
Remote Large Data Visualization in the ParaView
Framework

Andy Cedilnik,1 Berk Geveci,1 Kenneth Moreland,2 James Ahrens,3 and Jean Favre4

1Kitware Inc., Clifton Park, New York
2Sandia National Laboratories, Albuquerque, New Mexico

3Los Alamos National Laboratory, Los Alamos, New Mexico
4Swiss National Supercomputing Centre, Switzerland

Abstract
Scientists are using remote parallel computing resources to run scientific simulations to model a range of scien-
tific problems. Visualization tools are used to understand the massive datasets that result from these simulations.
A number of problems need to be overcome in order to create a visualization tool that effectively visualizes these
datasets under this scenario. Problems include how to effectively process and display massive datasets and how
to effectively communicate data and control information between the geographically distributed computing and
visualization resources. We believe a solution that incorporates a data parallel data server, a data parallel ren-
dering server and client controller is key. Using this data server, render server, client model as a basis, this paper
describes in detail a set of integrated solutions to remote/distributed visualization problems including presenting
an efficient M to N parallel algorithm for transferring geometry data, an effective server interface abstraction and
parallel rendering techniques for a range of rendering modalities including tiled display walls and CAVEs.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing

1. Introduction

Simulation packages generate massive amounts of data that
are usually impossible or unreasonable to move. The size of
these datasets are in gigabyte to terabyte ranges. Exacerbat-
ing the problem, the data are commonly at a remote location,
often in a separate room or even at a geographically remote
site. Remote visualization of these large datasets on tiled dis-
plays or CAVEs is a challenging problem.

The use of even consumer grade graphics hardware can
significantly improve rendering speed over software tech-
niques. However, even the most sophisticated graphics hard-
ware is limited by the amount of memory it can hold and the
bandwidth of the processor. Furthermore, in most cases the
scientific data are too large to be processed and displayed by
a single computer. That is why, to perform fast interactive
rendering of large datasets, parallel rendering is a common
practice. The parallelization is also necessary when large
multi-displays are used to display the data.

The need for client/server separation is necessary since
it is difficult to move the data. The additional separation of

server into multiple components, such as a data server and
render server can also be beneficial. This design will make
a logical separation between the nodes that perform the data
processing/visualization and the nodes that perform the ren-
dering. Furthermore, not all nodes require graphics hard-
ware. Since data processing algorithms typically produce vi-
sualization results that are significantly smaller than the orig-
inal data size, the number of rendering nodes with graphics
hardware is usually smaller than the number of data process-
ing nodes. This difference in the number of nodes presents
an interesting problem: there needs to be a mapping from
the large number of data server nodes to the small number of
render server nodes.

Since the data are located remotly, some form of network
data transfer has to be implemented. In general there are two
major options. The first option is to send the geometry to-
gether with the rendering parameters to the rendering engine.
The second option is to send the final images to be displayed
on the client. Both options have their advantages and disad-
vanatages. The biggest drawback of the sending the geome-
try is that the geometry may be too large for it to be reason-

E urographics Sym pos ium on Para llel G raphics and Vis ualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

able to be sent over the network. In addition, the sending of
geometry requires the client to have rendering capabilities.
However, sending images can also be problematic because
of the latency of interaction and the size of images.

To overcome these problems, the ParaView Framework
proposes a set of methodologies, which when used in com-
bination, will allow interactive viewing of data on remote lo-
cations [AJL∗00,ABM∗01,LHA01,Hen05]. This interactive
viewing is possible without special hardware, and without
sacrificing the fidelity of the experience. These methodolo-
gies have been tested in practice through extensive use by
developers and scientists on several supercomputers all over
the world. Furthermore it provides a set of client tools to act
as an end-user application.

2. Related Work

A large body of research in visualizing large datasets using
parallelism focuses specifically on parallel visualization al-
gorithms. Much of the previous algorithmic work in the field
of parallel visualization has focused on the area of paral-
lel rendering. Parallel rendering approaches include photo-
realistic rendering (i.e. ray tracing, radiosity and particle
tracing) [RCJ98], polygon rendering [Cro97] and volume
rendering [MPHK94,Yag96,Wit98]. Additional work has fo-
cused on parallel iso-surfacing [HH92, PSL∗98] and geom-
etry optimization [HH93]. These efforts are complementary
to our efforts since our goal is the creation of a fully func-
tional visualization framework. Previous algorithmic work
can be integrated into ParaView as modules, further aug-
menting the framework’s functionality for users.

