bisectional bandwidth.

2.1.4. Non-blocking Shift Permutations

Given a set of p nodes, shift permutation is defined as the
set of source/destination pairs such that processing node Pi
sends data to processing node Pj:

{(Pi,Pj)| j = (i+S)mod p}i=p−1
i=0 (1)

for S ∈ {1 . . . p− 1}. Shift-based communication involves
p− 1 communication steps: at each step S, processing node
Pi sends data to processing node P(i+S)mod p and receives data
from processing node P(i−S+p)mod p.
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Shift-based communication enables all nodes to send and
receive data simultaneously in all steps and ensures a reg-
ular and predictive communication pattern. This particular
pattern has been shown to be representative for scientific ap-
plications [KLJ08] and has been widely studied, on multiple
network topologies including IB fat-trees.

In particular, the Fat-tree Unicast routing engine available
in the latest version of OpenSM provides routing tables for
contention free shift communication pattern on var-ary n-
trees [ZJKL10], a variant of k-ary n-trees. For more com-
plex, real life fat-trees (i.e. RLFT), d-mod-k routing has re-
cently been proven to provide non-blocking traffic for the
same shift-permutations [Zah10].

In this paper, we will focus on var-ary n-trees IB clusters
with Fat-tree Unicast routing enabled. However, we can an-
ticipate similar results with d-mod-k routing on RLFT. Our
goal will be to design a parallel image compositing algo-
rithm based on the shift permutation pattern, in order to ben-
efit from the full available cross-bisectional bandwidth.

2.2. Parallel Image Compositing Algorithms

In this Section, we will review the existing parallel im-
age compositing algorithms. We will assume p processing
nodes. Each processing node Pi owns a vector xi (the local
image) of n components (the pixels). The goal of a parallel
image compositing algorithm is to blend all xi with all x j
using a component wise linear binary operator.

2.2.1. Direct Send

The Direct Send algorithm [Neu94] is the most straightfor-
ward parallel image compositing algorithm to implement.
Each node Pi is responsible of compositing the (n/p) pixels
ranging from i(n/p) to (i+ 1)(n/p)− 1. The Direct Send
algorithm requires a single stage of communication: during
this stage, in the worst case, each node Pi sends (p−1) mes-
sages of (n/p) pixels, one to each other node, and receives
(p−1) messages of (n/p) pixels, one from each other node.

The main advantage of the Direct Send is its flexibility,
since it can accommodate any number of processing nodes.
It is very easy to implement and allows overlapping com-
putations (i.e. pixels blending) with communications. How-
ever, it involves multiple processors sending messages to the
same processor at the same time in an unpredictable and
non-deterministic communication pattern.

2.2.2. Binary Swap and 2-3 Swap

The Binary Swap algorithm [MPHK94] is based on a binary
tree compositing strategy which keeps every node busy in
all stages of the process. It takes log2(p) stages to complete,
where p must be a power of two (i.e. p = 2k) to fully exploit
parallelism.

At each stage i (0 < i < log2(p) + 1) of the algorithm,

each node sends one message of n/2i pixels to a pair node,
and receives one message of n/2i pixels from the same pair
node.

The Binary Swap algorithm exhibits a regular and pre-
dictable communication pattern. However, it does only
support powers of two numbers of processors and its
synchronous nature does not permit to overlap computa-
tions with communications (except on a Gigabit Ether-
net network with a strongly streamed communication ap-
proach [CMF05]).

The 2-3 Swap algorithm [YWM08] extends the Binary
Swap algorithm to non-powers of two numbers of proces-
sors, at the cost of increased latency and bandwidth require-
ments.

2.2.3. Radix-k

The Radix-k algorithm [PGR∗09] is a configurable image
compositing algorithm which unifies the Binary Swap and
Direct Send algorithms, and enables numerous other algo-
rithms through appropriate choice of radices or k-values.

A Radix-k algorithm is completely specified by a vector
k = [k1,k2, . . . ,kr] of r values such that p = ∏

i=r
i=1 ki. It con-

sists in r communication/compositing rounds. During each
round i, the p processing nodes are divided into p/ki groups
of ki participants, which communicate only within a group
in a Direct Send fashion. When all of the k-values are equal
to 2, this gives the Binary Swap algorithm. When k = [p],
there is only one single round and this gives the Direct Send
algorithm.

