
Eurographics Symposium on Parallel Graphics and Visualization (2012)

H. Childs, T. Kuhlen, and F. Marton (Editors)

A Study of Ray Tracing Large-scale Scientific Data in Parallel

Visualization Applications

Carson Brownlee1,2, John Patchett3, Li-Ta Lo3, David DeMarle4, Christopher Mitchell3, James Ahrens3, and Charles D. Hansen1,2

1School of Computing, University of Utah
2SCI Institute, University of Utah

3Los Alamos National Labs
4Kitware Inc.

Abstract

Large-scale analysis and visualization is becoming increasingly important as supercomputers and their simula-

tions produce larger and larger data. These large data sizes are pushing the limits of traditional rendering algo-

rithms and tools thus motivating a study exploring these limits and their possible resolutions through alternative

rendering algorithms . In order to better understand real-world performance with large data, this paper presents

a detailed timing study on a large cluster with the widely used visualization tools ParaView and VisIt. The soft-

ware ray tracer Manta was integrated into these programs in order to show that improved performance could be

attained with software ray tracing on a distributed memory, GPU enabled, parallel visualization resource. Using

the Texas Advanced Computing Center’s Longhorn cluster which has multi-core CPUs and GPUs with large-scale

polygonal data, we find multi-core CPU ray tracing to be significantly faster than both software rasterization and

hardware-accelerated rasterization in existing scientific visualization tools with large data.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics Systems—

Distributed/network graphics

1. Introduction

The push to produce faster supercomputers is producing

ever-larger data sets, challenging traditional methods of

analysis and visualization. Rendering is a key difficulty in

managing the visualization pipeline for large-scale data sets.

Specialized visualization resources are frequently collocated

with supercomputers to enable data analysis and visualiza-

tion of the data sets produced on the supercomputer. These

specialized visualization resources are typically heteroge-

neous supercomputers containing CPUs and GPUs, which

are added to support rendering. Aside from the GPUs, the

analysis machines are typically similar, though smaller than

the supercomputers they support. Understanding the limits

of these specialized resources’ rendering capability of large-

scale data sets is important in planning support of existing

and future supercomputers. We present a study of rendering

large-scale scientific data in widely used parallel visualiza-

tion applications.

A standard visualization workflow for extremely large

Figure 1: A remote visualization workflow with a separate

compute cluster and rendering cluster.

data involves an ordered set of activities: application sim-

ulation, visualization algorithms, rendering, and display as

shown in Figure 1. Each of the stages produces output whose

size can vary but is generally related to the size of the in-

put, except for the rendered image, which is fixed based on

the requested image size. Each portion of the rendering and

simulation process is often distributed across hardware that

is suited to each task. A simulation typically writes a quan-
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tity of data to disk that is proportional to the size of the run.

This data is then read from disk to produce geometry, which

is then rendered to an image or saved back to disk for subse-

quent rendering.

We believe a user’s ability to interact with data is of great

importance to insight and that 5-10 frames per second is the

minimum speed necessary for a positive interactive experi-

ence. This work will benefit the community by providing

better understanding of real-world performance of two of to-

day’s popular parallel visualization tools with large polygo-

nal data on modern cluster hardware.

To understand trade offs for dealing with extremely large

datasets, we have employed an in-depth timing study, using

both strong and weak scaling across 128 cluster nodes, of

three different rendering algorithms for large polygonal data:

software based ray tracing (integrated into ParaView and

VisIt) and ParaView and VisIt’s two default rendering meth-

ods: software-based rasterization and hardware-accelerated

rasterization. We use three different data sets: two scientific

and one synthetic. In addition to the scaling study, another

contribution of this work is the integration of the Manta soft-

ware ray tracer developed at the University of Utah in Par-

aView and VisIt, which allows ray tracing to be seamlessly

used in popular visualization tools.

In the next section, we review related work. We then de-

scribe three commonly used rendering methods in Section 3.

Section 4 describes visualization of large-scale data with

ParaView and VisIt and our custom Manta integration in

VTK. We then provide results comparing rendering with the

three commonly used methods including weak and strong

scaling studies in Section 5. Lastly, we conclude and de-

scribe future directions in Section 6.