There are a number of related efforts that provide so-
lutions to the large data remote visualization and analy-
sis problems. These include the VisIt and EnSight Gold
large data visualization packages. Both have a similar data-
server/client architecture to support remote visualization.
They both currently use the Chromium package for paral-
lel rendering and rendering to different display modalities
[HHN∗02]. Chromium provides an abstraction of graphics
API commands for applications such as VisIt and Ensight
Gold, and supports both sort-first and sort-last parallel ren-
dering methods. ParaView incorporates parallel rendering
methods [MWP01] directly as part of the framework making
the communication between the visualization and rendering
components more efficient and effective. Other related paral-
lel data-flow based visualization tools include Data Explorer
(DX) [ea92,AT95], AVS Express [ea89,KH93,DMO95] and
SCIRun [PDJ97, MHJ98, JP99]. These tools provide a stan-
dard client/server architecture but do not address solving
the large scale data parallelism and the remote visualization
problems together as we do in this paper. Each of these tools
uses a centralized executive for control and execution. How-
ever, controlling a large number of processes from a single
centralized executive is difficult. In contrast to these tools,

ParaView avoids the use of a centralized executive and there-
fore provides a more scalable solution.

3. Approach

The ParaView Framework solves the large data visualiza-
tion problem using several approaches. These approaches
include parallel processing, client/server separation, and ren-
der server/data server separation. These approaches give the
ParaView Framework the flexibility to run in several modes.
The simplest mode is the stand-alone application, in which
all the processing is performed on the local system, or on a
local cluster with the master node being the first node.

When data reside on a different system, or the local sys-
tem is not capable of performing full rendering, remote visu-
alization is necessary. To achieve this, the ParaView Frame-
work supports a client/server mode. In this mode, the ren-
dering and data processing are performed on the server and
only geometry or imagery is sent to the client.

Since the ParaView Framework takes full advantage of the
graphics hardware, it is beneficial for the rendering nodes
to have special hardware. In the general case, however, the
requirements for data processing resources is much higher
than for rendering resources. This is why it is often more
cost effective to have a smaller secondary rendering clusters
than it is to add rendering hardware to the larger supercom-
puter. For this scenario, the ParaView Framework supports a
separation of the data server and render server. In this mode,
the user can take full advantage of the supercomputer and a
smaller computer system with graphics hardware. This re-
quires taking geometry generated by M data server nodes
and redistributing it so that it can be rendered on N render
server nodes, where M > N. In order to address this problem,
Paraview uses an M to N redistribution algorithm.

3.1. Rendering Modes

As a parallel, general-purpose visualization tool, it is vital
that ParaView supports multiple rendering modes. Different
launch modes require the use of specialized render modes as
do different display environments. The following list sam-
ples several of the rendering modes that ParaView must sup-
port.

Local A single process renders a locally available data set.
Although the most mundane rendering mode, this is also
probably the most frequently used.

Image Delivery A remote render server with a large
amount of graphics processing power delivers images to
a remotely connected desktop. Using image delivery al-
lows users to employ a shared, graphics resource without
leaving the comfort of their office. The challenge of im-
plementing image delivery is to render and ship images
fast enough to maintain interactive rendering rates.

Tiled Display A render server locally displays images upon

c© The Eurographics Association 2006.

164

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

one or more images arranged in a tiled display. Such dis-
plays are frequently built in conference rooms or other
theater-type environments. Because theater displays sel-
dom have user interfaces, the GUI is provided as a remote
client.

Cave An immersive display consisting of a room with a vir-
tual environment projected upon two or more walls. The
perspective projection of the image for each wall is de-
signed to provide a consistent landscape for the user.

