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Abstract
Due to the wide variety of current and next-generation supercomputing architectures, the development of high-
performance parallel visualization and analysis operators frequently requires re-writing the underlying algorithms
for many different platforms. In order to facilitate portability, we have devised a framework for creating such
operators that employs the data-parallel programming model. By writing the operators using only data-parallel
primitives (such as scans, transforms, stream compactions, etc.), the same code may be compiled to multiple
targets using architecture-specific backend implementations of these primitives. Specifically, we make use of and
extend NVIDIA’s Thrust library, which provides CUDA and OpenMP backends. Using this framework, we have
implemented isosurface, cut surface, and threshold operators, and have achieved good parallel performance on
two different architectures (multi-core CPUs and NVIDIA GPUs) using the exact same operator code. We have
applied these operators to several large, real scientific data sets, and have open-source released a beta version of
our code base.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Computer Graphics]: Concurrent
Programming—Parallel programming

1. Introduction

While advances in supercomputer design are providing ever-
increasing levels of performance and degrees of parallelism,
there has not yet been a convergence towards a single type
of architecture, nor does such a convergence appear to be
on the horizon. For example, currently among national lab-
oratories in the United States, Argonne has the Blue Gene
based Intrepid Supercomputer, Los Alamos has the Cell-
based Roadrunner Supercomputer, and Oak Ridge is con-
verting the Jaguar Supercomputer to a GPU-based system.
In its exascale supercomputing initiative, the United States
Department of Energy has made it clear that systems using
at least two different architectures will be built. Thus, a sci-
entist who would like to develop visualization or analysis
operators that take advantage of the available computational
power and parallelism is often faced with the challenge of
having to re-implement his/her operators whenever his/her
code is to be run on another system.

In an attempt to address such issues, we have devel-
oped "PISTON", a cross-platform framework for visualiza-
tion and analysis operators that enables a scientist to write
an operator algorithm using a platform-independent data-

parallel programming model that can then be automatically
compiled on the backend to executables for different tar-
get architectures. In this paper, we first highlight some rele-
vant related work and then describe our programming model
and the implementation of three visualization operators us-
ing this framework. Finally, we present some performance
results for our operators running on different architectures
and close with our planned future work and conclusions.

2. Related Work

The primary contribution of PISTON is that it allows for
the development of visualization and analysis operators that
achieve both portability and performance. The exact same
operator code can be compiled for multiple architectures,
taking advantage of the parallelism of each.

Current production visualization software packages, such
as VTK, ParaView, or Visit, typically provide a large set of
visualization and analysis operators, but, in general, these
operators do not take full advantage of acceleration hard-
ware or multi-core architectures. There are a few instances
of operators that exploit the parallelism of a particular ar-
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chitecture, such as shaders using GLSL on GPUs in VTK,
but these are fairly rare, and only target a single archi-
tecture. The visualization literature is of course full of re-
search on using parallelism to accelerate operators (e.g.,
[SEL11, NBE*04, MSM10, JLZ*09]). However, again, each
acceleration technique generally only targets one specific ar-
chitecture rather than being applicable across platforms. Fur-
thermore, each of these accelerated operators tend to be im-
plemented only in a different individual’s research code and
are not easily available to users as part of a comprehensive
visualization and analysis library.

There are also several on-going efforts in programming
language design to incorporate portability and abstraction
in high-performance computing (e.g., [MAG*11, MIA*07,
DJP*11, DG08, CPA*10]). In theory, visualization and anal-
ysis operators written using such a language could achieve
performance and portability. Nevertheless, these efforts are
still relatively early in the research phase. Thus, we felt it
was imperative that we proceed with the development of
our framework to enable the development of cross-platform
data-parallel visualization and analysis operators. There is
an immediate and pressing need for such operators. Further-
more, this work allows us to begin to identify and solve chal-
lenges specific to the development of these operators so that
they might be easily integrated into a portable language once
one is fully developed and gains traction within the commu-
nity.

