
Eurographics Symposium on Parallel Graphics and Visualization (2011)
T. Kuhlen, R. Pajarola, and K. Zhou (Editors)

Efficient I/O for Parallel Visualization

Thomas Fogal† and Jens Krüger‡

Abstract

While additional cores and newer architectures, such as those provided by GPU clusters, steadily increase avail-
able compute power, memory and disk access has not kept pace, and most believe this trend will continue. It is
therefore of critical importance that we design systems and algorithms which make effective use of off-processor
storage. This work details our experiences using parallel file systems, details performance using current systems
and software, and suggests a new API which has greater potential for increased scalability.

1. Introduction

Large scale parallelism is widely used not only to simu-
late complex phenomenon, but also to process the resultant
data for understanding and insight. Parallel visualization and
analysis applications exist to aid in this process, but I/O per-
formance analysis generally takes a back seat to other met-
rics, such as renderer performance, with the justification that
one only reads the data once and then spends much more
time interacting with it. However, as we scale visualization
tools up, we find that the time taken for the initial reading
of the data is prohibitive, and becomes a significant barrier
to the scientist’s task: to understand their data and gain new
insight in their science.

In developing any application, there are a number of prac-
tical concerns which must be considered to obtain acceptable
performance. In the space of I/O, and especially distributed
filesystems, many visualization and analysis developers pay
little heed to these concerns. In this work we hope to elu-
cidate some ‘best practices’ for writing applications which
will utilize parallel filesystems, as well as steer a conver-
gence between application and filesystem developers.

1.1. Previous Work

Since the performance of most large scale visualization sys-
tems is clearly bound by I/O performance a significant body
of literature exists to analyze and improve this component of
parallel software. We provide a brief overview of a subset of
that literature here.

† Scientific Computing and Imaging Institute (SCI)
‡ DFKI, IVDA, Intel VCI, SCI

The predominant file systems in use in modern supercom-
puters are the Network File System (NFS) filesystem and
Lustre. NFS was originally developed by Sun and is now
in its fourth revision. However, despite the third revision’s
release almost twenty years ago [CPS95, HH04], it is still
in wide deployment. The “Linux Cluster” filesystem, Lus-
tre [SM08], is a newer filesystem which distributes the I/O
workload across multiple nodes, and thus has been demon-
strated to scale considerably better. Both systems have char-
acteristics which should inform how we develop software
to run on such systems. We focus this work on these two
filesystems due to their prevalence in high performance com-
puting environments.

Collective I/O (CIO) [Nit95, SCJ∗95, Kot97] was intro-
duced as a very versatile concept where the I/O bandwidth is
increased by coalescing a number of I/O requests to be sent
to the storage system as a single large request. Memik et
al. [MKC02] extended CIO as Multi-Collective I/O (MCIO)
by optimizing I/O accesses to multiple arrays simultane-
ously. They show that optimal MCIO patterns require the
solution to an NP-complete problem but are able to demon-
strate up to 85% speedups over CIO using a heuristic ap-
proach.

A similar concept was recently presented by Kendall et
al. [KGH∗09]. They showed that, with a carefully chosen
greedy algorithm, end-to-end access times of under a minute
are possible in the visualization of terascale data. Their sys-
tem accessed multi-file netCDF [RD90] data using the Par-
allel netCDF library [LkLC∗03], which in turn is built on top
of MPI-2 [GHLL∗98].

Lofstead et al. [LKS∗08, LZKS09, HKL∗10] report that
on current supercomputers, independent I/O tends to outper-
form collective I/O. They present the ADaptable IO System

c© The Eurographics Association 2011.

DOI: 10.2312/EGPGV/EGPGV11/081-090

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV11/081-090

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

(ADIOS) and — in combination with MPI-IO and collective
MPI-IO — report speedups of about an order of magnitude
compared to a serial HDF5 access. To improve access to data
stored in HDF5 Howison et al. [HKK∗10] present optimiza-
tions for the Lustre File System.

Specifically targeting scientific visualization of large-
scale earthquake simulations on parallel systems, Ma et
al. [MSB∗03] demonstrated that overlapping I/O with ren-
dering can significantly reduce inter frame delay. This
concept was extended into a general parallel visualiza-
tion pipeline for large earthquake simulations by Yu et
al. [YMW04b].

Yu et al. [YVO08] conducted an extensive characteriza-
tion, tuning, and optimization of parallel I/O on Jaguar, a
Cray XT based supercomputer at Oak Ridge National Labo-
ratory which uses Lustre [SM08] for its IO subsystem.

Yu et al. [YMW04a] demonstrated general I/O solutions
for the visualization of time-varying volume data in a paral-
lel and distributed computing environment.

Peterka et al. [PYR∗09] also present optimization strate-
gies for the problem of volume rendering large time depen-
dent datasets, focused specifically on the IBM Blue Gene/P
system system. Their summary result is that even with op-
timized storage and access systems I/O still severely limits
the overall performance and more research is required in this
area.

Recently, Lang et al. [LCL∗09] performed a comprehen-
sive study of I/O on Intrepid, the IBM Blue Gene/P system
at the Argonne Leadership Computing Facility. In their work
they also give a broad overview of existing parallel file sys-
tem evaluations and HPC system scaling studies.