In addition to supporting all of these rendering modes, the
ParaView Framework must provide a means of adapting to
new rendering modes. There is no way to predict every pos-
sible rendering use case, so the ParaView Framework must
be adaptable to new rendering requirements.

4. Technical Implementation

As described in the Section 3, the ParaView Framework con-
sists of a data server, render server, and client. The following
sub-sections describe the functionality of individual compo-
nents. The majority of the code is, or is based on, the Vi-
sualization Toolkit (VTK). VTK provides ParaView with all
the capabilities for reading, writing, processing, and visu-
alizing data. Beyond that, it has capabilities for performing
parallel processing of the data. VTK also provides a robust
software engineering platform with its strict object oriented
design and reference counting, as well as garbage collection
schemes. This section describes the details of our remote
visualization solutions: client/server streams for platform
independent data transfer and remote invocation, a Server
Manager for additional server abstraction, a M to N paral-
lel geometry communication algorithm, rendering modules
for rendering abstraction, and various clients for user inter-
action.

4.1. Client/Server Streaming

There are inherent problems with interprocess communica-
tion. These problems are compounded when the processes
are running on heterogenous systems. The first problem is
that various systems interpret data from memory in different
ways. The second problem with interprocess communication
is the lack of remote invocation of the procedures.

To overcome these problems, ParaView uses a
Client/Server Streaming (CSS) module. This module
abstracts the data type, byte ordering, and type size. It also
provides a C++ API to package data into byte streams
that can be then transported over the network to a remote
system. Finally, it provides a platform independent way
to perform remote invocations of specific ParaView server
functionalities.

To marshal data, CSS uses the C++ IO streaming inter-
face. Every CSS marshalling call consists of the command,
arguments, and the End tag. The command is used by the

CSS Interpreter to evaluate its content. The streams can also
be used to marshal the data without being parsed by the in-
terpreter. In those cases the command is ignored. The End
tag is there to identify the end of the stream and to act as a
separator between multiple commands/data blocks.

When unmarshaling the CSS, several methods are used to
examine the stream. First of all, there is a method to check
how many messages are on the stream. After the number
of messages is known, messages can be examined for their
content.

To abstract the remote invocation of methods, the Par-
aView Framework uses a CSS Interpreter. This interpreter
uses the CSS to encode the remote method call and invoke
it on the remote side. The advantage of this approach is that
there is no difference between invoking methods on the local
host or on a remote host. The server code (all the filters and
other auxiliary classes) are automatically wrapped into the
CSS wrapping. This wrapping is a thin layer of C++ code
that, given a CSS, knows how to execute the set of methods
described in the stream.

4.2. Server Manager

Although the CSS module makes it possible to remotely in-
voke methods and exchange data in a platform independent
way, it has limitations that the Server Manager addresses.
These limitations are:

Complexity of use: To invoke a method, the programmer
has to create a stream, assign the method name and ar-
guments, terminate the stream, select the right server and
node, and finally send the stream. Compared to a simple
C++ method invocation, this is tedious.

Lack of state: Once a method is invoked and the stream
freed, the arguments passed to the server are lost. To query
the state, the client program has to send another stream to
the server and parse the returned stream. This is not sim-
ply a convenience issue, as communicating with the server
to query the state may cause too much network traffic and
slow down the client.

Lack of Data gathering: A stream can be invoked on ei-
ther the root node or all the nodes of a server. The CSS
module can receive the result returned from the first node
but cannot gather the results across all server nodes. For
example, to compute the global bounds of a dataset re-
quires a reduction operation that uses the values returned
from all nodes. The CSS modules cannot do this.

4.2.1. Higher Level Interface

The main objective of the Server Manager module is to pro-
vide a simple and narrow interface accessible by clients and
scripting interfaces. Another important objective is to hide
the low-level CSS interface from client code so that it is not
impacted by interface changes (such as VTK API changes).
These are accomplished by using the proxy design pattern

c© The Eurographics Association 2006.

165

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

[GHJV95]. Each server-side, distributed C++ object is rep-
resented by a C++ proxy object on the client side, which
is responsible of managing the life-cycle of server side ob-
jects. Proxies are managed by the proxy manager, which is
responsible for loading XML configuration files as well as
creating, managing, and destroying proxies. The configura-
tion files contain proxy definitions organized in groups.