2. Related Work

There have been many strategies developed to visualize

large-scale data. Transferring data to a GPU cluster for

rendering is a well developed practice that displays large

datasets at very high frame rates by distributing data for ren-

dering [FQK08] and compositing the resulting images to-

gether using algorithms such as the Binary-Swap method

[lMPH94]. Common visualization tools that run on GPU

clusters include such programs as ParaView [CGM+06,

Kit10] and VisIt [LLN10] which present client/server par-

allel rendering frameworks built on top of the Visualization

Toolkit (VTK). These real-world applications often do not

have the latest compositing or rendering algorithms imple-

mented nor do they have application specific optimizations.

As node counts are scaled up, a larger percentage of time

is devoted to disk and network I/O than rendering a single

image as shown by Childs et al. [CPA+10], however when

interacting and exploring data users may be rendering hun-

dreds or thousands of frames and their rendering times for

viewing isosurfaces were non-interactive. Our end goal then

was to utilize a rendering method which can achieve interac-

tive rendering rates with software rendering on both render-

ing and compute clusters.

Massive polygon rendering presents challenges for tra-

ditional rasterization methods such as those used in VTK.

OpenGL relies on hidden surface removal with a simple

Z-buffer test to determine visibility. This not only requires

transforming vertex coordinates but also unnecessarily shad-

ing fragments rendered back-to-front along the camera axis.

When dealing with millions of triangles, many of which

are likely obscured behind other triangles, these unnecessary

transforms and shading operations degrade performance re-

sulting in a linear or greater decrease in speed in relation to

the number of triangles. With GPU rendering there are two

methods of gaining better scaling performance: occlusion

techniques and surface approximations. Occlusion methods

include spatial subdivision schemes, which are used for oc-

clusion culling hidden triangles that lie behind other tri-

angles or are not in the view-frustum. Implementations of

occlusion culling methods include the hierarchical Z-buffer

[GKM93], the hierarchical occlusion map [ZMHH97] which

optimize performance through hierarchical Z-Pyramids, and

GPU optimized occlusion queries [BWP04]. Model simpli-

fication becomes essential for GPU rasterization to scale

with large geometry counts. One method for looking at large

datasets remotely is to use levels of detail (LOD) techniques

first proposed by Clark et al. [Cla76] [Lue01]. These tech-

niques are covered in great detail by Yoon et al. [SeY08].

Due to the complexity of these methods, ParaView and VisIt

use brute-force polygon rendering when visualizing data,

which simply sends all triangles to the GPU. Optionally,

these programs support using a single display list to render

each visible VTK actor’s geometry and a lower quality mesh

during user interaction. In practice, however, a single display

list can crash when compiling too many calls and often fails

provide faster render times than immediate-mode rendering

for larger polygon counts in our tests.

In situ visualization is becoming more important for

generating renderings of large data on compute clusters

[YWG+10]. One such example would be using ParaView or

VisIt paired with a software implementation of Mesa which

can be enabled through build options and is a commonly

used software rasterizer with these tools. This method proves

to be too slow for interactive rendering with large polygon

counts in most cases we have tested with. Mitra and Chi-

ueh [MC98] implemented a parallel version of Mesa by run-

ning multiple processes and compositing results together on

a single machine. Nouanesengsy et al. [NAWS11] showed

that scaling could be achieved over multiple threads by us-

ing a hybrid sort-first and sort-last compositing step. How-

ever, using multiple ParaView processes failed to scale well

in their tests and for our work we focus on performance in

existing real-world programs. Therefore, we focus our tests

on performance running a single program instance, and use
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multi-threaded hybrid parallelism to achieve scaling in our

ray tracing implementation.

Ray tracing on clusters for visualizing large-scale datasets

is a well developed field with several benefits over traditional

rasterization methods without advanced techniques. Occlu-

sion culling is gained implicitly through acceleration struc-

tures. Sub-pixel geometry is also sub-sampled in screen-

space negating the necessity for geometry simplification.

Ray tracing performance has been shown to scale very lin-

early from one to hundreds of processors [Par02]. Tracing

rays also scales very well with the amount of geometry in

the scene due to the logarithmic acceleration structures used

[MP01, WSB01], for which we use a packet based Bound-

ing Volume Hierarchy, BVH, [WBS07]. Advanced cluster

based ray tracing methods can split up data and rays by

image-space or data-space. The former relies on rays in spa-

tially coherent portions of image space requesting the same

data as their neighbors. When a node needs a new part of

the scene, data is paged in. In highly efficient implemen-

tations, the same page faults used by the operating system

can be remapped to network requests instead of disk reads

[DGP04]. Ize et al. [IBH11] expanded upon this work by

creating a version of the Manta ray tracer which can run

on distributed memory systems by paging in and out cache-

aligned BVH nodes in a ray-parallel fashion. Ray parallelism

is efficient for out-of-core rendering but not possible within

VisIt and ParaView’s sort-last distribution and compositing,

which distributes data independent of the view. This limita-

tion can lead to sub-optimal work distribution with respect

to the view which limits rendering performance, however we

have found that this can still provide interactive frame rates

for many of our tests while efficiently distributing data anal-

ysis and loading.