Ching et al. contribute a a more modern take on file and
range locking in distributed filesystems [CkLC∗07]. Using
their distributed lock manager, they demonstrate scalability
up to 32 servers, something the POSIX locking model cannot
provide.

1.2. Contribution

Our primary goal with this work is to inform developers
writing visualization and analysis applications on the char-
acteristics of I/O systems at a multitude of scales. We desire
to show methods by which parallel applications can be writ-
ten to maximize performance for developers’ constituency,
without working directly with their user base or clusters
which the application will run on. As a community, we will
never have the resources required to address the specific ma-
chines that every supercomputing-based science group needs
to utilize. Therefore we must design applications which per-
form well on such machines without investing weeks (or
months) of a visualization or I/O expert’s time to achieve
that performance.

Most I/O studies focus on a particular machine and even

a specific application on that machine. This approach would
not, however, serve our purpose of identifying I/O best prac-
tices which are widely applicable. We contribute end-to-end
scalability results of a typical analysis problem on volume
data, for numerous clusters and a variety of I/O backends.

Finally, based on our work developing parallel visualiza-
tion and analysis applications like the one in this work, we
propose an extension to the ubiquitous POSIX API which
has the potential to greatly improve the performance of par-
allel I/O systems.

The remainder of this paper is organized as follows. First,
we review some disk and I/O characteristics which are com-
mon to both serial and parallel environments. In Section 3
we describe filesystems in common use in modern cluster
computing environments. Then we expound the design of a
program which has I/O as a major component, and describe
implementations using numerous backend APIs, in Section
4. In Section 5 we use the knowledge gained in Sections
3 and 4 to enumerate an API which would allow improved
scalability on current and future parallel filesystems. Finally,
we conclude by highlighting the limitations, drawbacks, and
opportunities for mistaken conclusions which arise due to
our methods.

2. Data Access Time

The overall time to perform any I/O operation is well stud-
ied. Generally we consider this to follow the simple equa-
tion:

Ttotal = Taccess +Ttrans

that is, the total time to perform an I/O operation is equal to
the time to seek to the desired track along with the time for
the start of the needed sector to spin under the disk head, plus
the time for the platter to spin until all the required sectors
have passed under the head.

We will utilize a hypothetical modern disk with an aver-
age access time of 8 msec, and a sustained transfer rate of
100 MB/s. The access time time is a conservative median
for current consumer level disk drives. The 100 MB/s sus-
tained transfer rates are not yet possible with current con-
sumer level disks, but the number is close enough and serves
our purpose well.

2.1. Considerations for access time optimizations

The total time to transfer data of M MB can be described by
the equation:

Ttotal =
Taccess

1000
+

M
Rtrans

where Rtrans denotes the transfer rate in MB per second. We
divide Taccess by 1000 to express it in seconds as it is nor-
mally given as milliseconds. Consequently, the access time

c© The Eurographics Association 2011.

82

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

m
s
e

c
)

Transfer Size (KB)

Total
Seek time

Transfer time

Figure 1: Total I/O time as a function of transfer size. Trans-
fer rate quickly overtakes access time.

represents a percentage P of the overall time, which can be
expressed as:

P = 100 · Taccess

Ttotal ·1000

=
Taccess

Taccess
100 +10 · M

Rtrans

If we now insert the parameters of the above described hy-
pothetical disk and assume that we are partitioning our data
in 10 MB blocks we arrive at the consclusion that—when we
need to do a random seek operation for every single block of
data—the seek time accounts for only 7% of the overall time
to access the data.

Now, to assess the gain of a specific layout scheme we
consider the following equation. It measures the perfor-
mance gain G in percent for a given scheme if that scheme
reduces random access by a factor of F .

G = 100 ·F ·

(Taccess
1000 + M

Rtrans
M

Rtrans

−1

)

= 100 ·F ·

(
Taccess
1000

)
(

M
Rtrans

)
=

F
M

· Taccess ·Rtrans

10

Again, assuming the hypothetical drive parameters from
above and we get

G =
F
M

·80

For a scheme that reduces random access by a factor of 3,
only a 2.6% improvement in runtime would be achieved for

10 MB blocks, while with the same scheme the performance
would be almost tripled with 900 byte blocks.

From these numbers we conclude that in most environ-
ments, in particular those with structured data—where larger
data blocks can be utilized more easily—a data layout opti-
mization would only improve a very small fraction of the
overall time and is most likely not worth the implementation
and maintenance effort. For environments that must break
the data into tiny chunks a clever layout strategy to improve
data access times can in the best case (in which practically
all disk operations involve seeks) double the data access per-
formance.

It is worth noting that with the advent of solid state drives,
in particular for consumer workstations, this minimal block
size required to utilize unwrought data layout strategies
while still obtaining good performance is bound to shrink
even more, as those drives have a significantly smaller ‘seek’
time with only moderately higher transfer rates.

Finally, it should once again be stressed that the percent-
ages given above account for maximum theoretically pos-
sible optimization potentials if all seek operations could be
completely avoided and no other additional overhead would
come from the layout. In reality the speedup that can be
gained from a access time optimization will stay below that
value. In particular it is worth noting that accessing data via
optimized layout schemes does not come for free. Kendall
et al. [KGH∗09] demonstrated for distributed memory sys-
tems that a random ordering scheme outperforms most space
filling curve approaches.