Once the configuration file is loaded, the client can ask the
Server Manager for a new proxy by passing the name of the
group and proxy, for example "sources" and "DEMReader".
The proxy manager then creates a proxy object, configures
it based on the contents of the XML definition, and returns a
pointer.

4.2.2. State Management

In order to have full access to the server state, the client
needs to know the values of server objects’ properties. These
properties are usually set by a set method, obtained by a get
method, and stored in property objects contained by proxies.
When a proxy is created, the proxy manager creates appro-
priately initialized property objects.

4.2.3. Data Gathering

Another important responsibility of the Server Manager is to
collect meta-data from the server and present it to the client
as serial information. For example, the Server Manager can
compute the global bounds of a dataset or the global range of
a data array from a distributed dataset. It does this by creat-
ing parallel algorithm objects that send reduced information
to the master process. This information is then communi-
cated to the client and presented through the Server Manager
interface using Information objects and information property
objects. Information properties have the same interface as
other properties except they do not allow setting of values.

4.3. M to N Parallel Geometry Communication

Often it is not practical or even possible to move the
simulation data to the render server and process it there.
One solution to this problem is to process the data on the
server/cluster where it was generated and larger resources
are available. Once processed, the resulting geometry is
transfered to a render server/cluster.

The algorithm presented here redistributes geometry from
M to N processes and can be shown to run in two log2 P
stages, where P is the number of processors [BA].This algo-
rithm has two parts: the first redistributes geometric elements
to a balanced arrangement and the second redistributes the
geometric elements from the balanced arrangement to the
goal distribution. In more detail:

1. Make a transfer schedule to redistribute the initial ele-
ment distribution, A, to a balanced distribution.

2. Make a transfer schedule to redistribute from the goal dis-
tribution, B, to the balanced distribution.

3. Reverse schedule 2 by running exchanges in the opposite
order and replacing sends with receives.

4. Apply schedule 1.
5. Apply the reversed schedule.

The 4th and 5th steps here each have log2 P stages. These
2 steps are much the same so only the balancing part of re-
distribution is described. For simplicity in describing and
analyzing the redistribution algorithm, let P, the number of
processors, be a power of 2. Also assume that the total num-
ber of geometric elements is a multiple of P. The elements
are balanced in a series of log2 P stages. During stage i,
where i iterates from 0 to (log2 P− 1), the processors are
split equally into sequential groups of length 2i. Groups are
paired into a left and a right group. Each processor in the left
group is paired with a processor in the right group that is in
the same position within the group. In parallel, the proces-
sors with more elements send half the difference in number
of elements to the processors with fewer elements. This re-
sults in an equal number of elements on each processor in
the pair. At the beginning of the stage all processors within a
group have the same number of elements and the processors
are paired and balanced with processors in the second group,
each with the same number of elements. The result is that all
processors in both groups have an identical number of ele-
ments at the end of the stage. For the subsequent stage, both
the right and left groups are merged into one group where all
processors have an identical number of geometric elements.
Thus, at the completion of the final stage, all processors con-
tain the same number of geometric elements and the geomet-
ric load is balanced.

4.4. Render Modules

A design criterion unique to a parallel visualization frame-
work like ParaView is the necessity of efficient parallel ren-
dering. ParaView’s rendering must adapt to a variety of ren-
dering platforms run with any of the client/server modes
specified in Section 3. Furthermore, for each client/server
mode ParaView must implement each of the rendering
modes specified in Section 3.1, where applicable. Future de-
velopments in visualization hardware or software may ne-
cessitate further rendering algorithms.

Properly rendering data in ParaView requires the coordi-
nation of many VTK objects. To shield the majority of code
from the complexities that arise from rendering, ParaView
employs the facade design pattern [GHJV95]. It encapsu-
lates the task of rendering into a Render Module object. The
Render Module sets up all the necessary VTK objects for
rendering and provides a unified interface for all rendering
tasks.