While ray tracing on the CPU provides for expanded use

of large memory spaces available to the CPU memory, ac-

cess times have decreased much slower than processing time

[GKY08] and so methods to reduce memory requirements

are still vital to software ray tracing. Marsalek et al. re-

cently implemented a ray tracing engine into a molecular

rendering tool for advanced shading effects for the purpose

of producing publication images [MDG+10]. We have inte-

grated a ray tracing engine into general purpose visualiza-

tion tools that can use advanced rendering effects, however

we focus on ray tracing’s logarithmic performance with large

data rendering across multiple distributed-memory nodes as

the primary motivation for this study. The Manta real-time

ray tracing software has shown to scale very well on large

shared-memory machines [SBB+06] and Ize et al.’s work

proved that real-time rendering speeds could be achieved

with distributed-memory systems but is only a rendering

engine without data analysis capabilities. Thus, combining

CPU rendering using Manta is ideal when combined with

other cluster based visualization tools such as ParaView and

VisIt, which handle geometry creation, analysis, data distri-

bution, and image compositing within tools which users are

already familiar with.

3. Rendering Methods

Our approach to comparing visualization methods on large

distributed systems was to evaluate three rendering tech-

niques within commonly used visualization applications:

hardware-accelerated rasterization, software-based rasteri-

zation, and software-based ray tracing. Each method has its

advantages and drawbacks.

Hardware-accelerated rasterization has proven to be fast

for modest data sizes and is widely used and heavily sup-

ported. The disadvantages are the requirement for additional

hardware, small memory sizes on the GPU, and, due to the

nature of rasterization, rendering times that scale linearly

with the amount of geometry in the scene. Advanced raster-

ization techniques such as HLOD methods are not currently

implemented in widely used visualization tools such as Par-

aView or VisIt. Therefore, we do not consider them in our

study. ParaView does support a single level of detail which

can be toggled when the user interacts with the camera, how-

ever this degrades the quality of the entire model and thus is

not considered for our tests.

Software rasterization through Mesa is a build option for

both ParaView and VisIt and is a common method used on

supercomputers when GPU hardware is not available. It of-

fers the same support for programs that would normally use

hardware-acceleration methods. The main drawback of this

method is speed, as Mesa remains single threaded and deliv-

ers very slow performance even for low geometry counts. A

benefit over hardware-accelerated rasterization, however, is

that it does not require additional graphics hardware and can

utilize large system (CPU) memory.

Software ray tracing provides a rendering method that

scales in k ∗ O(log(n)) where k is image size and n is

the number of polygons. This scaling performance assumes

non-overlapping polygons and a well-balanced acceleration

structure. Because of the screen space dependent perfor-

mance with logarithmic scaling to geometry, ray tracing pro-

vides efficient performance which scales well with increas-

ingly large geometry counts, especially for sub-pixel geom-

etry. Using an acceleration structure to test ray intersections

also allows easy and straightforward visibility tests where

only the nearest geometry needs to be shaded once for each

pixel. Hardware ray tracing also exists, but we chose to focus

only on software ray tracing. We have implemented ray trac-

ing as a rendering mode for polygon data within ParaView

and VisIt.

4. Ray Tracing Implementation

ParaView and VisIt are open-source visualization frame-

works designed for local and remote visualization of a large
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(a) (b)

Figure 2: Rendering of the RM dataset with OpenGL on the

left and Manta on the right using ambient occlusion and re-

flections.

variety of datasets. They are designed to run on architec-

tures from a single PC desktop up to large cluster arrays

using client/server separation and parallel processing. VisIt

operates with a client/server architecture to run multiple

servers for data analysis and rendering on large clusters.

Server/data separation allows ParaView to be broken into

three main components: data servers, render servers, and a

client [CGM+06]. This separation allows for varying num-

bers of servers to be used for data or rendering depending

on the need. Much of the actual rendering code is based

around the Visualization Toolkit (VTK) while much of the

client/server model is unique to ParaView and VisIt. This

common base allows us to to implement Manta once in VTK

and integrate the VTK ray tracer into ParaView and VisIt

with only minor modifications specific to each program.