OpenCL is a widely-used language that is supported by a
number of hardware vendors and provides portability across
multiple architectures [MUN10]. However, it has several
limitations in its use for the development of cross-platform
visualization and analysis operators. For instance, it is not
supported by a number of architectures, such as Blue Gene.
Furthermore, it requires programming at a very low level
(using a subset of C99), and, while a given OpenCL pro-
gram can be compiled and run on different platforms, run-
ning efficiently on different architectures usually requires a
number of low-level, platform-specific optimizations. Thus,
while the code itself may be portable, its performance gen-
erally is not. Some have made the case that OpenCL can
achieve performance equal to CUDA, but still concede that
architecture-specific optimizations are necessary to achieve
good performance with either OpenCL or CUDA [FVS11].
In contrast, by restricting the programmer to using a fixed set
of high-level data-parallel primitives, each of which can be
efficiently implemented in the backend for different archi-
tectures, PISTON enables the developer to write high-level
code that achieves fairly good performance across all plat-
forms supported by the backend.

3. Design

3.1. Data-Parallel Programming with Thrust

Data parallelism is a programming model in which inde-
pendent processors perform the same operation on different

pieces of data. In contrast, using task parallelism, the pro-
cessors may simultaneously perform different operations on
different pieces of data. Due to the ever-increasing data sizes
with which we are faced, we expect data parallelism to be an
effective method for exploiting parallelism on current and
next generation architectures. The theoretical basis for the
data parallel programming model is laid out in Guy Blel-
loch’s seminal work [BLE90].

Thrust [THR12] is a C++ template library released by
NVIDIA. Its primary target is CUDA, but it can also tar-
get OpenMP, and its design supports the development of
additional backends targeting other architectures. It works,
in effect, as a source-to-source compiler: high-level C++
code that makes calls to Thrust data-parallel primitive oper-
ators is filled in with a CUDA kernel invocation or OpenMP
code implementing the primitive with the given parameters.
Thrust allows the user to program using an interface that is
very similar to (although not identical to) the C++ Standard
Template Library. It provides host and device vector types
(analogous to std::vector in the STL) that reside in the mem-
ory of the host and of the computation device, respectively,
which simplify memory management and the transfer of data
between the host and the device.

input 4 5 2 1 3
------------------------------------
transform(+1) 5 6 3 2 4
inclusive_scan(+) 4 9 11 12 15
exclusive_scan(+) 0 4 9 11 12
exclusive_scan(max) 0 4 5 5 5
transform_inscan(*2,+) 8 18 22 24 30
for_each(-1) 3 4 1 0 2
sort 1 2 3 4 5
copy_if(n % 2 == 1) 5 1 3
reduce(+) 15

input1 0 0 2 4 8
input2 3 4 1 0 2
------------------------------------
upper_bound 3 4 2 2 3
permutation_iterator 4 8 0 0 2

Listing 1: Example data-parallel primitive operations

Most of the algorithms that Thrust provides are data-
parallel primitives and operate on the host and device vector
types. The challenge for the developer is to design his/her
operator algorithms to use only these primitives. The reward
for the developer is that his/her operator code will then
be very efficient and portable. These primitives include
sort, transform, reduce, inclusive_scan,
exclusive_scan, transform_inclusive_scan,
transform_exclusive_scan, copy_if (stream
compaction), upper_bound (a binary search which finds,
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for each element of the second input array, the highest index
in the first sorted input array at which the element could be
placed without breaking the sorted ordering), for_each,
and permute (permutation_iterator). Each of
these primitives can work with user-defined data types and
functors as well as with standard C++ data types. Examples
of several of these data-parallel primitives, as implemented
in Thrust, are given in Listing 1.