The takeway:

• If the data is broken into pieces larger than 10 MB, then
it is not worth worrying about the data layout for even
consumer level disks.

• For kilobyte sized chunks a clever layout strategy can sig-
nificantly cut the data access time on a standard HDD.

3. Parallel Filesystems

All distributed filesystems have unique characteristics which
should inform the way we access and process data. In this
section we will highlight some of the common pitfalls that
may be found with applications designed to run in an NFS
or Lustre environment.

3.1. Opening Files

Opening a file is one example of an operation which per-
forms uniquely in a distributed environment. In NFS sys-
tems, this is implemented via the client sending an ACCESS
or GETATTR remote procedure call. The operation asks the
server if the client is allowed to access the file, or requests
metadata for the file. The server responds with a small mes-
sage containing the resulting permissions. The situation in

c© The Eurographics Association 2011.

83

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

Lustre is similar: queries go to a global ‘metadata server’
(MDS) which determines access information. In both sys-
tems, the file is not opened. Doing so would consume re-
sources on the server, particularly due to read-ahead caching,
and the request to actually read or write the file may be sig-
nificantly delayed in time – or may never come at all!

This has important implications for programs running on
such filesystems. Any distributed filesystem is going to scale
extremely poorly with a program that opens many files at one
time. Since the open call must correctly report errors, the
request and response must be entirely synchronous. There
is no openv system call in POSIX, analogous to readv.
Therefore every open file request must send a (very small)
message to a server, and wait for a (very small) message to
return. The network capacity for messages at these sizes is
extremely poor. It is important to note that Lustre does not
scale any better than NFS in this use case, as it has the sin-
gular bottleneck of one MDS per filesystem. Many sites split
up their Lustre offerings into multiple filesystems as a way
to mitigate this problem, but of course these must then be
mounted under different locations in the filesystem hierar-
chy.

To prevent inducing poor performance in this manner,
avoid opening more than one or two files per process; at large
scale, even that will be a bottleneck. Furthermore, if at all
possible, avoid synchronization points immediately before
opening files: if one absolutely needs an MPI_Reduce, for
example, try opening the file immediately before the reduce
instead of immediately after. This should prevent a ‘thunder-
ing herd’ (to steal a term from the threading world) of pro-
cesses which pound on the metadata server at the same time.
It is interesting to note that the ADIOS middleware library
already attempts to mitigate this effect [HKL∗10].

The takeway:

• At large scale, eschew large numbers of files.
• Stagger synchronization points with open calls.

3.2. Closing Files

Distributed filesystems almost unilaterally implement what
is referred to as ‘close-to-open cache consistency’. To in-
crease performance, writes are cached locally on the client
filesystems. During regular intervals or in response to certain
events, the client cache is flushed to the server.

This presents difficulties in implementing writes. The
problem is in reporting errors when a write should fail; since
the system only writes to a local cache, the write never
reaches its final destination and thus additional errors could
still occur after the user process has proceeded beyond the
write. It is possible for the write to be sent to the server ma-
chine, enter into the server’s cache, and eventually be denied
due to a transient error (e.g. exceeding quota). Yet the client
system cannot report this error to the running process, be-

cause the process has long since moved on from the failing
write call.

Distributed filesystems thus require a client cache to
write-through all changes when the client application closes
the file. Client operating systems must get a confirmation
from the server that all data has been flushed before it re-
turns from the client processes’ close call; this is the last
possible operation for the file, and thus the distributed sys-
tems’ final opportunity to report errors which may indicate
data loss.

It is therefore highly desirable to delay close operations
which occur after writes. If a process is writing multiple out-
put files, try to make it maintain two open files instead of
one, and close the file from the previous iteration while writ-
ing in the current iteration.

Sadly many applications, even those designed to run on
supercomputers, do not check the return value of the close
system call. There is no reason to believe that what was writ-
ten is at all valid, given such applications.

The takeaway:

• Always check close for errors!
• Try to delay closes that appear after writes.

3.3. Locking

By ‘locking’ here we are referring to advisory file locking,
a la the flock system call; mandatory file locking has its
own set of issues in even a serial environment, and the util-
ity of such locking in an HPC environment is nebulous. In
our experience, few if any large scale visualization and anal-
ysis applications utilize file locking. However, it is worth
noting that locking typically adds an I/O synchronization
point, much like close would. For this reason it is not rec-
ommended that an application lock and unlock files unless
there is an interaction with known external software which
dictates it. If at all possible, a better solution would be to
close the files on the writing process, and send a message
to reading processes notifying them that the writer has com-
pleted – before they attempt opening the files at all.

Locking can in theory provide the best mechanism for
inter-process communication in a distributed environment
(i.e. to coordinate with in situ visualization and analysis pro-
cesses), however it is not in wide use, perhaps due to the
issues mentioned here. As noted earlier [CkLC∗07], this is
still an area of research in HPC systems and so we recom-
mend the aforementioned explicit synchronization methods
for now.

4. Parallel Data Access

To identify the ideal method for accessing data in numer-
ous environments, we wrote test programs using a variety of
APIs and API options, then evaluated their performance. Yet

c© The Eurographics Association 2011.

84

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

many scientific visualization and analysis packages, in ad-
dition to large scale simulation software, utilizes some I/O
middleware for data access. These middleware packages of-
fer complexity reduction, and typically provide a method for
ascribing higher level metadata with data, such as the dimen-
sionality and mesh information. After identifying the ideal
low-level methodologies, we sought to quantify the differ-
ences between middleware libraries, and in particular their
scalability on distinct clusters.