4.1. Data Distribution

ParaView and VisIt both utilize client/server model’s for run-

ning on large, distributed-memory systems. VisIt launches a

viewer client and multiple servers which are used for data

loading and rendering. ParaView’s data server abstraction

layer allows for operations such as processing data on one

node and sending the resulting geometry to another node or

multiple nodes for rendering. This allows for changing the

data processing and rendering pipeline across heterogeneous

architectures for balanced workload distribution when more

or fewer rendering servers are needed than data servers.

When rendering on multiple nodes, sort-last compositing

is required to combine images from multiple nodes. Data-

parallel data distribution is good for rasterization, but not

necessarily optimal for ray tracing where render time is de-

pendent more on work distributed over the viewing frus-

tum. When zoomed out over an entire model, distributed

cluster-based ray-tracing often produces a sufficiently bal-

anced workload distribution, however, if a small portion of

the data is taking up the majority of screen space then the

majority of work is being done by a limited number of nodes

which contain data within the viewing frustum. However,

we have found it to be usable in practice as shown in Sec-

tion 5. Distributing the compositing work across a cluster

is vital for efficient cluster utilization. For this we use a

Binary-Swap [lMPH94] implementation and use the IceT

compositing library with default settings, which can be en-

abled for both VisIt and ParaView. Binary-Swap is a par-

allel compositing algorithm that exchanges portions of im-

ages between processes to distribute the workload. Because

Binary-Swap composites the entire image, empty portions

of the scene are needlessly composited together. IceT allows

for variably sized compositing windows encapsulating only

portions of the scene which contain rendered geometry. This

has the potential to vastly decrease the amount of image data

sent across the network for our applications as more nodes

are used for rendering.

4.2. Synchronization

Manta was originally designed for large shared memory sys-

tems. To achieve the highest possible frame rate possible,

multiple rendering threads are launched on a single process

and the renderer sequentially renders frames as fast as pos-

sible. VTK was designed for event driven rendering where

one frame is rendered after user interaction. The threaded

nature of Manta also presented a thread safety issue: Manta’s

state can only be accessed and modified at certain points in

its pipeline through callbacks called transactions. In order to

safely halt Manta between user interactions, synchronization

was added through semaphores in the display phase. While

each render thread renders the scene, thread zero displays

the previously rendered frame and then continues ray trac-

ing in order to utilize all threads. At the end of a rendering

step, the threads are synchronized and state is updated. This

is where state can safely be accessed and modified outside

of Manta through transactions. The default Manta behavior

results in a one frame delay between rendering and display

of the current scene because of the display synchronization.

The rendering architecture of Manta was modified slightly

to have the image display outside of the rendering stage as

a separate synchronization step, which is only released upon

a render event in VTK. This eliminates unnecessary render-

ing before or after a render event. A rendering call triggers

Manta to release its rendering lock in the display phase, pro-

cess transactions, and render a frame, which is then copied

back to the vtkRenderWindow instance. Due to the differ-

ences in how an image is stored between VTK and Manta,

this requires an image conversion step. ParaView and VisIt

then display the rendered image or send the image out for

compositing if it is being rendered remotely through a clus-

ter.

4.3. Depth Buffer

Sort-last rendering requires a depth buffer in order to de-

termine an ordering for overlapping geometry in the com-

positing step. In order to work inside VTK, Manta required
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a depth buffer to be implemented, as ray tracing typically

does not require one. Depth values, or rather closest hit val-

ues, are typically kept per ray, which meant that for our im-

plementation all that was needed was a separate buffer and

a simple write operation for each ray. This results in addi-

tional memory overhead with one float per image pixel for

the buffer.

4.4. Acceleration Structures

Ray tracing uses acceleration structures to compute hit

points efficiently. This means that a new acceleration struc-

ture needs to be built with each change in geometry within

VTK. Generating a new acceleration structure each time a

new vtkActor is added or updated in the pipeline with a cus-

tom vtkActor override facilitates this. For very large scenes

consisting of millions of triangles this can take several sec-

onds of pre-computation time. The amount of time also de-

pends on the acceleration structure used. Grid based acceler-

ation structures can be faster to update, however, we chose to

use a Bounding Volume Hierarchy, BVH, as it gave similar

performance to a kd-tree while benefiting from faster build

times [Ize09].