3.2. Isosurface Operator

The first visualization operator we implemented in PISTON
was isosurfaces for structured grids. A naive data-parallel
algorithm is presented in Figure 1. The illustration is for a
2D contour, but easily generalizes to 3D isosurfaces. The
top row shows an example set of grid cells. Vertices with
associated scalar values on one side of the specified iso-
value are marked with black dots, while those with scalar
values on the other side of the specified isovalue are un-
marked. The copy_if primitive can be used to compact
"valid" cells; i.e., those that will generate geometry because
they contain at least one vertex below and at least one ver-
tex above the isovalue. Using a standard marching-cubes
look-up table keyed by the pattern of marked and unmarked
vertices [LC87], contours are generated for each valid cell.
Some valid cells generate "phantom" geometry, marked with
a flag, such that each valid cell generates the same number of
vertices. This follows the standard parallel computing tech-
nique of reducing branching within the kernel by doing extra
computation and then filtering out unneeded results. In addi-
tion, it allows each thread to know in advance the offset into
the output vertex array to output the geometry it generates.
In a final pass, a copy_if is used to stream compact the
real (non-phantom) vertices to produce the final output ar-
ray. While this approach produces correct results, it is rather
inefficient, first because of the large amount of global mem-
ory movement incurred by copying all the data (scalar values
at each vertex) for each valid cell with the initial copy_if
pass, and also because of the extra copy_if pass at the end
to eliminate phantom geometry.

input

0

1
2 3 4

6
8

9

validCells

phantomGeometry

outputVertices

copy_if

for_each

copy_if

5 7

Figure 1: Naive algorithm for isosurface generation

Our optimization of this algorithm is loosely based on the
idea behind the HistoPyramid algorithm [DZ07]. The gen-
eral principle is that it generates a "reverse mapping" from

output vertex index to input cell index (rather than from in-
put cell index to output vertex index), allowing it to "lazily"
apply operations only to cells that will generate the output
vertices. Instead of explicitly constructing and traversing a
HistoPyramid tree, stream compaction is accomplished with
a scan and traversal with a binary search.

Pseudocode for our algorithm is given in Listing 2, and
the algorithm is illustrated using example input in Figure 2.
The algorithm consists of the following steps:

1. As in Figure 1, the top row (input) presents an exam-
ple set of input grid cells, along with their global in-
dices, with vertices marked or unmarked depending on
whether their associated scalar values fall above or below
the specified isovalue.

2. Using the transform primitive (pseudocode line 1),
with a user-defined functor that computes the Marching
Cube case number index for a cell based on its pattern of
marked and unmarked vertices, a vector of case number
indices (caseNums) is generated.

3. Also using this transform primitive, a vector of the
number of output vertices generated by each cell is pro-
duced (numVertices).

4. A transform_inclusive_scan (pseudocode line
4) with a functor that returns one for any value greater
than zero is then performed on the number of ver-
tices in numVertices to enumerate the valid cells
(validCellEnum). The last element of this vector in-
dicates the total number of valid cells (pseudocode line
6).

5. A binary search (upper_bound, pseudocode line 7)
is then performed on a counting iterator (Counting-
Iterator) that enumerates the valid cells (zero through
the total number of valid cells minus one) searching in the
validCellEnum vector to find the index of the first el-
ement greater than each counting iterator element.

6. The result of this search is shown in the sixth row
(validCellIndices).

7. This compact vector of global indices of the valid
cells is used to fetch the number of output vertices for
each valid cell using a permutation_iterator
(numVerticesCompacted), which exists only
as an unnamed temporary variable generated by
make_permutation_iterator in the pseudocode
(line 10).

8. Finally, an exclusive_scan on numVer-
ticesCompacted (pseudocode line 10) gives
the starting offset into the global output vertex array
for each valid cell (numVerticesEnum). The total
number of vertices in the output (pseudocode line 14) is
the sum of the last elements of the final two vectors (the
starting offset of the final valid cell plus the number of
vertices produced by the final valid cell).