Using the facade pattern provides another important fea-
ture beyond merely simplifying code. Because the interface
is abstracted from the implementation, ParaView can easily
use a different implementation by substituting another Ren-
der Module object with the same interface. Figure 1 shows

c© The Eurographics Association 2006.

166

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

Simple
Render Module

Render Module

Level of Detail
Render Module

Composite
Render Module

Cave
Render Module

IceT Desktop
Render Module

IceT
Render Module

Figure 1: Render Modules available in ParaView.

the hierarchy of some of the Render Module objects avail-
able, and a description of each follows.

The Simple Render Module is a class that handles the
most basic rendering functions. It maintains a collection of
objects that make it possible to perform rendering: render-
ing context, user interaction, camera control, and lighting.
The Simple Render Module also holds a collection of Dis-
play objects. A Display object manages the rendering of a
single viewable object in a scene. Displays are described in
detail in Section 4.4.1.

The Level of Detail Render Module adds the ability to
sacrifice rendering quality for speed. The interactivity and
responsiveness of ParaView directly impacts its usability. At
times of user interaction (for example, rotates, pans, and
zooms of the view), this Render Module can render a low
level of detail of the data. When the user is not interacting
with the view, ParaView renders the full details of the data.
Lower levels of detail are formed by performing quadric
clustering [Lin00] on the polygon meshes. Users frequently
complain if interactivity is not maintained whereas chang-
ing levels of detail are seldom problematic. For this reason,
all render modules inherit from the Level of Detail Render
Module.

The Composite Render Module is an abstract class that
handles the added complexities associated with parallel ren-
dering with clients and servers. These duties include moving
data between partitions and adding level of detail controls for
parallel rendering overhead. The Composite Render Module,
being an abstract class, does not define the parallel rendering
algorithm used. That is implemented by the subclasses.

When running ParaView in data-server/render-
server/client mode, data must first be moved from the
data server to the render server. Since the number of pro-
cesses in the data server can be different than the number of
processes in the render server, the composite render module
requires the M to N algorithm discussed in Section 4.3.
When the data size is small, the Composite Render Module
also has the ability to collect the data and send it all to the

client or replicate it on all processes of the render server.
This allows ParaView to remove the overhead of parallel
rendering for small data sets.

As the name implies, the Composite Render Module is
designed to do sort-last parallel rendering [MCEF94]. This
approach to parallel rendering is used because, unlike sort-
first or sort-middle, it scales very well with the number of
polygons and number of processes [WPLM01]. The sort-last
approach combined with levels of detail and data replication
performs equally well or better than a sort-first approach in
nearly all cases, including tile displays.

The overhead of sort-last parallel rendering as well as im-
age delivery are proportional to the size of the image being
generated. Thus, the Composite Render Module provides an
additional level of detail: image reduction. During interac-
tion, smaller images are rendered and then inflated to fill the
display. Although this process results in images with reduced
fidelity, it can increase the rendering rates dramatically.

The IceT Render Modules (IceT Desktop Render Module
and IceT Render Module) use the IceT library to implement
parallel rendering. Details of how the IceT library interfaces
with VTK can be found in [MT03].

In addition to parallel rendering, the IceT Desktop Ren-
der Module must also deliver images to the client. Image
delivery can be a bottleneck and may benefit greatly from
a compression algorithm. However, the compression algo-
rithm must be chosen carefully. The time to encode and de-
code the image must be recovered by savings in transfer
time. Thus, a heavy compression algorithm such as JPEG
has the potential of actually increasing the image delivery
time. To deliver images, the IceT Desktop Render Module
uses the Sequential Unified Image Run Transfer (SQUIRT)
algorithm. As a run length encoding algorithm, SQUIRT can
encode and decode images in a very small amount of time.
SQUIRT further improves its speed by performing opera-
tions on RGB triplets with single 32-bit integer operations.
Run lengths are packed in the fourth byte, normally reserved
for alpha, which helps reduce both the time and memory re-
quired for encoding.