To quantify this, we developed the same analysis program
using a variety of backend APIs. The program is simple: it
is a threshold-based volume segmentation tool. The software
reads in a large volume and outputs a binary mask volume
which indicates the voxels which fall between the threshold
values. The program is parallel, and out-of-core: the input
volume is intelligently bricked, and each process is responsi-
ble for a set of bricks. Processes load up a brick and generate
an output brick one at a time. We chose out-of-core as op-
posed to in-core because it models how future (even current)
visualization and analysis software must be written, given
the current trend of increasing processing-power-to-memory
ratios.

4.1. Results

We ran our application on multiple distinct supercomput-
ers. One cluster is specifically designed for visualization; an-
other excelled at analysis; the third is a very large scale gen-
eral purpose supercomputer designed for ‘leadership com-
puting’. Installation dates were diverse: one cluster was com-
missioned in 2008, another went into production early in
2010, and a third was originally installed in 2005, receiv-
ing its most recent upgrade in 2009. All of these clusters are
using Lustre for their backend filesystem. On all systems,
we used the ‘native’ compilers and, where available, system-
installed modules for the libraries we required.

For backend I/O we tested multiple configurations:
NetCDF, HDF5/NetCDF, and a custom solution.

The hierarchical data format (HDF) is a data model which
has seen significant uptake in the parallel computing world.
It provides mechanisms for organizing complex data in an
extensible manner. We did not look directly at HDF5, but
instead considered it in concert with NetCDF.

The Network Common Data Form is a library which pro-
vides array-oriented data access. Like HDF5, NetCDF files
endeavor to be partly self-describing. With recent releases
of the NetCDF library, there are a multitude of options for
backend I/O. The first is so-called ‘classic’ NetCDF files.
These files have a limit of 2Gb per variable, and thus were
not considered for this study. The ‘64bit offset’ format is
an extension of the ‘classic’ format to allow use of 64bit
indices, and thereby to address files of, for all practical
purposes, unlimited size. The final format is the so-called
‘NetCDF4’ format – somewhat confusing because the ‘64bit

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e

c
)

Processes

Raw Segmentation
Advised

NetCDF4

Figure 2: Strong scaling of our example segmentation pro-
gram running on cluster #1, with a variety of I/O backends.
‘NetCDF4’ is NetCDF with an HDF5 backend. ‘Raw’ is
our hand-generated simple I/O layer, and ‘Advised’ a minor
modification on it. Error bars indicate maximum and mini-
mum running times per process in the job.

offset’ format debuted in 3.6.0, right before the 4.0 release,
yet is a distinct backend – which uses HDF5 as its back-
end. To disambiguate, we refer to the ‘64bit offset’ format as
“NetCDF-64” and the HDF5-backed format as “‘NetCDF4”
in this work.

We also developed a custom I/O layer based on our ex-
periences on a variety of machines, including workstations.
The approach is very simple: each process memory-maps a
chunk of the large input data file, as well as the relevant por-
tion of the output mask file. Data are processed out of the
memory-map as is, without intermediate buffers. The source
for this version is thus simpler than any other version of the
program, containing no memory management code for data
buffers. As such, this version required the least memory by
a wide margin: the API dictated an approach which was nat-
urally out-of-core.

The results on the first cluster can be seen in Figure 2.
‘NetCDF4’ is NetCDF backed with an HDF5 file. ‘Raw seg-
mentation’ uses our custom I/O layer based on mmap. ‘Ad-
vised’ is the ‘Raw’ line, with the addition of just a single line
of code, placed before we process a block of data:

posix_fadvise(fd,
index * sizeof(float),
buffer_size,
POSIX_FADV_WILLNEED

);

we will need block X + 1 in the near future, just before we
begin processing block X . We had found that including this
optimization increases our performance 3 to 4x on desktop
systems. Results on the supercomputer do show an initial in-
crease in performance, but the effect was unfortunately sub-
dued at higher concurrency. We do not include results for

c© The Eurographics Association 2011.

85

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e

c
)

Processes

NetCDF-64 Cluster #1
NetCDF-64 Cluster #2

Figure 3: Strong scaling using the NetCDF ‘64bit offset’ file
format on multiple clusters. Higher levels of concurrency led
to decreased overall performance when using this format. Of
note is the high variability from cluster #1, characteristic of
that machine’s I/O subsystem.

the NetCDF-64 run in this figure, as it did not fit in the same
scale as the pictured backends.

Results for this machine were somewhat difficult to re-
port, because they varied so widely. We ran the scaling study
for one particular format straight through, with no delays be-
tween runs, multiple times. In each instance the NetCDF4
result included a spike in the running time. For our raw seg-
mentation, we would see results offset by 20 seconds or so,
and the width of the error bars would change arbitrarily. The
readahead version of the program experienced less variabil-
ity, but we were unable to conclude whether this was a prop-
erty of the program or simply luck. The data presented in
figures represents the set of runs which performed best over-
all, for that I/O backend. Error bars indicate the variability
seen across all processes for that run.