9. The vertex list output by the algorithm using for_each
(pseudocode line 15) is shown in the final row
(outputVertices).
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1. input

2. caseNums

3. numVertices

4. validCellEnum

5. CountingIterator

6. validCellIndices

7. numVerticesCompacted

8. numVerticesEnum

9. outputVertices

transform(classify_cell)

transform_inclusive_scan(is_valid_cell)

upper_bound

exclusive_scan

for_each(isosurface_functor)

5 7

make_permutation_iterator

# of valid cells = 4

Figure 2: Optimized algorithm for isosurface generation

In summary, our algorithm offers a number of efficiency
advantages. It avoids branching within the kernels, except
within the binary search. However, the effect of the branch-
ing within the binary search is minimized since the input
is in sorted order, allowing threads for nearby elements to
follow the same branching pattern. There is no global mem-
ory movement in which all cell data is copied from widely
scattered memory locations (as in the initial copy_if of
the naive algorithm). Instead, only indices into the origi-
nal input vector need to be written to the valid cell vec-
tors. There is no needless waste of computing resources
due to the computation of extraneous "phantom" geome-
try. In addition, the algorithm takes advantage of kernel
fusion provided by Thrust’s "combination" operators, such
as transform_inclusive_scan, and by the use of
Thrust’s permutation_iterator with Thrust opera-
tors. We found our optimized algorithm to be approximately
one order of magnitude faster than the naive algorithm. Fur-
thermore, the design of this algorithm is general enough that
it can be easily adapted to perform several other operations,

such as cut surfaces and thresholds, as described in the fol-
lowing subsections.

3.3. Cut Surface Operator

A cut surface is described with an implicit function, and data
attributes are mapped onto the cut surface [SML06]. The al-
gorithm for our cut surface operator follows directly from
the isosurface operator. Two scalar fields are associated with
the structured grid. The first is derived from the equation of
the cut surface; the isosurface of this field yields the cut sur-
face geometry. The second scalar field is the data field (the
same field as is used as the input to the plain isosurface op-
erator as described in the previous section) and is used for
coloring the cut surface according to the color map. Only
one interpolation parameter needs to be computed per ver-
tex, as it is used to determine both the vertex location and
the scalar value at that position. Since all vertices generated
by the Marching Cube algorithm are located on edges of the
structured grid, the interpolation parameter can be computed
using only a one-dimensional interpolation between the val-
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1 thrust::transform(CountingIterator(0), CountingIterator(0)+Ncells,
2 thrust::make_zip_iterator(thrust::make_tuple(caseNums.begin(),
3 numVertices.begin()), classify_cell(input, ...));
4 thrust::transform_inclusive_scan(numVertices.begin(), numVertices.end(),
5 validCellEnum.begin(), is_valid_cell(), thrust::plus<int>());
6 numValidCells = validCellEnum.back();
7 thrust::upper_bound(validCellEnum.begin(), validCellEnum.end(),
8 CountingIterator(0), CountingIterator(0)+numValidCells,
9 validCellIndices.begin());

10 thrust::exclusive_scan(thrust::make_permutation_iterator(numVertices.begin(),
11 validCellIndices.begin()),
12 thrust::make_permutation_iterator(numVertices.begin(),
13 validCellIndices.begin() + numValidCells, numVerticesEnum.begin());
14 numTotalVertices = numVertices[validCellIndices.back()] + numVerticesEnum.back();
15 thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(
16 validCellIndices.begin(), numVerticesEnum.begin(),
17 thrust::make_permutation_iterator(caseNums.begin(),
18 validCellIndices.begin()),
19 thrust::make_permutation_iterator(numVertices.begin(),
20 validCellIndices.begin()))), ..., isosurface_functor(outputVertices, ...));

Listing 2: Pseudocode for isosurface algorithm

ues at two grid points, as opposed to needing to compute a
full trilinear interpolation.

