
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Accelerating the Irradiance Cache through Parallel
Component-Based Rendering

Kurt Debattista†1 & Luís Paulo Santos‡2 & Alan Chalmers1

1Department of Computer Science, University of Bristol, United Kingdom
2Departamento de Informática, Universidade do Minho, Portugal

Abstract

The irradiance cache is an acceleration data structure which caches indirect diffuse samples within the framework
of a distributed ray-tracing algorithm. Previously calculated values can be stored and reused in future calcula-
tions, resulting in an order of magnitude improvement in computational performance. However, the irradiance
cache is a shared data structure and so it is notoriously difficult to parallelise over a distributed parallel system.
The hurdle to overcome is when and how to share cached samples. This sharing incurs communication over-
heads and yet must happen frequently to minimise cache misses and thus maximise the performance of the cache.
We present a novel component-based parallel algorithm implemented on a cluster of computers, whereby the in-
direct diffuse calculations are calculated on a subset of nodes in the cluster. This method exploits the inherent
spatial coherent nature of the irradiance cache; by reducing the set of nodes amongst which cached values must
be shared, the sharing frequency can be kept high, thus decreasing both communication overheads and cache
misses. We demonstrate how our new parallel rendering algorithm significantly outperforms traditional methods
of distributing the irradiance cache.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Traditionally, distributed ray tracing calculated the indirect
diffuse component through sub-sampling the hemisphere
by shooting a large number of rays at each intersection
point. The problem was further compounded due to the re-
cursive nature of this algorithm. Ward et al. noticed that
the indirect diffuse component was generally a continu-
ous function over space not affected by the high frequency
changes common with the specular component. The irradi-
ance cache [WRC88] was designed to exploit this insight.

† Thanks to Veronica Sundstedt for the scenes and Greg Ward for
technical discussions. This work was partially funded by the 3C Re-
search programme.
‡ Parallel cluster supplied by program SEARCH (SErvices and Ad-
vanced Research Computing with HTC/HPC cluster), supported by
the Portuguese "Fundação para a Ciência e Tecnologia"

Ward et al.’s irradiance cache has become a fundamental al-
gorithm for rendering high fidelity images using global illu-
mination [Her04] (see Figure 1), whether as a stand-alone al-
gorithm for computing indirect diffuse values or when used
in conjunction with photon mapping [Jen01]. It is an ac-
celeration data structure which caches indirect diffuse sam-
ples within the framework of a distributed ray-tracing algo-
rithm [CPC84]. Initial indirect diffuse samples are calculated
the traditional way and the result is cached in the irradi-
ance cache’s spatial data structure. Whenever a new indirect
value is required the irradiance cache is first consulted. If
one or more samples fall within the user-defined search ra-
dius of the indirect diffuse value to be computed, the result
is extrapolated from the samples using a weighted averaging
strategy. Ward et al. demonstrated that the irradiance cache
offered an order of magnitude improvement in overall com-
putational time over the traditional method. Performance is
improved even further when rendering animations of static

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

(a) The Kalabsha temple

(b) The corridor model (c) The modified Cornell box

Figure 1: Models used for experimentation.

scenes, since the indirect diffuse computation remains con-
stant.

Since the irradiance cache is a shared data structure
it is notoriously hard to parallelise efficiently on distrib-
uted systems, particularly because it is at its most efficient
when each cached sample can be used immediately, thus
avoiding replicated computations of diffuse samples among
processes. However, sharing implies communication over-
heads induced by having to transmit values; thus, there is
a trade-off between cache misses and sharing frequency.
This has been expressed in previous approaches whereby
groups of cached values are either stored at a central node
and then retrieved by other nodes or broadcast to every node
whenever some threshold is reached. We propose a differ-
ent approach to solving the problem. By conforming to the
philosophy of the irradiance cache, we subdivide computa-
tion at the component level and transfer any indirect diffuse
computations to a set of dedicated indirect diffuse render-
ing nodes, where indirect values are computed and stored.
Sharing amongst the reduced set of indirect diffuse nodes
occurs with higher frequency than among other nodes, re-
ducing the sharing overhead while still maintaining a high
irradiance cache hit ratio. To the best of our knowledge, this

is the first parallel rendering approach to decompose the ren-
dering problem into components as a means of making best
use of available resources.