The NetCDF-64 results could not be plotted with the other
results, due to the large difference in scale. Results using this
format on multiple clusters is provided in Figure 3. Perfor-
mance actually decreased with this backend. For this reason,
we highly recommend forcing the HDF backend (using the
NC_NETCDF4 flag) when writing applications which make
use of the NetCDF API.

Results from running on the second cluster are given in
Figure 4. The HDF-backed NetCDF version could not be
run on this cluster due to a software incompatibility.

Results from the third cluster are given in Figure 5. This
machine is one of the largest scale supercomputers we have
access to, and so we performed runs at larger levels of con-
currency, although we did not utilize the entire cluster. We
only performed the ‘advised’ version of our raw algorithm
for this cluster, as the simpler version gave essentially the

 70

 80

 90

 100

 110

 120

 130

 140

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e

c
)

Processes

Raw Segmentation
Advised

Figure 4: Raw segmentation strong scaling with and without
explicit caching, on the second cluster. Explicit single-block
readahead makes little difference, especially at higher con-
currency levels.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

T
im

e
 (

s
e

c
)

Processes

NetCDF 4
Advised

Figure 5: HDF-backed NetCDF and raw advised I/O
method scaling on the third cluster. Performance is largely
the same at first, hinting that explicit readahead is likely too
limited to be effective. At higher levels of concurrency, our
writes get very small, and the HDF backend is able to deal
with the case much more effectively.

same performance, and compute time was harder to obtain
for this machine.

5. A Parallel File API

In the work presented for this paper, as well as our previ-
ous experience writing visualization and analysis programs
targeting supercomputers, we have noticed that the available
I/O models presented by the standard POSIX API is insuffi-
cient from both the producer and consumer vantage points.
Implementers are not given enough information about access
patterns that applications are utilizing, which prevents them
from optimizing the I/O for common tasks. Library and ap-
plication developers, on the other hand, have no mechanism

c© The Eurographics Association 2011.

86

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

for communicating such information. The result is sub-par
performance, with both parties feeling like there is little that
can be done.

For this reason, we present an API which:

• models the way visualization and analysis application
programmers think about their data,

• simplifies data access, and
• enables implementers to design effective filesystems.

A summary of the methods which the API provides is
given in Table 1. Our primary goal with such an API is to
encourage application developers to structure their code in
such a way that it models a similar API, as it provides more
information to lower levels. At the same time, we hope mid-
dleware libraries and even kernel code begin to offer APIs
which allow application developers to provide this kind of
information. In the end, there should be much more data
about the patterns and intent of data access that the appli-
cation provides to the levels which can make use of it.

open_range and close_range ; open and
close calls which work with byte ranges. One of the is-
sues that plagues I/O concurrency at large scales is the in-
ability to indicate which portion of data a process intends to
access: each process only needs some subset of the overall
data, but cannot communicate this a priori to middleware or
the runtime system. To perform effectively in the majority of
cases, caching, large stripe sizes, and readahead must be em-
ployed by the I/O system. However these techniques create
false sharing when byte ranges overlap.

A popular method to combat this problem is to create a
single file per process. Since only one process accesses the
file, it is clear to the I/O subsystem that concurrent access is
impossible. While this is effective at the small scale, at the
highest levels of concurrency the method becomes untenable
due to overwhelming amounts of metadata: listing all files
in a directory would require making a hundred thousand re-
quests to a server. Even if this were technically feasible, it
presents significant data management difficulties; it would
be much easier on users if we could contain results into a
singular file.

Many analysis applications would be able to calculate the
byte offset they will need on a given process given just the
total number of processes and the dimensions of the dataset
(or number of points in a point mesh). Visualization soft-
ware may need to produce a spatial hierarchy of the data,
but again this can be done with relatively little metadata. By
providing this information to the underlying I/O subsystem
up front, application developers can cleanly solve one of the
more difficult problems in defining distributed file systems:
distributed lock management.

It should be an error to specify a byte range beyond the file
length when opening a file for read-only access. When used
for write access, this would be a viable method for extending
the file’s length. All offsets from a file opened in this manner

are relative to the start of the byte range. Attempting to read
beyond the end of the byte range results in end-of-file.

If the API is made to work with existing file descriptors,
the standard close call is the only API needed. If this API
returns a more opaque type, an API-specific close method
will be required.

readanyv ; a read that accepts a number of blocks and
returns one of them. Many applications can identify what
data it will need using a small amount of metadata. For the
segmentation application used in this work, for example, we
could compute that easily based only on the total amount of
data and the number of processes in the analysis job. A vol-
ume renderer could read just the world extents of each block
and use that for a spatial subdivision. In short, it is common
for an application to be able to make progress given some
small subset of its input, as long as each subset is ‘complete’
in some sense. This interface allows an API implementer to
do intelligent read-ahead; as demonstrated in our test pro-
gram, this can provide compelling performance advantages.

The API should return pointers; it should not accept pre-
viously allocated buffers. The gives the implementer free-
dom to manage allocations, enabling flexibility in choices of
underlying APIs. For example, memory-mapped files gen-
erally require page-aligned memory, which is not provided
by malloc or new, and is more difficult to use at fixed ad-
dresses, as opposed to letting the kernel choose the mapping.

finished ; an asynchronous flush operation. This in-
dicates that the given file (or byte range within the file, given
open_range) will no longer be used. The method returns
prior to performing any I/O operations. It is an error to read
from or write to the given file after performing this operation.
It is an error to open the given file within the same process
without an intermediate close operation. An implementa-
tion may detect these errors. It is unspecified whether any
other process sees any modifications to the open file before
a future close operation completes.