3.4. Threshold Operator

Thresholding selects data that lies within a range of data
[SML06]. Our threshold operator also makes use of the same
basic algorithmic design as the isosurface operator. Using
the transform primitive, a vector of "valid" flags is gener-
ated indicating which cells will generate geometry. In this
case, only cells for which the scalar value at each vertex
falls within the specified threshold range will be classified
as "valid". A compact vector of the global indices of the
valid cells is generated, as with the isosurface operator, by
performing a binary search for the elements of a counting
iterator within the result of an inclusive scan of the vector
of valid flags. Several additional operations are performed
in the threshold operator in order to identify "interior" valid
cells that are fully contained inside a block of other valid
cells. Such cells would have no surfaces visible on the ex-
terior, and so no geometry needs to be generated for such
cells. Interior cells are identified and enumerated amongst
the valid cells in the same way as valid cells are identified
and enumerated amongst all grid cells, except that in this
case the functor used by the transform primitive sets the flag
based on whether the given cell has any non-valid neighbor
cells. In the final step, six quads are generated for each valid,
exterior cell to cover each of its six faces.

3.5. Applicability to Additional Operators

The data-parallel programming model illustrated by the iso-
surface, cut surface, and threshold operators presented here
is applicable to a wide variety of additional types of opera-
tors. In [BLE90], algorithms are presented for such diverse
problems as generalized binary search, closest pair, quick-
hull, merge hull, maximum flow, minimum spanning tree,
matrix-vector multiplication, and linear system solving, all
using only transform, permute, and scan primitive operators
on vectors, plus some simple scalar and scalar-vector op-
erators. We have plans to implement a simple glyph oper-
ator that uses Thrust’s for_each primitive with a func-
tor that rotates, scales, translates, and colors the input icon
at a given point, and a render operator that builds a k-d
tree using Thrust’s sequence, fill, reduce, permu-
tation_iterator, copy, count_if, and copy_if
primitives and traverses the tree for_each pixel in a ray-
casting algorithm. Many basic statistical operators could be
constructed using Thrust’s reduce primitive paired with
appropriate functors to compute maximums, minimums,
means, standard deviations, etc. The flexibility of Thrust’s
primitives, especially transform and for_each, with
user-defined functors make it fairly easy to construct at least
a naive data-parallel algorithm for almost any inherently par-
allel algorithm. For example, a functor that traces a parti-
cle path in a vector field applied over a rake of initial parti-
cles with the for_each primitive would yield a simplistic
streamline algorithm. Achieving optimal performance will
still require clever operator-specific algorithmic design, such
as the reverse mapping concept that improved on the naive
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algorithm for our isosurface operator, but, in contrast to ef-
fort spent on making platform-specific algorithm optimiza-
tions using other approaches, the gains from such optimiza-
tions in a data-parallel algorithm will apply across all sup-
ported hardware platforms.

4. Results

4.1. Performance Evaluation

We evaluated the performance of our three operators com-
piled to a CUDA backend and running on a 448-core
NVIDIA Quadro 6000 with 6 GB of memory, and compiled
to an OpenMP backend and running on a 48-core 1.9 GHz
AMD Opteron 6168.

The expected cost of portability is performance. There-
fore, we compared the computation rates of our isosurface
operator compiled to CUDA with the native CUDA March-
ing Cubes demo that is distributed as part of NVIDIA’s
CUDA SDK [CUDA10]. As shown in Figure 3, the native
CUDA demo was somewhat faster than the PISTON imple-
mentation. For example, when operating on a data set in a
2563 grid, the demo was able to compute 74 isosurfaces
per second, while PISTON computed 49. The loss of per-
formance is not too surprising, given that the PISTON im-
plementation makes multiple kernel calls, and is not able
to make efficient use of shared and texture memory on the
GPU, optimize the number of threads per block or blocks
per grid, or fine-tune memory access patterns, since these
are architecture-specific optimizations. Nevertheless, PIS-
TON’s performance is still fairly close to that of the hand-
optimized CUDA demo code. Furthermore, a direct com-
parison of these computation rates is not entirely fair to the
PISTON code, because the CUDA demo places several re-
strictions on the input data that allow it to make additional
optimizations. The CUDA demo only operates on data sets
that have a grid size that is an exact power of two in each di-
mension, allowing it to use shifts instead of integer division,
and it cannot operate on data sets larger than 5123 because it
runs out of texture and global memory. In contrast, the PIS-
TON isosurface operator allows inputs whose dimesions are
not powers of two, and can handle data sets somewhat larger
than 5123 (approximately 7003 on this GPU with this data
set).