In order to demonstrate our approach we implemented a
number of parallel renderers, all extensions of the lighting
simulation system Radiance [LS98]. Two of these represent
the traditional methods [KMG99, RCLL99], while a third
renderer uses the novel component-based approach to com-
pute the irradiance cache in parallel.

This paper is divided as follows. In the next section we
present related work. In Section 3, we demonstrate the mo-
tivation behind our approach. In Section 4 we present our
own implementations of traditional approaches to parallelis-
ing the irradiance cache. In Section 5 we describe our novel
parallel component-based approach to the irradiance cache.
In Section 6 we compare results from the traditional renderer
and the new parallel renderer. Finally in Section 7 we con-
clude and describe possible future work.

2. Related work

Our work draws on related work in parallel and component-
based rendering.

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

2.1. Parallel rendering

Parallel rendering algorithms have been used to alleviate
the cost of rendering for a number of years. Reinhard et
al. [RCJ98] and Chalmers et al. [CDR02] offer a com-
prehensive analysis of the standard approaches for static
and dynamic load balancing, data and task management,
and more advanced approaches. Parker et al.’s parallel ray
tracer [PMS∗99], through optimised code, ray traced sim-
ple scenes interactively on a shared memory parallel com-
puter. Wald et al. [WBWS01] also obtained interactive rates
for ray tracing, this time over a distributed cluster and
by using cache-coherent techniques and SIMD instructions
commonly found in modern architectures. Subsequently,
in [WKB∗02], they extended their distributed ray tracer
to interactively render images using global illumination by
adapting Keller’s instant radiosity algorithm [Kel97]. Gün-
ther et al. [GWS04] extended this distributed framework fur-
ther to support caustics through photon mapping.

2.2. Parallel irradiance cache

There have been a number of implementations of a paral-
lel irradiance cache within Radiance. The standard Radi-
ance distribution [LS98] supports a parallel renderer over
a distributed system using the Network File System (NFS)
for concurrent access of the irradiance cache. This has been
known to lead to contention and may result in poor perfor-
mance when using inefficient file lock managers. Koholka et
al. [KMG99] used the Message-Passing Interface (MPI) in-
stead of NFS for their distributed Radiance implementation.
The irradiance cache values are broadcast amongst proces-
sors after every 50 samples calculated at each slave. Robert-
son et al. [RCLL99] presented a centralised parallel version
of Radiance whereby the calculated irradiance cache values
are sent to a master process whenever a threshold is met.
Each slave then collected the values deposited at the master
by the other slaves.

2.3. Component-based rendering

Rendering has been divided into components on a num-
ber of occasions in order to solve the problem more effi-
ciently. Wallace et al.’s [WCG87] multipass algorithm com-
puted the diffuse component with a rendering pass and used
a z-buffer algorithm for view dependent planar reflections.
Ward et al.’s irradiance cache [WRC88] as described previ-
ously can be viewed as a component-based approach. Sil-
lion and Puech [SP89] adapted a technique proposed by
Wallace et al. [WCG87], using ray tracing for comput-
ing the specular component and the form factors of the
non-planar objects, enabling multiple specular reflections.
Shirley’s [Shi90] used a three pass method: path tracing
from the light source was used for caustics, soft indirect
illumination was obtained through radiosity and stochastic
ray tracing completed the rest of the components. Slusallek

et al. [SSH∗98] introduced lighting networks as a tech-
nique to render scenes based on combining the implementa-
tions of different rendering algorithms into a network, each
algorithm computing different components of the render-
ing equation [Kaj86]. Other multi-pass algorithms that cal-
culated components separately include Heckbert’s [Hec90]
and Chen et al.’s progressive multipass method [CRMT91].
Stokes et al. [SFWG04] presented a perceptual metric which
predicted the importance of the components for a given
scene, and used it to drive a path tracing renderer. The pri-
mary rays collected information about the scene and then
used the perceptual metric to allocate the individual compo-
nent calculations to resources based on their importance. De-
battista et al. [DSSC05] have shown that component-based
rendering can be used on a selective rendering framework to
reduce computation times without compromising perceived
visual quality and also on a predictive framework for time-
constrained rendering.