The intent is to allow a system to better manage its cache
and write throughput. Should the system experience memory
pressure, these cache blocks are the best candidates to con-
sider for flushing. If the network or host resources are cur-
rently busy, the system might delay making the write request
until a better time. This would also allow an implementation
to avoid a ‘thundering herd’ of disk write requests: mitigated
in a system such as Lustre, but a difficult problem in an NFS-
like environment.

It is important to note that, while this system interface was
explicitly developed to deal with the problems of distributed
systems, most calls could provide benefits for applications
targeted to typical workstations. The issues are largely the
same, though the stakes are higher in a distributed system.
Furthermore, such a system would not obviate the need for
current infrastructure; not all file access can be made to con-
form to this model, but the intent is that large scale applica-

c© The Eurographics Association 2011.

87

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

System call Description
open_range open with an explicit range of accessible bytes.
close_range clean up resources associated with a buffer

readanyv accept a set of blocks and returns when any one full block is available
finished asynchronous flush; return immediately, but mark buffers as unused.

Table 1: Summary of proposed new APIs.

tions would be able to effectively utilize these APIs for their
primary I/O needs.

6. Conclusions

We have presented performance characteristics of modern
disks. Utilizing that information, we evaluated a variety of
APIs for file access with large scale data by implementing
the same program using multiple backends. Where APIs had
options which may effect performance, we experimented
with those options to identify which set gave the best par-
allel performance on our chosen problem. We evaluated this
program on multiple clusters, attempting to identify gener-
alized practices which application developers could follow
to obtain superior performance in the common case: where
they have no control over where their users will run the re-
leased code.

Variability in I/O performance, such as that depicted in
Figure 3, was considerably higher than we expected it to be.
In some cases we observed a job taking twice as long to ex-
ecute than it did at another point in time. This presents a
difficult challenge for interactive visualization and analysis
applications, which should provide the illusion of interac-
tive response yet are highly susceptible to such latency. The
results encourage the use of progressive or multiresolution
renderers, which can be used to provide real-time responses
in the plausible event that the supercomputer cannot respond
quickly enough.

While good performance can be obtained using operat-
ing system APIs directly, we do not advocate developers
use these directly at this time. Higher level libraries such
as NetCDF, HDF5, and ADIOS provide mechanisms for
self-describing metadata and data attributes, and can achieve
similar performance with the proper configuration, not to
mention providing portability across a wider set of sys-
tems. Instead of having every application developer famil-
iarize themselves with these to-the-metal APIs, our commu-
nity should instead work towards the goal of incorporating
these ideas into higher level libraries. However, some API
changes, preferably to accomodate a model more like the one
presented in Section 5, could go a long way towards getting
users to write code that can be scaled much more easily.

For application developers, we present the following max-
ims for obtaining the best I/O performance possible:

• Stagger operations that read or write file metadata.

• Read or write in large chunks: 10 megabytes or more.

– This frees the developer from the requirement of
identifying and implementing intelligent data layout
schemes.

• Use memory-mapped files whenever possible.
• If you can do more, unrelated work before close-ing

some file resource, do so.
• Always check and report errors during close.

6.1. Limitations

Any study is subject to the limitations of that which can be
tested, as well as the time available to perform tests ad nau-
seum. This study is no different, and suffers from at least the
following barriers and limitations on its conclusions.

The most serious is our chosen test application. We have
chosen to implement a program which essentially maintains
two small buffers at any one time: a brick of the input file
and an output brick. In a real-world application, it would
desirable to load as much data as would fit in the current
memory. Furthermore, many current applications are not in-
telligent enough to implement either method: they employ
strictly in-core algorithms. Due to the memory struggle be-
tween application heap allocations and the operating sys-
tem’s filesystem caching, in-core applications clearly per-
form worse when the heap memory required grows close
to the available memory on a node. Finally, our application
performs very little work on each input voxel; this was done
to emphasize I/O time, but is uncharacteristic of any useful
analysis program. Therefore it is likely that the application
presented here performs better than real-world visualization
and analysis applications.

A second issue, particularly with respect to the proposed
API, is the lack of thorough evaluation. No applications have
been written to such an API. We have implemented the API
in user-space, but no middleware or applications have as-yet
been adapted to utilize the model it presents. Despite these
shortcomings, we feel the approach is well-informed based
on our experiences here and in prior literature.

7. Future Work

The ADIOS library is unique in that it is not a file format
alone, but rather a middleware suite that interfaces to a vari-
ety of backend methods for reading and writing data. These

c© The Eurographics Association 2011.

88

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

methods include HDF5, NetCDF4 and ADIOS-only back-
ends such as raw POSIX I/O and MPI-IO. Unfortunately the
current release at the time of publication (ADIOS 1.2.1) does
not yet support out-of-core data access. For large scale visu-
alization and analysis applications, which commonly run on
just a subset of the nodes utilized to produce simulation data
in the first place, we judged this to be an essential feature.
We contacted the development team and they agreed to look
into out-of-core APIs for a future release; we therefore hope
to include ADIOS results in a future study.