For most images, run length encoding alone provides very
poor compression. Simple polygon shading usually results
in run lengths of size one. The run lengths can be dramat-
ically improved, however, if the color fidelity is reduced.
Thus, SQUIRT masks out several bits in the colors, those
that will have a minimal impact on color perception, before
comparing them. Although the bits are masked out for run
length computation, they are still included in the encoded
image for two reasons. First, it is usually faster to leave the
extra bits in the data so that operations can continue to per-
form operations on 32-bit integers. Second, even though the
extra bits provide no extra information in principle, they tend
to reduce banding artifacts in practice.

The IceT Render Module behaves much like its super-

c© The Eurographics Association 2006.

167

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

class, except that images are displayed locally on the ren-
der server to theater environments. The IceT library also
supports image compositing to tiled displays, and these al-
gorithms are enabled in the IceT Render Module. The tile-
display compositing algorithms are described in [MWP01].

The Cave Render Module is used to drive CAVE envi-
ronments, which have multiple displays that are rendered
with different perspectives. Although the Cave Render Mod-
ule currently does not actually do any image compositing, it
shares enough functionality to inherit from the Composite
Render Module. The Cave Render Module always replicates
its data amongst all processes in the render server.

4.4.1. Displays

A display object holds information about something drawn
as visible geometry. Because of the large variety of dis-
playable objects drawn by ParaView, it is convienent to en-
capsulate their state and description in a hierarchy of display
objects. Render Modules hold collections of display objects
that define what is drawn inside them.

Simple geometries such as Axes or Scalar Bars inherit
right from the base class. 3D Widgets have their own hier-
archy. A 3D Widget is comprised of a simple geometry, such
as a point, line, plane, or sphere and some user interaction.
It is the display’s responsibility to allow interaction to occur
on the client and send the parameters to the render server (if
they are in different processes).

A consumer display is attached to the end of a VTK
pipeline and draws a representation of its data. If the data
server, render server, or client reside on different processes,
the consumer display must move data accordingly. A data
object display renders the geometric representation of a
VTK data set. These displays have the potential of rendering
large amounts of data and must therefore be careful about
where data are moved and how it is rendered. To make sure
this is done properly, the data object display has several spe-
cialized subclasses for use with the different Render Mod-
ules (discussed in Section 4.4).

4.5. Clients

The ParaView Framework supports arbitrary clients. The
most prevalent client is the desktop client build on top of
Tcl/Tk that is distributed with the ParaView Framework.
Furthermore, there is a WebVis client, which exposes the
ParaView Framework functionality through the Web. It was
developed by Kitware and Army Research Laboratory to
facilitate enterprise level visualization. Finally there are
Python and Tcl scripting clients available that allow users to
write simple Python or Tcl scripts to drive ParaView server.
Using these scripts, ParaView Framework can be driven in a
batch mode in scenarios when the user interface is not feasi-
ble. In addition to these clients, there are several applications
available that use the ParaView Framework internally.

5. Results and Discussion

ParaView has been in development since 2001, and since
that time it has seen its functionality grow broadly. The so-
lutions presented in this text come directly from the chal-
lenges that Sandia National Laboratories and Los Alamos
National Laboratory have met, creating a highly scalable
and interactive framework for visualization. As a measure
of ParaView’s success, over 30 laboratories and universities
around the world use it. Furthermore, it is downloaded over
45 times a month by other users.

Apart from simple usage numbers, the success of a par-
allel framework such as ParaView’s can be measured in its
ability to scale to large problems. ParaView is continuously
challenged with ever growing data problems and processing
supercomputers. To date, the biggest visualization problems
are being performed at Sandia National Laboratories for the
Red Storm project.

Red Storm is a new supercomputer built at Sandia Na-
tional Laboratories designed to run physics simulations with
very high fidelity [JS05]. Red Storm routinely creates some
of the largest sets of scientific data in the world. To handle
the visualization requirements of such large physical simula-
tions, Sandia has also built some of the biggest visualization
clusters, such as the Red RoSE cluster shown in Figure 3.
As Red Storm came on line, Sandia was obligated to show
the US Department of Energy visualization capability for the
data Red Storm generates. Using ParaView, this milestone
was successfully completed [Whi05]. Figure 2 shows large
Red Storm data visualized with ParaView.