The Radix-k algorithm combines the advantages and the
drawbacks of the Direct Send and the Binary Swap algo-
rithms. Indeed:

• It is not limited to powers of two numbers of processors.
• It allows to partially overlapping computations with com-

munication within a round, but not between the rounds.
• The communication pattern is irregular and unpredictable

within a given round.

It has been shown to perform better than the Binary Swap
and 2-3 Swap algorithms.

2.2.4. Parallel Pipeline

The Parallel Pipeline algorithm [LRN96] requires (p− 1)
communication/computation rounds. The processing nodes
are organized on a circular ring. At each round, each process-
ing node composes the (n/p) pixels it has received from its
"previous" neighbor in the ring and sends these (n/p) com-
posed pixels to its "next" neighbor in the ring. The subim-
ages are accumulated in a pipelined fashion along the ring.

The Parallel Pipeline algorithm presents two main advan-
tages. First, it can support any number of processors. Sec-
ond, it can benefit from the full-bisection bandwidth pro-
vided by a fat-tree IB cluster, since each node always sends
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data to the same node: contention free communication can
be achieved using Fat-tree Unicast routing if the processes
are placed with sufficient care.

However, similarly to the Binary Swap algorithm, its syn-
chronous nature does not permit to overlap computations
with communications.

3. Shift-Based Image Compositing

We introduce in this Section our new parallel image com-
positing algorithm, called Shift-Based. We rely on the analy-
sis done in the previous Section to build a new algorithm that
combines all the advantages of existing image compositing
methods. In particular, we base it on a shift-permutation pat-
tern to ensure full utilization of the cross-bisectional band-
width made available by fat-tree IB clusters.

3.1. Algorithm Requirements

Our algorithm is based on the five following requirements:

1. It should keep all processors busy and load balanced at
all stages.

2. It should support any number of processors, such as the
Direct Send, the 2-3 Swap and the Radix-k algorithms.

3. Computations and communications should be over-
lapped, such as the Direct Send and partially the Radix-k
algorithms.

4. It should provide contention free communication on IB
fat-trees, such as the Parallel Pipeline algorithm.

5. Finally, it must be easy to understand and simple to im-
plement.

3.2. Algorithm Description

We make no assumption on the number p of nodes, which
can be any value greater than 1 (requirement 2). In order to
fulfill requirement 4, we base our algorithm on a shift per-
mutation pattern. Similarly to the Direct Send method, each
processing node Pi is responsible of compositing the (n/p)
pixels ranging from i(n/p) to (i + 1)(n/p)− 1. Our algo-
rithm simply consists in (p− 1) compositing stages, as il-
lustrated by Figure 1. During each stage s (0 < s < p), each
processing node Pi:

• Sends (n/p) pixels to processing node P(i+s)mod p and re-
ceives (n/p) pixels from processing node P(i−s+p)mod p.
• Composes the pixels received during previous stage s−1

(for s > 1) while it does the send and receive operations.

It is easy to understand that this simple algorithm (require-
ment 5) keeps all processors busy and load balanced at all
stages (requirement 1) and allows to overlap computations
with communications (requirement 3).

Similarly to the Direct Send and Radix-k algorithms, par-
tial subimages can arrive in a non-continuous order (see the

example of processing node P0 in Figure 1). In these cases,
the non-continuous subimage is simply buffered until the
missing subimage has been received (see for example at the
end of Stage 3 for processing node P0 in Figure 1).

Figure 1: The three stages of our Shift-Based parallel image
compositing algorithm with p = 4 processing nodes.

4. Communication and Computation costs

Similarly to Peterka et al. [PGR∗09], we assume a simple
cost model as proposed by Chan et al. [CHPvdG07] to an-
alyze the communication and computation costs of the dif-
ferent existing parallel image compositing algorithms. We
recall here the main assumptions:

• The target architecture is a distributed memory parallel
architecture composed of p computational nodes indexed
from P0 to Pp−1.
• The interconnection network is fully connected: each

node can send directly to any other node.
• At any given time, a single node can send only one mes-

sage to one other node. Similarly, it can only receive one
message from one other node. It is also assumed that a
node can send and receive simultaneously.

• The communication cost of sending a message between
two nodes is modeled by α+nβ in the absence of network
conflict. Here, α represents the message startup time (i.e.
latency) and β represents the per data item transmission
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time (i.e. reciprocal of bandwidth). The cost of the mes-
sage is not a function of the distance between nodes.

• Messages traveling in opposite directions on a link do not
conflict.

• The computation time to reduce one data item is denoted
by γ.