We would like to extend the methodologies used in this
work to a larger set of parallel algorithms. In particular, al-
gorithms which must do considerably more per-voxel com-
putation, and those which require information from neigh-
boring voxels.

Acknowledgements

The work presented in this paper was made possible in part
by the Office of Advanced Scientific Computing Research,
Office of Science, of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231 through the Sci-
entific Discovery through Advanced Computing (SciDAC)
program’s Visualization and Analytics Center for Enabling
Technology (VACET), by the NIH/NCRR Center for In-
tegrative Biomedical Computing, P41-RR12553-10 and by
Award Number R01EB007688 from the National Institute
of Biomedical Imaging and Engineering, as well as the In-
tel Visual Computing Institute and the Cluster of Excellence
“Multimodal Computing and Interaction” at the Saarland
University. The content is under sole responsibility of the
authors.

References

[CkLC∗07] CHING A., KENG LIAO W., CHOUDHARY A., ROSS
R., WARD L.: Noncontiguous locking techniques for parallel
file systems. In Proceedings of the 2007 ACM/IEEE confer-
ence on Supercomputing (New York, NY, USA, 2007), SC ’07,
ACM, pp. 26:1–26:12. http://dx.doi.org/10.1145/
1362622.1362658. 2, 4

[CPS95] CALLAGHAN B., PAWLOWSKI B., STAUBACH P.: RFC
1813: Nfs version 3 protocol specification, June 1995. http:
//www.ietf.org/rfc/rfc1813.txt. 1

[GHLL∗98] GROPP W., HUSS-LEDERMAN S., LUMSDAINE A.,
LUSK E., NITZBERG B., SAPHIR W., SNIR M.: MPI: The
Complete Reference, Volume 2 - The MPI-2 Extensions, vol. 2.
The MIT Press, 1998. http://mitpress.mit.edu/
catalog/item/default.asp?ttype=2&tid=5045. 1

[HH04] HILDEBRAND D., HONEYMAN P.: NFSv4 and high per-
formance file systems: Positioning to scale. Tech. Rep. citi-04-02,
University of Michigan, 2004. http://www.citi.umich.
edu/NEPS/positions/hildebrand.pdf. 1

[HKK∗10] HOWISON M., KOZIOL Q., KNAAK D.,
MAINZER J., SHALF J., DONOFRIO D.: Tuning
hdf5 for lustre file systems. In Proceedings of Work-
shop on Interfaces and Abstractions for Scientific Data
Storage Heraklion (Crete, Greece, September 2010).

http://www.mcs.anl.gov/events/workshops/
iasds10/howison_hdf5_lustre_iasds2010.pdf. 2

[HKL∗10] HODSON S., KLASKY S., LIU Q., LOFSTEAD J.,
PODHORSZKI N., ZHENG F., WOLF M., KORDENBROCK T.,
ABBASI H., SAMATOVA N.: Adios 1.2.1 user’s manual,
August 2010. http://users.nccs.gov/~pnorbert/
ADIOS-UsersManual-1.2.1.pdf. 1, 4

[KGH∗09] KENDALL W., GLATTER M., HUANG J., PETERKA
T., LATHAM R., ROSS R.: Terascale data organization for
discovering multivariate climatic trends. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis (New York, NY, USA, 2009), SC ’09,
ACM, pp. 15:1–15:12. http://doi.acm.org/10.1145/
1654059.1654075. 1, 3

[Kot97] KOTZ D.: Disk-directed i/o for mimd multiprocessors.
ACM Trans. Comput. Syst. 15 (February 1997), 41–74. http:
//doi.acm.org/10.1145/244764.244766. 1

[LCL∗09] LANG S., CARNS P., LATHAM R., ROSS R., HARMS
K., ALLCOCK W.: I/o performance challenges at leadership
scale. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (New York, NY,
USA, 2009), SC ’09, ACM, pp. 40:1–40:12. http://doi.
acm.org/10.1145/1654059.1654100. 2

[LkLC∗03] LI J., KENG LIAO W., CHOUDHARY A., ROSS
R., THAKUR R., GROPP W., LATHAM R., SIEGEL A., GAL-
LAGHER B., ZINGALE M.: Parallel netcdf: A high-performance
scientific i/o interface. In Supercomputing, 2003 ACM/IEEE
Conference (nov. 2003), p. 39. http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1592942.
1

[LKS∗08] LOFSTEAD J. F., KLASKY S., SCHWAN K., POD-
HORSZKI N., JIN C.: Flexible io and integration for scientific
codes through the adaptable io system (adios). In Proceedings of
the 6th international workshop on Challenges of large applica-
tions in distributed environments (New York, NY, USA, 2008),
CLADE ’08, ACM, pp. 15–24. http://doi.acm.org/10.
1145/1383529.1383533. 1

[LZKS09] LOFSTEAD J., ZHENG F., KLASKY S., SCHWAN
K.: Adaptable, metadata rich io methods for portable high
performance io. In Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel&Distributed Processing (Wash-
ington, DC, USA, 2009), IEEE Computer Society, pp. 1–
10. http://portal.acm.org/citation.cfm?id=
1586640.1587524. 1

[MKC02] MEMIK G., KANDEMIR M., CHOUDHARY A.: Ex-
ploiting inter-file access patterns using multi-collective I/O.
In Proceedings of the 1st USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2002), FAST
’02, USENIX Association. http://portal.acm.org/
citation.cfm?id=1083323.1083350. 1