Using the exact same isosurface operator code that was
compiled to CUDA, we can compile the operator to use
OpenMP on a multi-core CPU by just changing a compiler
switch that causes Thrust to use the OpenMP backend in-
stead of the CUDA backend. For comparison, we used im-
plementations of the isosurface operator using VTK and us-
ing Parallel VTK. Isosurface computation rates using PIS-
TON, VTK, and Parallel VTK are shown in Figure 4. The
scan primitive in Thrust as included in NVIDIA’s CUDA
distribution included only a serial implementation in the
OpenMP backend, so we wrote our own parallel version us-
ing the standard data-parallel scan algorithm [BLE90]. As
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Figure 3: 3D Isosurface Generation: CUDA Compute Rates

would be expected, the parallel OpenMP PISTON code run-
ning on 48 cores was significantly faster than the serial VTK
code running on a single core. For example, with a 2563

data set, PISTON computed 37 isosurfaces per second while
VTK computed only one. The parallel VTK implementation
was faster than single-core VTK but much slower than the
PISTON code, computing 2.7 isosurfaces per second on the
2563 data set. One likely reason for its inferior performance
is that it simply divides the domain equally among the avail-
able processors, which results in an unbalanced workload,
since the distribution of geometry-producing cells is not uni-
form. In contrast, by generating the "reverse mapping", PIS-
TON operates only on valid (geometry-producing) cells, re-
sulting in a very balanced workload. As shown in Figure 5,
the PISTON OpenMP isosurface code also scales much bet-
ter with the number of processors than the Parallel VTK im-
plementation, since each of the data-parallel primitives used
in the PISTON algorithm is very scalable.

All of the preceeding results reflect only the rates at which
isosurfaces are computed and do not include the time taken
to render them. Figure 6 presents the rates at which iso-
surfaces are computed and rendered using PISTON with
its CUDA backend and with its OpenMP backend. The
OpenMP executable was run on a 12-core 2.67 GHz In-
tel Xeon X5650 with an NVIDIA Quadro 6000 graphics
card (as opposed to the 48-core AMD system used for the
preceeding compute-only results). For the CUDA backend,
the compute plus render rate depends heavily upon whether
the computed results have to be transferred to the CPU and
then back to the GPU for rendering. With these transfers,
the CUDA backend has very similar performance to the
OpenMP backend (8 and 6 isosurfaces computed and ren-
dered per second, respectively, for a 2563 data set). How-
ever, if CUDA’s "interop" feature is utilized, vertex buffer
objects can be pre-allocated on the GPU, and pointers passed
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to the CUDA computation so that the resulting isosurface
vertices are output directly to these graphics objects, avoid-
ing the need for a transfer to the CPU and back and reducing
the total memory usage on the GPU. With this optimization,
PISTON can compute and render 39 isosurfaces per second
for the 2563 data set. Of course, these rates are dependent
on the specific hardware and number of cores used, so the
point is not to directly compare the backends (for example,
with more CPU cores and a less powerful GPU, the OpenMP
performance would compare more favorably). Rather, the
key point is that we can achieve good performance on dif-
ferent architectures using the exact same code, and that us-
ing a simple though architecture-specific optimization (in-
terop) can significantly improve rendering performance on
the GPU.
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Figure 6: 3D Isosurface Generation: Compute plus Render
Rates for PISTON Backends

The results presented in the preceeding figures all used
the isosurface operator. Figure 7 shows that all three opera-
tors described in this paper exhibit similar behavior, as all are
based on the same basic data-parallel model. In these tests,
the cut surface generated was a simple 2D plane, so this op-
erator ran the fastest. The threshold operator was faster than
the isosurface operator, despite having additional steps to
identify interior cells, presumably because it does not have
to compute any interpolations (which involve expensive di-
visions) for the scalar values nor for vertex positions.
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Figure 7: 3D Visualization Operators: CUDA Compute
Rates