We consider the worst case scenario, where all pixels are
active, and we do not consider optimizations to take advan-
tage of the sparseness of the partial images.

The latency term of the Direct Send is bounded by α(p−
1), since each node has to send at most (p− 1) messages.
The communication term is bounded by β(p− 1)(n/p),
since each message contains (n/p) pixels.

The latency term of the Binary Swap is α log2(p), since
there are log2(p) stages of communication. The communi-

cation term is equal to: β∑
i=log2(p)
i=1 n/2i = βn(p−1)/p.

The upper bounds of the latency and communication
terms of the 2-3 Swap are the ones reported in [YWM08],
and correspond to the non-power of two case.

The communication term of the Radix-k is the one re-
ported in [PGR∗09], and can be easily verified. On the
contrary, we disagree with the value given by the authors
for the latency term. Indeed, during each round, there are
ki− 1 messages exchanged, and they should be summed up
for the r rounds. We claim that the latency term is then:
α∑

i=r
i=1 (ki−1). It can be easily verified that:

• For r = 1 (i.e. Direct Send), the latency term reduces to:
α(p−1).

• For all ki equal to 2 (i.e. Binary Swap), the latency term
reduces to α log2(p).
• Depending on the ki values, the latency term is between

Binary Swap (best case) and Direct Send (worst case).

The latency term of the Parallel Pipeline and Shift-Based
algorithms is α(p− 1), since there are (p− 1) stages of
communication. The communication term is bounded by
β(p−1)(n/p), since each message contains (n/p) pixels.

Table 1 summarizes the communication and computa-
tion costs of the different algorithms. We do not specify the
computation term, but rather whether the computations can
be overlapped with the communications for the given algo-
rithm. Except for the 2-3 Swap algorithm, all algorithms are
equivalent in terms of communications. They only differ on
the latency term and on their capability to overlap computa-
tions with communications.

At that point of the analysis, we are interested in the im-
pact of the latency term of the parallel image compositing
algorithms for modern high performance, low latency inter-
connects. For instance, for a 4x DDR (Double Data Rate) IB
network, the latency and transmission time can be measured
as: α = 1×10−6 s and β = 0.53×10−9 s (corresponding to
1800 MB/s): Figure 2 plots the evolution of the communi-
cation time for increasing numbers of processing nodes for

Algorithm Latency Comm. Overlap.
Blending

Direct Send α(p−1) βn p−1
p Yes

Binary α log2(p) βn p−1
p No

Swap
2-3 Swap 4α log2(p) 1.3βn p−1

p No

Radix-k α∑
i=r
i=1 (ki−1) βn p−1

p Partially

Parallel α(p−1) βn p−1
p No

Pipeline
Shift-Based α(p−1) βn p−1

p Yes

Table 1: Communication and computation costs of the par-
allel image compositing algorithms.

the Binary Swap algorithm (best latency case) and the Direct
Send, Parallel Pipeline and Shift-Based algorithms (worst la-
tency case) for a 4096x4096x16 image.

Figure 2: Theoretical evolution of the communication time
for increasing numbers of processing nodes on an ideal DDR
IB crossbar for compositing of a 4096x4096x16 image.

The latency term of the image compositing algorithms
does not have a big impact on the total network time, except
for very high processor counts (several thousands).

However, we recall that only the Parallel Pipeline and
Shift-Based algorithms can benefit from the full cross-
bisectional bandwidth provided by IB fat-trees. The Direct
Send and Radix-k algorithms all suffer from hot spots on
large IB fat-trees, and would not benefit from the full 1800
MB/s provided by DDR IB. Figure 3 plots the evolution of
the communication time we may observe when running the
different algorithms on real fat-tree IB clusters (we antici-
pate a performance degradation of 30%, which is a low esti-
mate as compared to real runs).
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Figure 3: Theoretical evolution of the communication time
for increasing numbers of processing nodes on a real DDR
IB fat-tree for compositing of a 4096x4096x16 image.

The main advantage of our Shift-Based algorithm over
the Binary Swap algorithm is its ability to overlap compu-
tations with communications. This has indeed a huge impact
on the overall performance of the image compositing algo-
rithm. On the other hand, it could be demonstrated that a
routing scheme (different from the Fat-tree Unicast routing)
could be computed to provide contention-free communica-
tion for the Binary Swap communication pattern.