3. Irradiance cache analysis

The irradiance cache improves rendering times by allow-
ing the object space to be subsampled and the indirect dif-
fuse values to be extrapolated if there are previously eval-
uated values within a user defined search radius. The num-
ber of extensively calculated indirect values is thus drasti-
cally reduced. However, the rendering times of images of
acceptable quality from scenes with significant ratios of dif-
fuse reflectors is still dominated by the diffuse interreflec-
tion component. The rendering time is thus strongly corre-
lated with the number of diffuse indirect computations as
shown in Figure 2, for the Kalabsha temple rendered on a
single machine with different diffuse interreflections quality
parameters. The ambient accuracy parameter of Radiance,
which controls the acceptable search radius for extrapola-
tion, varies from 0.3 to 0.1 (larger values corresponding to
a larger search radius), thus resulting in more indirect dif-
fuse calculations, or irradiance cache misses (#ICmisses). It
can be seen that Tamb, time spent on indirect diffuse (ambi-
ent) calculations, increases linearly with the number of cache
misses, while the time spent on other components (Tnotamb)
remains constant (around 7.3 seconds).

A parallel implementation of the irradiance cache on a
distributed memory system might compromise efficiency
due to replicated computations across the processors. Since
each process has its own addressing space they will not
be able to use each others’ cached indirect values, thus in-
creasing the aggregated time spent computing these (sum
of Tamb across all PEs). A mechanism has to be provided
to share cached values, traditional approaches being a cen-
tralised server or a broadcast mechanism as described in sec-
tion 2.2. Higher sharing frequencies result in lower irradi-
ance cache miss rates. However, even with very high shar-
ing frequencies, there will always be a latency associated
with sharing, meaning that a given value might not be avail-

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

Figure 2: Irradiance cache misses, Tamb and Tnotamb
(small constant time of around 7.3 seconds).

able when required even if it was already computed else-
where. Additionally, sharing implies overheads. Communi-
cation bandwidth and processor computation time are spent
preparing, transferring and reading the messages. Sharing
overheads and latency increase with both the sharing fre-
quency and the number of processors. Figure 3(a) shows, for
the corridor scene, that irradiance cache misses are larger for
the parallel no-sharing implementation than for the sequen-
tial single-processor version and that these increase with the
number of processors, resulting in larger aggregated indirect
diffuse calculation times; Figure 3(b) shows that sharing the
irradiance cache values alleviates this problem, but it is still
present and still depends on the number of processors.

Increasing the number of processors and the sharing fre-
quency is desirable to reduce execution time, but these result
in realization penalties that impact on efficiency. We pro-
pose to subdivide the processing elements onto two sets:
one dedicated to compute only the indirect diffuse compo-
nent and the other to compute the remaining components of
the illumination model. By reducing the number of proces-
sors that contribute to the irradiance cache, the sharing fre-
quency among these can be kept high, thus reducing both
irradiance cache misses and sharing overheads. Cached val-
ues are shared with the remaining PEs with lower frequency,
in order to reduce the number of indirect diffuse calculations
requests forwarded to the specialised processors.

4. Traditional parallel irradiance cache approaches

In this section we outline our own implementation of the two
traditional approaches of parallelising the irradiance cache.
All our implementations use the Message Passing Interface
(MPI). These implementations will prove useful to evaluate
the performance of the new component-based approach.

Both approaches are based on an image plane decompo-
sition of the workload, which is subdivided amongst proces-
sors by a Master Controller, MC, in a demand-driven fash-
ion. Initial image tiles are sent to the processing elements,
PEs, and when these are computed the resulting image tile is

(a) No Sharing

(b) Broadcast Sharing

Figure 3: Aggregated rendering times and IC misses for the
corridor scene.

Figure 4: Centralised Parallel Irradiance Cache.

sent back to the MC, which forwards new work to the com-
municating PE. These implementations differ on how they
share newly computed indirect diffuse values.