4.5. Color Mapping

In Manta, assigning a per-vertex color would require creat-

ing a material for each triangle which would entail a large

memory overhead. There was also no support for per-vertex

materials thus we chose to implement colors through a 1D

colormap. In Manta, texture coordinates are weighted by the

barycentric coordinates of the interior point as a weight. This

provides a smooth coloration and little overhead since tex-

ture coordinates are computed for each intersection point

even for constant colors. Both VisIt and ParaView support

texture colormaps which are implemented through the same

texture colormap used for singular color values in Manta.

4.6. VTK Factory Overrides

The Manta context is created in VTK through a custom fac-

tory object which overrides many common VTK objects. A

vtkRenderWindow overrides other windows to keep track of

updates to image size. A vtkPolyDataMapper keeps track of

updates to geometry which then sends a group of polygons,

usually a triangular mesh, to the active vtkActor. vtkActors

are overloaded to track material properties and to maintain

acceleration structures needed for rendering. When an ac-

tor is updated, so is its corresponding acceleration structure.

Unfortunately, because of the differences in how meshes

are represented between Manta and VTK, there is currently

additional memory overhead due to geometry duplication.

Lights are overloaded with custom vtkLight objects which

are stored as either directional or point lights. Ambient oc-

clusion is treated as an ambient light source in Manta, and

so it is added to the actor through custom options specific

Figure 3: Manta running in ParaView on a single multi-core

node using shadows and reflections rendering the impact of

an aluminum ball on an aluminum plate.

to the application. Finally, a custom vtkRenderer synchro-

nizes the Manta display with VTK render calls and sends

image data to the active window for compositing or display.

This integration allows for Manta to behave identically to the

OpenGL render engine within VTK. Figure 2 shows an iso-

surface of the Richtmyer-Meshkov Instability rendered with

OpenGL on the left and Manta on the right using ambient

occlusion using the same material and camera information

provided by VTK.

4.7. ParaView and VisIt

VisIt and ParaView are both built on top of the VTK frame-

work which allowed our VTK implementation to integrate

into their rendering pipelines with little modification. Acti-

vating factory overrides to use the Manta ray tracer is han-

dled through ParaView’s plugin interface or VisIt’s comman-

dline interface. These mechanisms allow for easily activat-

ing or deactivating the Manta renderer, however both imple-

mentations require closing other rendering windows before

launching Manta. A Manta IceT rendering pass was created

for ParaView which sends image buffers directly to IceT

for faster compositing. This modification has not yet been

transfered over to VisIt’s implementation and instead VisIt

sends image data to the active render window which cur-

rently is not a custom Manta version for VisIt which can

limit performance in some cases. A custom implementation

of some annotation objects, such as axes, were overridden to

prevent them from sending significant amounts of geometry

every frame, however these could be reimplemented to main-

tain their geometry from frame to frame. In ParaView, most

polygonal rendering modes are supported. Volume render-

ing is not currently supported in manta-enabled VisIt or Par-

aView. While implementing Manta-based volume rendering

for VisIt and ParaView is highly desired and implementa-

tions for this already exist within Manta, a VTK integration

has not been developed as of this writing.
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Figure 4: Manta rendering a version of the RM dataset

within VisIt. Ambient occlusion provides additional insight

to users by adding occlusion information from nearby ge-

ometry.

4.8. Advanced Rendering

Ray tracing allows for additional scene and material prop-

erties from those previously found in VisIt and ParaView.

These additional options include such materials as di-

electrics or transparencies as well as multisampling and

threading options to specify the number of threads the ray

tracer will launch for rendering. The result of such render-

ing options is shown in Figures 2, 3, and 4. Figure 3 dis-

plays an aluminum ball hitting an aluminum plate with shad-

ows and reflections. Figure 4 shows an isosurface of the RM

dataset rendered with Manta within VisIt. Ambient occlu-

sion adds additional insight to the viewer by shading by oc-

clusion from neighboring polygons, pulling out features at

the surface of the isosurface. Advanced shading effects such

as shadows, ambient occlusion and reflections can only be

rendered when running on a shared memory system. VTK

has no way to handle fetching distributed data for such in-

formation in the middle of a rendering. Ambient occlusion

will work with local data, however due to data distribution,

regions bordering blocks of data will be missing occlusion

information. This could be resolved by duplicating borders

of data blocks for each node and only considering polygons a

small distance from ray hit points. This would require rewrit-

ing the data distribution within ParaView and was not imple-

mented for this paper. In order to expose these options to the

user, GUI elements were added to ParaView. These options

are expected to also be included with VisIt in a future release.