4.2. OpenCL Prototype

We have also implemented a prototype OpenCL backend
that allows us to run on platforms such as AMD GPUs.
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There are a number of challenges involved in creating an
OpenCL backend, including the fact that OpenCL is based
on C99, making support for C++ features such as templates
and classes difficult, and the fact that OpenCL compiles ker-
nels from strings at run-time rather than from source files
at compile-time. In our prototype, a pre-processor extracts
operators from user-written functors and outputs them to .cl
files. At run-time, our Thrust-like backend combines these
user-derived .cl files with its own native OpenCL implemen-
tations of data-parallel primitives into kernel strings. It uses
run-time type information to handle simple templating and
functor calls, substituting for key words in the kernel source
string. Since the kernel source depends only on the types
of the arguments to the data-parallel primitive, the kernel
source only needs to be compiled once for each time it ap-
pears in the code, not re-compiled each time it is called at
run-time. Using this OpenCL backend, we have successfully
implemented the isosurface and cut surface operators using
code that is almost, but not exactly, identical to that used
for the Thrust-based CUDA and OpenMP backends. As with
CUDA, we have made an optimization to take advantage of
OpenCL’s interop feature. On an AMD FirePro V7800 with
1440 streams, we can compute and render about six isosur-
faces per second using a 2563 data set (or about two per
second without using interop). Further optimizations may be
expected to significantly improve this performance.

4.3. Example Applications with Scientific Data Sets

Example screen shots of these operators being applied to
several real scientific data sets are presented in Figure 8.
Shown are the isosurface and cut surface (cut plane) opera-
tors applied to the density field of a 275x317x192 Rayleigh-
Taylor instability data set [LRG*09] running on a multi-
core CPU with OpenMP, the threshold and cut surface (cut
plane) operators applied to a 600x500x42 ocean eddy data
set [WHP*11] running on an NVIDIA GPU with CUDA,
the isosurface operator applied to an 1800x1200x42 ocean
temperature data set [MPV10] running on an NVIDIA GPU
with CUDA, and the isosurface and cut surface (cut plane)
operators applied to the 160x80x70 pressure field surround-
ing a wind turbine [RL11] running on an AMD GPU with
OpenCL.

5. Conclusions

We have devised a cross-platform framework for the devel-
opment of visualization and analysis operators, making use
of a data-parallel programming model and of the Thrust li-
brary. Using this framework, we have implemented three vi-
sualization operators: isosurface, cut surface, and threshold.
Our performance results show that we can achieve good par-
allel performance on two different architectures (multi-core
CPUs and NVIDIA GPUs) using the exact same operator
code.

We expect our on-going work with PISTON to encom-
pass several general areas of development. First, we intend
to implement additional operators for visualization (such as
glyphs or streamlines) and for analysis (such as halo find-
ers or FFTs). Supporting unstructured grids for our existing
operators is another important goal. Furthermore, we are col-
laborating with Kitware to integrate PISTON into ParaView,
which would allow a user to interact with and chain together
PISTON-based filters using a professional GUI while gain-
ing the performance advantages of PISTON’s parallel oper-
ator implementations on multiple architectures. In addition,
PISTON could achieve multi-node parallelism by making
use of ParaView’s distributed-memory constructs while re-
alizing on-node parallelism using its own backends. Finally,
we intend to expand the set of supported architectures on
which PISTON operators will run both by testing the exist-
ing backends on other platforms (such as OpenMP on Blue
Gene) and modifying them as necessary, and potentially by
developing new backends for Thrust.

The beta version of our source code has been made
open source and is available on our project web page:
http://viz.lanl.gov/projects/PISTON.html.
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Figure 8: Screenshots of PISTON operators applied to several scientific data sets: (top to bottom) Rayleigh-Taylor instability
density field, ocean eddies, ocean temperature field, and wind turbine pressure field
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