Robertson et al. [RCLL99] presented a centralised paral-
lel version of Radiance where the Master Controller is used
to exchange irradiance cache samples after these are com-
puted by the PEs. In our implementation of this approach,
each of the PEs computes indirect values and stores them in
an outgoing buffer. Whenever a user-defined threshold, we
term the synchronisation threshold, is reached, the buffer is
transmitted to the MC. The MC maintains a list of all the
samples sent to it and also a running status of which samples

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

MC

PEComm

ShMem

PEComm

ShMem

PEComm

ShMem

BROADCAST

Figure 5: Broadcast Parallel Irradiance Cache.

each slave has been given so far. When a buffer is received by
the MC, the set of new samples since the last communication
with the sending PE is sent back. The software architecture
of this approach is outlined in Figure 4. Although simple to
implement, this approach might not scale well, due to the
potential bottleneck on the central Master Controller.

Koholka et al. [KMG99] propose that whenever a group
of irradiance cached values is computed, they are broad-
cast to other nodes, instead of being sent to the MC. Fig-
ure 5 illustrates the software architecture for this system.
This approach is more complex than the previous method,
since each PE is allowed to broadcast to every other slave.
For our implementation, in order to maximise computation,
each PE has a separate communicator process which listens
for incoming irradiance cache samples. The communicator
process communicates with the PE over shared memory.
Whenever a set of samples is received, the communicator
process stores the data in a shared memory area, where the
computation process can collect it and insert it onto the local
irradiance cache. This approach removes the contention on
the centralised node but can still run into scalability issues
due to the global broadcast operation.

5. Component-based parallel irradiance cache

In this section we present our novel parallel irradiance cache
algorithm. We begin with the theory behind our work and
subsequently describe the component-based parallel algo-
rithm and implementation.

5.1. Rendering by components

In this section we describe rendering by components as used
only in Radiance. This description can easily be extended to
the general case [DSSC05].

The radiance at a pixel (x,y) in direction−Θ which inter-
sects an object in the scene at point p is given by the render-
ing equation [Kaj86]:

L(x,y) =

Le(p→ Θ)+
Z

ΩΨ

fr(p,Θ↔Ψ)cos(Np,Ψ)L(p←Ψ)δωΨ

The total set of Ψ directions distributed over the hemi-
sphere ΩΨ can be conceptually subdivided into subsets of
directions, commonly thought of as lighting components.
In Radiance lighting calculations are subdivided into direct
(Ld), indirect specular (including glossy, Ls) and indirect dif-
fuse components (La) [War94]. The direct and specular com-
ponents are removed from the integral by spawning rays into
the appropriate directions, but for diffuse interreflections the
integral must be approximated using Monte Carlo integra-
tion techniques. The previous equation becomes

L(x,y) = Le(p→Θ)+Ld(p→Θ)+Ls(p→Θ)+La(p→Θ)

For the later component only diffuse interactions are com-
puted, thus fr(p,Θ ↔ Ψ) = ka(p) and La(p → Θ) is given
by

La(p→ Θ) =
Z

ΩΨ,a

ka(p)cos(Np,Ψ)L(p←Ψ)δωΨ,a

where directions included on direct and specular compo-
nents are excluded from ΩΨ,a. Using Monte Carlo integra-
tion:

La(p→ Θ)≈ πka(p)
N

N−1

∑
i=0

cos(Np,Ψi)L(p←Ψi)

Indirect diffuse lighting computations are required not
only for primary rays, but at every level of recursion b along
the specular paths. Subscripted ordinal prefixes will be used
to refer to points and coefficients at different levels of re-
cursion along the specular path, 1 p and 1Θ referring to the
primary ray intersection. To correctly weight the ambient
contribution for pixel (x,y) at recursion level b, the specu-
lar coefficients jT = fr(j p, jΘ↔ jΨ)cos(N j p, jΨ) must be
rippled down the path, resulting in

< La(b p→ bΘ) >=

πka(b p)∏b−1
j jT

N

N−1

∑
i=0

cos(Nb p,bΨi)L(b p← bΨi) (1)

5.2. Component-based approach

For our novel component-based approach the distributed
processors are divided into two sub groups. The first group,
the PAs, are dedicated to the indirect diffuse calculations
(ambient calculations). The second group, the PRs, are re-
sponsible for the traditional rendering, except for indirect
diffuse calculations. Figure 6 illustrates our system archi-
tecture. As in the case with the broadcast method, the
PAs overlap communication and computation using distinct
processes. The processes communicate using shared mem-
ory.