5. Results

We evaluated the rendering performance of various meth-

ods on Longhorn, an NSF XD visualization and data analy-

sis cluster located at the Texas Advanced Computing Center

(TACC). Longhorn has 256 4X QDR InfiniBand connected

(a) (b)

(c) (d)

Figure 5: The datasets used for benchmarking. RMI isosurface

zoomed out (a), RMI isosurface closeup (b), VPIC dataset with iso-

surface and streamlines (c) and a wavelet contour with 16 million

triangles (d).

nodes, each with 2 Intel Nehalem quad core CPUs (model

E5540) at 2.53 GHz and between 48-144 GB of RAM.

Each node of Longhorn also has 2 NVidia FX 5800 GPUs.

We used 3 datasets of varying sizes: a synthetic wavelet

dataset, and a dataset from Los Alamos’s plasma simula-

tion code VPIC, and a time step from a Richtmyer-Meshkov

Instability simulation rendered with two different views.

We used ParaView 3.11 and VisIt 2.4 for all timings with

three different rendering modes: Manta, an open-source ray

tracer, Mesa, a software OpenGL rasterizer, and hardware-

accelerated OpenGL. ParaView and VisIt were built with

the IceT library and use Mvapich2 1.4. Additional code

for timing was added for ParaView and VisIt. Mesa is not

multi-threaded nor the fastest available software rasteriza-

tion package however it is the only one supported internally

within ParaView and is commonly used when GPUs are not

available. The OpenGL implementation within VTK is also

a brute-force implementation with no advanced acceleration

methods used. This study is therefore not a comparison of

the potential of these algorithms but rather a real-world study

of their existing performance within common visualization

tools. To test the scaling of these packages we ran a se-

ries of weak and strong scaling studies up to 128 nodes on

Longhorn.

Datasets

• Richtmyer-Meshkov Instability We created a polygo-

nal model from an isosurface of time-step 273 of the

Richtmyer-Meshkov Instability (RM) simulation, result-

ing in 316 million triangles. To better understand the be-
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Figure 6: Frames per second from compositing using the binary-

swap and IceT reduce compositors for a 10242 image from 2 to 128

nodes.
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Figure 7: Weak scaling timings of an isosurface of the RMO

dataset in ParaView. Geometry is added with each additional node

so that the geometry per node remains roughly constant.

havior of the data distribution in ParaView, we have ren-

dered both a zoomed out view of the RM dataset, RMO,

seen in Figure 5(a) and a closeup view, RMI, in Figure

5(b). The closeup view should expose the behavior of sort-

last rendering when the data being rendered on screen be-

longs to only a small portion of the overall nodes.

• VPIC Visualization Using a singe time-step from the

VPIC plasma simulation, we calculated an isosurface and

extracted streamtubes that combined totaled 102 million

polygons. A view of this data set can be seen in Fig-

ure 5(c).

• Wavelet The wavelet triangle dataset is a computed syn-

thetic dataset source released with ParaView. We gener-

ated a 2013 dataset and then calculated as many isosur-

faces as needed to produce a certain quantity of triangles.

The isosurfaces are nested within each other. Images pro-

duced with 16 million triangles are shown in Figure 5(d).

5.1. Cluster Timings

To test the performance of the three rendering modes with

large-scale data we conducted a series of timing studies on

the rendering cluster Longhorn that look at how performance

behaves with varying numbers of cluster nodes using a sin-

gle process per node of ParaView and VisIt. A window size

of 10242 was used with offscreen rendering for both Par-

aView and VisIt. We investigate two types of performance:

strong and weak scaling. A strong scaling study keeps the

problem size constant while increasing resources to solve

the problem. As the number of nodes increases, the data be-

ing loaded and rendered per node decreases. A weak scal-

ing study keeps the problem size constant per node as the

number of nodes increase. The total frame time is domi-

nated by a combination of the rendering time and the com-

positing time where ttotal = tcomposite + trender . An alterna-

tive method would be to have a frame delay, where the

last frame is displayed and thus the total time would be

ttotal = max(tcomposite, trender). However, this would require

a reworking of the VTK pipeline in order to be able to push

rendered frames after user interaction was finished and was

not implemented for this study.