In terms of scalability of the communication time on large
IB fat-trees, the Parallel Pipeline and the Shift-Based algo-
rithms are completely equivalent. The last, but not least,
difference between the two algorithms is that the Parallel
Pipeline does not permit to overlap computations with com-
munications (similarly to the Binary Swap algorithm), while
our Shift-Based algorithm does. We can conclude from our
analysis that the Shift-Based algorithm is the most scalable
on IB fat-trees with Fat-tree Unicast routing enabled.

5. Results

Our experimentations have been conducted on a 144-node
fat-tree DDR IB cluster, running Linux CentOS 64-bit. Each
node is composed of a single quad-core Intel Xeon X3440,
and the nodes are interconnected with 24-port DDR switches
on a 12-ary 2-tree topology. The OpenSM has been config-
ured to run the Fat-tree Unicast routing engine.

We used the methodology and tools of Moody [Moo09] to
measure the influence of contention. During the execution of
the Shift-Based algorithm on the cluster, each process mea-
sures the time it takes to send its data to every other pair pro-
cess, and computes the associated bandwidth. A 2D matrix is
built from these collected values, where each element at row
a and column b represents the send bandwidth process Pa

measured when it sent to process Pb. The diagonal elements
of this matrix represent a task sending to itself, which is not
measured. The minimum, average and maximum values of
the matrix are computed. The 2D matrix is then converted
into a gray-scale bitmap image by representing each entry as
a pixel. The maximum bandwidth of the matrix is set to a
pixel value of 255 (white), while all other values are scales
to a pixel value of 0 (black) depending on their percentage
of the maximum bandwidth. A histogram of the pixel values
is also computed and shown next to each gray-scale image.
The horizontal axis plots the pixel value (from 0/black on
the left to 255/white on the right), and the vertical axis plots
the number of pixels of a given value in the image.

5.1. Performance on a Crossbar Switch

Figure 4 shows a run of our Shift-Based algorithm on 12
nodes connected on a single 24-port crossbar switch, with an
image size of 4096x2048x16 bytes. The average bandwidth
is 1827 MB/s and the final frame rate is 14.5 FPS. It can be
easily concluded that there is very few contention, and that
our algorithm benefits from the full cross-bisectional band-
width of the switch.

Figure 4: Shift-Based run on 12 nodes on a single 24-port
crossbar switch (image size: 4096x2048x16 bytes). Final
frame rate is 14.5 FPS.

As a point of comparison, our implementation of the Di-
rect Send algorithm on the same 12 nodes on the same single
24-port crossbar switch leads to a frame rate of 6.4 FPS.

5.2. Performance on IB Fat-Trees

Figure 5 shows a run of our Shift-Based algorithm on 144
nodes with Fat-tree Unicast routing enabled, with an image
size of 4096x2048x16 bytes. The 144 nodes have been cho-
sen in the exact same order given by the OpenSM routing
engine. The average bandwidth is 1431 MB/s (that is 78%
of the cross-bisectional bandwidth) and the final frame rate
is 11.5 FPS.

In order to validate the effects of the routing mechanism
on the performance of our Shift-Based algorithm, we per-
formed the same run, this time with the 144 nodes listed
in alphabetical order (that is not in the order given by the
OpenSM routing engine). Figure 6 shows the result of this
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Figure 5: Shift-Based run on 144 nodes with the Fat-tree
Unicast routing engine (image size: 4096x2048x16 bytes).
Final frame rate is 11.5 FPS. Nodes are taken in the order
given by the OpenSM routing engine.

run: the average bandwidth is 924 MB/s (that is 50% of
the cross-bisectional bandwidth) and the final frame rate is
6.5 FPS. The gray-scale image and the associated histogram
highlight the high level of link contention that occurred dur-
ing this run.

As a point of comparison, our implementation of the Di-
rect Send algorithm on the same 144 nodes leads to a frame
rate of 4.7 FPS, whether we use the order given by the
OpenSM routing engine or the alphabetical order.

Figure 6: Shift-Based run on 144 nodes with the Fat-tree
Unicast routing engine (image size: 4096x2048x16 bytes).
Final frame rate is 6.5 FPS. Nodes are taken in the alpha-
betical order.

We also wanted to show the influence of the size of the
data transferred over the network. Figure 7 shows a run of
our Shift-Based algorithm on 144 nodes with Fat-tree Uni-
cast routing enabled, with an image size of 4096x4096x16
bytes. The 144 nodes have been chosen in the exact same
order given by the OpenSM routing engine. The average
bandwidth is 1568 MB/s (that is 85% of the cross-bisectional
bandwidth) and the final frame rate is 5.8 FPS. As compared
to Figure 5 (for which we used a 4096x2048x16 image size),
the gray-scale image is much clearer, showing even less con-
tention on the network, and a better utilization of the cross-
bisectional bandwidth.