Another success story is the example of ParaView usage
for CFD simulation of a Pelton turbine, with the modeling
of turbulent three-dimensional confined flows and free sur-
face flows. The complexity of the simulation arises from the
large range of scales in this flow which range typically from
distributor inlet to droplet diameters. The flow requires an
unsteady rotor-stator modeling to properly predict flow fea-
tures.

The solver used is the parallel flow solver ANSYS. Ini-
tially it was used with a single processor application (CFX-5
Post), which was clearly over-loaded with mesh sizes be-
yond 20-30 millions cells. ParaView, was able to perform
post-processing in a fully parallel fashion. The parallel so-
lution starts from reading the data on multiple data server
nodes, respecting the natural sub-division of the model, as
shown in Figure 4. Load-balancing and volume assignment
is decided at run-time, based on the number of processors
available. A full transient animation handles tera-bytes of
data and allows a data analysis that was previously unob-
tainable.

ParaView works well on data sets ranging from kilobytes
to terabytes because it is designed from the ground up to be a
scalable parallel application. ParaView’s client/server design
makes it possible to minimize the movement of large data

c© The Eurographics Association 2006.

168

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

sets while maximizing its accessibility. ParaView’s architec-
ture makes it convenient to use by a variety of users with
various display environments. Finally, the ParaView Frame-
work can be utilized by multiple clients, each targeting a dif-
ferent visualization need.

6. Acknowledgments

This work was done in part at Sandia National Laboratories.
Sandia is a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Admin-
istration under contract DE-AC04-94AL85000.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K.,
GEVECI B., LAW C. C., PAPKA M.: Large scale data
visualization using parallel data streaming. IEEE Com-
puter Graphics and Applications 21, 4 (2001), 34–41.

[AJL∗00] AHRENS J., JAMES, LAW C., SCHROEDER

W., MARTIN K., PAPKA M.: A Parallel Approach
for Efficiently Visualizing Extremely Large Time-Varying
Datasets, Technical Report #LAUR-00-1620,. Tech. rep.,
2000.

[AT95] ABRAM G., TREINISH L.: An extended data-
flow architecture for data analysis and visualization. IEEE
Computer Society Press, pp. 263–270.

[BA] BRISLAWN K., AHRENS J.: MxN Load Redistri-
bution for the Efficient Use of Parallel Computation and
Rendering Resources. Tech. rep., Los Alamos National
Laboratory, LA-UR-03-5481.

[Cro97] CROCKETT T.: An introduction to parallel ren-
dering. In Parallel Computing (1997), p. 23(7):819£843.

[DMO95] DUNCAN B. S., MACKE T. J., OLSON A. J.:
Biomolecular visualization using avs. Journal of Molecu-
lar Graphics 13, 5 (1995), 271–282.

[ea89] ET. AL. C. U.: The application visualization sys-
tem: A computational environment for scientific visual-
ization. In IEEE Computer Graphics and Applications
(1989).

[ea92] ET. AL. B. L.: An architecture for a scientific vi-
sualization system. In Proceedings of Visualization 1992
(1992), IEEE Computer Society Press, pp. 107–114.

[GHJV95] GAMMA E., HELM R., JOHNSON R., VLIS-
SIDES J.: Design Patterns. Addison Wesley, 1995. ISBN
0-201-63361-2.

[Hen05] HENDERSON A.: ParaView Guide, A Parallel Vi-
sualization Application. Kitware Inc., 2005.

[HH92] HANSEN C., HINKER P.: Massively parallel iso-
surface extraction. In Proceedings of Visualization 1992
(1992), IEEE Computer Society Press, pp. 77–83.

[HH93] HINKER P., HANSEN C.: Geometric optimiza-
tion. In Proceedings of Visualization 1993 (1993), IEEE
Computer Society Press.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P., KLOSOWSKI J.:
Chromium: A stream processing framework for interac-
tive rendering on clusters. In Proceedings of the 29th
Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH-02) (New York, July 21–25 2002),
Spencer S., (Ed.), vol. 21, 3 of ACM Transactions on
Graphics, ACM Press, pp. 693–702.