In order to determine bottlenecks from compositing, Fig-

ure 6 displays total frames per second using Binary-swap

running in ParaView with an empty scene to show perfor-

mance where the entire image from each node must be com-

posited. With Binary-swap, pixels generated by rendering

empty portions of the scene are needlessly sent over the net-

work. To show a more practical example, frames per sec-

ond from the VPIC dataset using IceT are presented. The

IceT frames per second were calculated as the inverse of

the reported composite and render times for the client node

on processor zero subtracted from the maximum rendering

time across all nodes. From these runs we can see that on

the InfiniBand cluster used in our testing, the worst perfor-

mance we could expect with Binary-swap is over 20 fps on

128 nodes, however in some cases IceT achieves nearly 100

fps by only compositing small portions of the image. Our

goal is then to achieve rendering speeds which can match or

exceed the maximum Binary-swap compositing times.

5.1.1. Weak Scaling

In a weak scaling study the problem size scales with the

processor resources. For our testing, we conducted a weak

scaling benchmark studying rendering times for a scientific

dataset. Figure 7 shows a weak scaling study conducted us-

ing the RMO dataset and scaled up by adding additional iso-

surfaces to increase the number of polygons as more nodes

were added. In total, the polygon count ranged from around

49 million triangles for a single node up to over 1.6 billion

for 128 nodes. Hardware and software-based OpenGL times

remain above one second while ray tracing times decrease

with more nodes. This shows that the rendering time of the

brute-force rasterization algorithm is fairly constant with ge-

ometry count regardless of the distribution of that data in the

scene. Our ray tracing implementation, however, ignores oc-

cluded geometry and is bounded by k ∗ log(n). Empty space

is easily skipped over by tracing rays in packets and testing

the bound box of the scene. With weak scaling, geometry

count, n, remains fairly constant while the effective rendered
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Figure 8: Strong scaling timings of an isosurface of the RMO

dataset.

area, k, shrinks as the scene is broken up to distribute among

more nodes. It is not clear how the GPU performance could

replicate this, except with the use of an intelligent hierar-

chical LOD algorithm that averages sub-pixel geometry in

a pre-processing step, such as with GigaVoxels [CNLE09].

The maximum rendering times are shown with the Max des-

ignation in the graph. These times display the average of

the maximum times over all the nodes for each run. Ray

tracing displays a large difference between the average and

maximum render times as the data-parallel scene distribu-

tion is not ideal for ray tracing and some nodes finish signif-

icantly faster than others. In cases where we achieve perfect

work distribution the average and maximum average num-

bers would be identical and it is clear that increasing the

number of nodes increases variance between render times.

Manta displays superior performance on a single node as it

uses a BVH to accelerate over large amounts of geometry

and skip over occluded geometry.

In our tests the main performance bottleneck for the

hardware-accelerated rasterization renderings appear to be

due to a single display list being compiled over immediate

mode rendering calls. This means that updates to a color re-

quire rebuilding the display list. Display lists can easily be

disabled, however this results in a drop in rendering perfor-

mance. We found that a single display list resulted in poor

performance with large data counts and in some cases would

even crash the program requiring immediate mode rendering

to be used for large polygon counts. Splitting up the display

lists in our tests showed over 10x performance increases in

some cases, however results varied across different hardware

and drivers. Using vertex and color buffers would result in

significantly fewer draw calls per update which could drasti-

cally decrease rendering times. However, this would not af-

fect the asymptotic runtime of the underlying algorithm and

these methods are not used in released VisIt or ParaView

versions as of this writing.

5.1.2. Strong Scaling

Figure 8 shows strong scaling of the 316 million-triangle

contour from timestep 273 of the Richtmyer-Meshkov In-
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Figure 9: Strong scaling timings of an isosurface of the RMI

dataset.

�����

����

��

���

����

�����

�� �� �� �� ��� �	� ��� ����



�
�

�
�



���


������������������������������������

�� !����
�� !���� !�"

�� #�$

�� #�$ !�"
�� !�
�

�� !�
� !�"

�% !����
�% #�$

�% !�
�

Figure 10: Strong scaling timings of the VPIC dataset.

stability simulation. At a single node the benefit of the BVH

in Manta can clearly be seen as the ray tracer attains sev-

eral times the performance of the brute-force OpenGL im-

plementation, rendering in about .1 seconds with just two

nodes.

VisIt is slightly slower in many of our runs. Through test-

ing we found this is likely because VisIt uses a texture map

for colors instead of a single call to glColor in ParaView and

ParaView uses triangle strips whereas VisIt does not. Manta

in VisIt does not scale as well in higher node counts as our

ParaView implementation because of our current VisIt im-
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Figure 11: Strong scaling timings of the wavelet dataset.
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plementation uses the current vtkRenderWindow rather than

a custom Manta render window which limits performance to

around .05 seconds from calls to glDrawPixels to copy the

image buffer into the OpenGL context. Since the VisIt bot-

tleneck results in a maximum of about 20 fps, which is the

compositing limit of Binary-swap, this is not a significant is-

sue which inhibits interactivity, and one likely to be fixed in

a future update.