As a final experiment, we have run our Shift-Based al-
gorithm using all nodes counts from 12 to 144 of the 144
nodes with Fat-tree Unicast routing enabled, with several

Figure 7: Shift-Based run on 144 nodes with the Fat-tree
Unicast routing engine (image size: 4096x4096x16 bytes).
Final frame rate is 5.8 FPS. Nodes are taken in the order
given by the OpenSM routing engine.

image sizes: 2048x2048x16 bytes, 4096x2048x16 bytes and
4096x4096x16 bytes. Figure 8 shows the evolution of the fi-
nal frame rate as a function of the number of nodes used.
The nodes are taken in the order given by the OpenSM rout-
ing engine. We can see that the obtained final frame rate is
consistent with the size of the image being composed (the
2048x2048x16 bytes image is four times faster to be com-
posed as compared to the 4096x4096x16 bytes image) and
stable with increasing numbers of processing nodes (we do
not see any random and unexplained variation). It is impor-
tant to note that the obtained results are fully reproducible
from one run to another. This can be explained by the pre-
dictable shift communication pattern and the absence of hot
spots made possible by the Fat-tree Unicast routing engine.
The only unanticipated behavior is the presence of peak per-
formance for counts of nodes that are multiple of 12, where
12 is half of the arity of the switches used in our fat-tree
topology (i.e. the number of leaf processing nodes connected
to the first level switches). These peaks can be explained by
the fact that when we do not use a fully populated level-
1 switch, some links are missing to provide contention-free
routing for our shift permutation, leading to hot spots on the
used links.

Figure 9 shows a run of our Shift-Based algorithm on 64
nodes with Fat-tree Unicast routing enabled, with an image
size of 4096x2048x16 bytes. The 64 nodes have been cho-
sen in the exact same order given by the OpenSM routing
engine. The average bandwidth is 1159 MB/s (that is 63%
of the cross-bisectional bandwidth) and the final frame rate
is 8 FPS. The gray-scale image and the associated histogram
highlight many hot spots in our shift permutation pattern.

As a point of comparison, our implementation of the Di-
rect Send algorithm on the same 64 nodes leads to a frame
rate of 5.2 FPS.
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Figure 8: Evolution of the image compositing frame rate
with increasing numbers of processing nodes (from 12 to
144, with a step of 1). Nodes are taken in the order given
by the OpenSM routing engine.

Figure 9: Shift-Based run on 64 nodes with the Fat-tree Uni-
cast routing engine (image size: 4096x2048x16 bytes). Final
frame rate is 8 FPS. Nodes are taken in the order given by
the OpenSM routing engine.

6. Summary

6.1. Conclusion

In this paper, we have explored parallel image compositing
algorithms on a growing class of supercomputers: the fat-
tree IB clusters. We have built upon an in-depth study of the
fat-tree IB topology on one hand and of existing parallel im-
age compositing algorithms on the other hand, to introduce
Shift-Based, a new algorithm based on the well-known shift
permutation communication pattern. Our Shift-Based algo-
rithm combines all the advantages of previous image com-
positing algorithms, and allows benefiting from a big part
of the cross-bisectional bandwidth made available by IB fat-
trees. We have proven that it is the most scalable algorithm
for this kind of topology, and we have demonstrated its scal-
ability on a 144-node fat-tree IB cluster with Fat-tree Uni-
cast routing enabled. This cluster is the biggest one we have

been able to have access to so far. However, we are confident
that our conclusions can be extended to the case of much
larger IB fat-trees, as long as a routing mechanism, such as
the d-mod-k routing [Zah10], can be found to provide non-
blocking traffic for shit permutations. Furthermore, we claim
that the difference will be even bigger at higher processor
counts, due to the increasing number of network contention
for the other algorithms not relying on a shift permutation.

6.2. Future Work

The research work presented in this paper tends to prove that
it is definitely worth the effort to take into account the net-
work topology and its associated routing mechanisms in or-
der to build efficient and scalable parallel algorithms. In the
future, we plan to make similar investigations for parallel
image compositing on other types of supercomputer archi-
tectures and to extend this work to other kinds of parallel
algorithms.
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