[JP99] JOHNSON C., PARKER S.: The scirun parallel sci-
entific computing problem solving environment. In Ninth
SIAM Conference on Parallel Processing for Scientific
Computing (1999).

[JS05] JEFFERSON K. L., STURTEVANT J. E.: Red Storm
Usage Model: Version 1.12. Tech. Rep. SAND2005-6926,
Sandia National Laboratories, Albuquerque, NM, 2005.

[KH93] KROGH M., HANSEN C.: Visualization on mas-
sively parallel computers using cm/avs. In In AVS Users
Conference (1993).

[LHA01] LAW C., HENDERSON A., AHRENS J.: An ap-
plication architecture for large data visualization: A case
study. In Procedings of Visualization 2000, PVG Sympo-
sium (2001), ACM Press.

[Lin00] LINDSTROM P.: Out-of-core simplification of
large polygonal models. In SIGGRAPH 2000 Conference
Proceedings (July 2000), pp. 259–262.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A sorting classification of parallel rendering.
IEEE Computer Graphics and Applications 14, 4 (July
1994), 23–32.

[MHJ98] MILLER M., HANSEN C., JOHNSON C.: Sim-
ulation steering with scirun in a distributed environment.
In Lecture Notes in Computer Science (1998), Springer-
Verlag.

[MPHK94] MA K., PAINTER J., HANSEN C., KROGH

M.: Parallel volume rendering using binary-swap com-
positing. In IEEE Computer Graphics (1994), pp. 59–67.

[MT03] MORELAND K., THOMPSON D.: From cluster to
wall with VTK. In Proceedings of the IEEE Symposium
on Parallel and Large-Data Visualization and Graphics
(October 2003), pp. 25–31.

[MWP01] MORELAND K., WYLIE B., PAVLAKOS C.:
Sort-last parallel rendering for viewing extremely large
data sets on tile displays. In Proceedings of the IEEE 2001
Symposium on Parallel and Large-Data Visualization and
Graphics (October 2001), pp. 85–92.

[PDJ97] PARKER S. G., D.M.WEINSTEIN, JOHNSON

C. R.: The scirun computational steering software sys-
tem. In Modern Software Tools in Scientific Computing

c© The Eurographics Association 2006.

169

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre / Remote Large Data Visualization in the ParaView Framework

Figure 2: Examples of physical simulations run on Red Storm and visualized with ParaView. The left image is of an asteroid
detonation simulation comprising over 1 billion structured cells. The middle image is a fire test facility simulation with over 8
million unstructured cells. The right image is a 1 billion structured cell climate simulation of the polar vortex.

(1997), Arge E., Bruaset A. M.„ Langtangen H. P., (Eds.),
Birkhauser Press, pp. 1–40.

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN

C., SLOAN P.: Interactive ray tracing for isosurface ren-
dering. In Proceedings of Visualization 1998 (1998),
IEEE Computer Society Press.

[RCJ98] REINHARD E., CHALMERS A., JANSEN F.:
Overview of parallel photo-realistic graphics. In Proceed-
ings of Eurographics 98 (1998).

[Whi05] WHITE D.: Red Storm Capability Visualization
Level II ASC Milestone #1313 Final Report. Tech. Rep.
SAND2005-5989P, Sandia National Laboratories, Albu-
querque, NM, 2005.

[Wit98] WITTENBRINK C.: Survey of parallel volume
rendering algorithms. In Proceedings of Parallel and Dis-
tributed Processing Techniques and Applications (1998),
pp. 1329–1336.

[WPLM01] WYLIE B., PAVLAKOS C., LEWIS V.,
MORELAND K.: Scalable rendering on PC clusters. IEEE
Computer Graphics and Applications 21, 4 (July/August
2001), 62–70.

[Yag96] YAGEL R.: Towards real time volume rendering.
In Proceedings of GRAPHICON’96, volume 1 (1996),
pp. 230–241.

Figure 3: Visualization nodes of Sandia National Labora-
tories’ Red RoSE cluster. The cluster has 264 visualization
nodes.

Figure 4: 3D mesh sub-regions assigned cyclically (see
color coding) to different data server nodes for load-
balancing.

c© The Eurographics Association 2006.

170