Figure 9 displays strong scaling numbers for a zoomed in

view of the RM dataset as seen in Figure 5(b). While this

has little to no affect on the rasterization algorithm, in ray

tracing this results in different scaling performance. While

the dataset is broken up and distributed across nodes, only

a few of those nodes actually have a portion of the visible

data. The ray tracer was already culling out the non-visible

data when the entire dataset was rendered on a single node.

Thus, roughly the same amount of visible data was being

rendered on a single or small number of nodes. The average

render times drop similarly to the RMO render times, how-

ever the maximum render times are generally worse for the

RMI renderings than for the RMO renderings at 8, 16, 32

and 64 nodes. This increase in maximum render time shows

the effects of data-parallel rendering work distribution as a

few nodes do more work. The maximum time eventually

drops, which is likely when the data subsets per node were

small enough to split up most of the visible geometry. Ize et

al. [IBH11] reported roughly linear scaling behavior through

ray-parallel work distribution up to 60 fps until approaching

a bottleneck introduced by sending pixels over their Inifini-

Band network at around 127 fps. A reworking of ParaView’s

work distribution could show similar scaling performance,

however our timings suggest that a data-parallel implemen-

tation within the existing framework scales to interactive

rates. Figure 10 shows timings for the VPIC dataset which is

made up of 102 million triangles. In this dataset, the GPU ac-

celerated OpenGL render times for ParaView achieve below

the .1 second mark needed for 10fps interaction, but only at

64 to 128 nodes when the effective triangle count per node

is around a million triangles per node.

A contour of a wavelet was created to test performance

with occluded geometry in a predictable fashion through 27

overlapping isosurfaces. While the RM and VPIC datasets

contain a lot of overlapping geometry, each uses a single

isosurface. Performance for the 16 million triangle wavelet

dataset is shown in Figure 11. Manta rendering times are be-

low .1 seconds on a single node and rendering time drops

significantly with additional nodes, however the rendering

times appear to reach a bottleneck at 8 nodes which is show-

ing the bottleneck introduced from rendering a mostly empty

scene and copying image buffers from Manta into VTK.

Some spikes in timings are seen at higher node counts, this is

likely from a single node or a few nodes running slower due

to the high maximum render time at 128 nodes for ParaView

Manta.

6. Conclusion

With this study we have shown scaling timings of widely

used visualization tools on real-world datasets. In order to

explore alternative rendering algorithms, we have integrated

a software ray tracing solution into common tools which

has demonstrated superior rendering performance with large

polygon counts over the built-in OpenGL hardware render-

ing and Mesa software rendering methods on a single pro-

cess. Through our system, VisIt and ParaView have shown

rendering times decrease by as much as 100x in our tests

compared to brute-force rasterization and can achieve in-

teractive rendering performance for large geometry counts

on large cluster environments without the need for special-

ized hardware acceleration. In the future, in situ visualiza-

tion is expected to become increasingly important with the

move to exascale. A system, such as the one described in

this paper, which exhibits scalable rendering performance

would be a good fit for in situ visualization on compute clus-

ters which may lack graphics acceleration. We have shown

that ray tracing implementations can scale with increasing

node counts across a variety of different datasets and views

using existing data-parallel work distribution and sort-last

image compositing. While the scaling performance is cur-

rently dependent on the view and data distribution, integrat-

ing view-dependent data partitioning into VTK or using a

system such as Chromium [HHN+02] could potentially al-

leviate a lot of compositing work and sub-optimal data distri-

bution present in ParaView and VisIt. Much work still needs

to be done to accommodate visualization, including maxi-

mizing single node performance for other parts of the vi-

sualization pipeline such as reading, isosurfacing, calculator

operations, and building acceleration structures. GPU accel-

erated ray tracing is another avenue of research which was

not considered for this paper but worth further study. The

design of Manta has differing data representation and frame

behavior resulting in wasted memory and a total frame time

of the aggregate of compositing and rendering times instead

of the maximum of the two. Our Manta plugin is currently

available in the source version of ParaView and was released

in the binary distributions for Linux and Mac OS in version

3.10. Our VisIt implementation is expected to be released to

the public in VisIt 2.5.0 or a future release.
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