The PRs obtain work from the master controller, MC, us-
ing an image space demand-driven approach as described in

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

Figure 6: Component-Based Parallel Irradiance Cache.

Section 4. The PRs take on the role of intersecting and shad-
ing all forms of primary and secondary rays until an indirect
diffuse calculation is required. At this point, the PR’s local
irradiance cache is consulted. If a cache miss occurs the es-
sential attributes from the current ray being calculated, in-
cluding pixel coordinates, intersection point, reference to in-
tersected object, rippled coefficient (jT , equation 1), etc., are
stored on an outgoing indirect diffuse request buffer. When-
ever the outgoing buffer meets the sending threshold, it is
sent to a particular PA, which is selected on a round robin
basis for each PR. When the radiance of a pixel is finally
calculated (this might be only partially computed since the
indirect diffuse computation is migrated to one of the PAs),
the result is stored in a buffer representing the image plane.
Whenever the PR runs out of work, it requests a new task
from the MC. For reasons which will become apparent be-
low, unlike the approaches described in Section 4, the image
plane buffer is only sent back at the end of the frame cal-
culation. When all image tiles have been processed by the
PRs, the MC enters a load balancing phase as described in
section 5.3. The PRs also maintain a local irradiance cache.
This is synchronised with the MC using a centralised ap-
proach. To reduce sharing overheads the synchronisation is
less frequent than that of the PAs; it occurs only when ask-
ing for a new task from the MC. With time, the outgoing
indirect diffuse calculations will decrease substantially due
to this local irradiance cache.

Work is sent directly from the PRs to the PAs in the
form of the indirect diffuse request buffer, which is recon-
structed into rays on the receiving PA. The PA’s function is
then to calculate the indirect diffuse value from the intersec-
tion point stored in the ray. This involves shading and may
also involve further recursive indirect calculations, includ-
ing shadows, specular and indirect diffuse calculations. All
these calculations are performed locally and the final cal-
culated radiance is multiplied by the original jT coefficient
and stored in the appropriate pixel coordinates on the image
plane buffer. The irradiance cache values stored in the PAs
are shared with the MC, following a centralised approach,

much more frequently than PRs do. This ensures that the
irradiance cache samples are readily available on the PAs
when required. Synchronisation occurs whenever a PA meets
the synchronisation threshold.

Similarly with the PRs, the image plane buffer is only sent
back to the MC at the end of the frame computation, avoid-
ing sending computed radiance values back as messages to
the PRs’ originally responsible for the pixel. This is possible
due to the linear nature of geometric optics, which allows
image plane composition by summing the different compo-
nents’ contributions for each pixel. This is a significant ad-
vantage, since it allows PRs to avoid the complex synchro-
nisation issues required to await for and then store the final
result for each pixel before sending the result back, improv-
ing computational performance. The MC composites all im-
age plane buffers at the end of the frame to generate the final
rendered image.

5.3. Load balancing

A major issue with partitioning the processors onto two sub-
sets is how to balance the load between PAs and PRs. While
a correctly chosen PA to PR ratio helps to minimise load im-
balance, in reality optimal static load balance is impossible
to achieve due both to the unpredictable nature of ray tracing
and because PRs keep on forwarding requests up to the end
of their assigned tasks and these requests take much longer
to compute than the remaining components. In order to bal-
ance the system we allow PRs to change state and download
work from PAs whenever the MC has run out of image tiles.

Every time a PA synchronises its irradiance cache with
the MC, it also sends the number of pending requests on that
PA’s queue. Since this happens often, the MC has a precise
image of the load on every PA. When a PR requests a new
task and all image tiles have already been assigned, the MC
selects the most loaded PA and signals it that some of its load
should be sent to that PR. Upon reception of this signal, the
PA’s communicator process forwards to the PR a fraction of
its load. It is the PA’s communicator that decides how many
pending requests to send to the PR, since it has access to the
queue’s current length. This process is repeated until all load
has been processed.

At this load balancing stage all processors synchronise
their local irradiance cache with the MC at the same fre-
quency as the PAs, but in reality this rarely occurs because
few new irradiance cache samples are generated.