[MSB∗03] MA K.-L., STOMPEL A., BIELAK J., GHATTAS O.,
KIM E. J.: Visualizing very large-scale earthquake simulations.
In Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting (Washington, DC, USA, 2003), SC ’03, IEEE Computer
Society, pp. 48–. http://portal.acm.org/citation.
cfm?id=1048935.1050198. 2

[Nit95] NITZBERG W. J.: Collective parallel I/O. PhD
thesis, University of Oregon, Eugene, OR, USA, 1995.
UMI Order No. GAX96-13380 http://portal.
acm.org/citation.cfm?id=238886&CFID=
6478942&CFTOKEN=35881037. 1

[PYR∗09] PETERKA T., YU H., ROSS R., MA K.-L.,
LATHAM R.: End-to-end study of parallel volume ren-
dering on the ibm blue gene/p. In Parallel Processing,

c© The Eurographics Association 2011.

89

http://dx.doi.org/10.1145/1362622.1362658
http://dx.doi.org/10.1145/1362622.1362658
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc1813.txt
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5045
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5045
http://www.citi.umich.edu/NEPS/positions/hildebrand.pdf
http://www.citi.umich.edu/NEPS/positions/hildebrand.pdf
http://www.mcs.anl.gov/events/workshops/iasds10/howison_hdf5_lustre_iasds2010.pdf
http://www.mcs.anl.gov/events/workshops/iasds10/howison_hdf5_lustre_iasds2010.pdf
http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.2.1.pdf
http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.2.1.pdf
http://doi.acm.org/10.1145/1654059.1654075
http://doi.acm.org/10.1145/1654059.1654075
http://doi.acm.org/10.1145/244764.244766
http://doi.acm.org/10.1145/244764.244766
http://doi.acm.org/10.1145/1654059.1654100
http://doi.acm.org/10.1145/1654059.1654100
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592942
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592942
http://doi.acm.org/10.1145/1383529.1383533
http://doi.acm.org/10.1145/1383529.1383533
http://portal.acm.org/citation.cfm?id=1586640.1587524
http://portal.acm.org/citation.cfm?id=1586640.1587524
http://portal.acm.org/citation.cfm?id=1083323.1083350
http://portal.acm.org/citation.cfm?id=1083323.1083350
http://portal.acm.org/citation.cfm?id=1048935.1050198
http://portal.acm.org/citation.cfm?id=1048935.1050198
http://portal.acm.org/citation.cfm?id=238886&CFID=6478942&CFTOKEN=35881037
http://portal.acm.org/citation.cfm?id=238886&CFID=6478942&CFTOKEN=35881037
http://portal.acm.org/citation.cfm?id=238886&CFID=6478942&CFTOKEN=35881037

T. Fogal and J. Krüger / Efficient I/O for Parallel Visualization

2009. ICPP ’09. International Conference on (sept. 2009),
pp. 566 –573. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=5362481. 2

[RD90] REW R., DAVIS G.: NetCDF: an interface for scientific
data access. Computer Graphics and Applications, IEEE 10,
4 (jul. 1990), 76 –82. http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=56302. 1

[SCJ∗95] SEAMONS K. E., CHEN Y., JONES P., JOZWIAK J.,
WINSLETT M.: Server-directed collective I/O in panda. In
Proceedings of the 1995 ACM/IEEE conference on Supercom-
puting (CDROM) (New York, NY, USA, 1995), Supercomputing
’95, ACM. http://doi.acm.org/10.1145/224170.
224371. 1

[SM08] SUN MICROSYSTEMS I.: Peta-scale I/O with the lustre
file system. Oak Ridge National Laboratory/ Lustre Center of Ex-
cellence papers http://wiki.lustre.org/images/9/
90/Peta-Scale_wp.pdf, February 2008. 1, 2

[YMW04a] YU H., MA K.-L., WELLING J.: I/o strate-
gies for parallel rendering of large time-varying volume
data. In In Proceedings of the Eurographics/ACM SIG-
GRAPH Symposium on Parallel Graphics and Visualization
(June 2004), pp. 31–40. http://www.cs.ucdavis.edu/
~ma/papers/PGV04.pdf. 2

[YMW04b] YU H., MA K.-L., WELLING J.: A parallel visu-
alization pipeline for terascale earthquake simulations. In Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing
(Washington, DC, USA, 2004), SC ’04, IEEE Computer Society,
pp. 49–. http://dx.doi.org/10.1109/SC.2004.6. 2

[YVO08] YU W., VETTER J., ORAL H.: Performance char-
acterization and optimization of parallel I/O on the Cray
XT. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on (April 2008), pp. 1 –
11. http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4536277. 2

c© The Eurographics Association 2011.

90

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5362481
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5362481
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=56302
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=56302
http://doi.acm.org/10.1145/224170.224371
http://doi.acm.org/10.1145/224170.224371
http://wiki.lustre.org/images/9/90/Peta-Scale_wp.pdf
http://wiki.lustre.org/images/9/90/Peta-Scale_wp.pdf
http://www.cs.ucdavis.edu/~ma/papers/PGV04.pdf
http://www.cs.ucdavis.edu/~ma/papers/PGV04.pdf
http://dx.doi.org/10.1109/SC.2004.6
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4536277
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4536277