6. Results

Results were obtained with a cluster of 12 machines each
with two Intel Xeon processors at 3.2 GHz with 2 GB of
memory under Linux. All the nodes are connected by a 1
Gbit switch. 2, 4, 8 and 12 nodes were used to run these
experiments (4, 8, 16 and 24 processors) with an additional

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

node acting as the master controller. In order to demonstrate
the potential of this approach still images were rendered
from three selected scenes. The Kalabsha temple [SCM04],
Figure 1(a) (resolution 672× 512), and the corridor model,
Figure 1(b) (resolution 512× 512), were rendered with one
ambient bounce and an ambient accuracy of 0.2. The mod-
ified Cornell box, Figure 1(c) (resolution 512× 512), was
rendered with an ambient accuracy of 0.1. Default Radiance
parameters were used for all other settings.

Figure 7: Speed-up for the different scenes and algorithms.

Plots of the achieved speedups can be seen in Figure 7.
Results are shown for a parallel version that never shares any
irradiance cache values (no sharing), the centralised, broad-
cast and the new component-based approach. Results reflect
speedup when compared to the dedicated uniprocessor ver-
sion of Radiance running under the same settings. The cen-
tralised and broadcast implementations synchronise the irra-
diance cache for every new 50 indirect samples, as suggested

by Koholka et al. [KMG99]. For the component-based ap-
proach half the processors were allocated as PAs. These syn-
chronise for every new 8 samples.

It is clear that the new algorithm outperforms the other al-
gorithms in all cases. Speedup gain for each scene relatively
to the second best algorithm is shown in Table 1. This is due
to a huge reduction on irradiance cache misses, compared
with the other parallel approaches, as illustrated in Figure 8
for the Kalabsha temple and 24 processors. This reduction is
achieved by increasing the frequency of the irradiance cache
sharing operation, while at the same time increasing its lo-
cality by restricting it to the PAs.

Scenes Processors
4 8 16 24

Kalabsha 10.3% 10.7% 11.7% 8.8%
Corridor 15.5% 12.1% 11.9% 6.9%
Cornell 12.6% 8.4 % 13.2% 10.0%

Table 1: Speedup gains relatively to second best algorithm

Figure 8: Aggregated execution times and cache misses for
different algorithms.

With 4 processors the component-based also achieves
super-linear speedup for the corridor (speedup=4.1,
efficiency=103.1%) and Cornell (speedup=4.2, effi-
ciency=105.7%) scenes . For a larger number of processors
the speedup is noticeably close to linear; for the Cornell
scene efficiency never falls below 90%, even with 24
processors. It is notable that super-linear speedup is never
achieved by any of the other two renderers. This is a highly
encouraging result indicating the new component-based ren-
derer is more efficient even than the traditional uniprocessor
approach in these cases. This is due to the fact that for all
scenes the number of irradiance cache misses registered
with the new approach is less than those registered with the
sequential uniprocessor version, as shown in Figure 9 for
the Cornell box. The reordering of indirect diffuse samples
computation results on a higher hit ratio, compared to
the sequential version where these are computed in raster
order. The same effect is verified with the centralised and
broadcast approaches, but to a lesser extent and insufficient

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

to achieve super-linear speedup. These results can also be
attributed to making better use of the processors’ physical
caches, particularly since the PAs contribute to only the
indirect calculations and the cache footprint does not
become corrupted by the other components. These results
indicate that the component-based approach may be suitable
for shared memory implementations also.

Figure 9: Cache misses for the Cornell Box.

With respect to assessing load balancing, Figure 10 shows
the percentage of aggregated idle time, computed as the ratio
of the sum of idle times across all processors and the aggre-
gated rendering time, i.e., the rendering time multiplied by
the number of processing elements. It can be seen that, up to
24 processors, idle times never go above 5.5%; we can con-
clude that the system is reasonably balanced, although the
imbalance increases with the number of processors.

Figure 10: Idle times due to load imbalance.

7. Conclusion and future work

Despite the order of magnitude improvement the irradiance
cache can provide over traditional distributed ray-tracing,
the computational times for high quality graphics are still
substantial. Parallel processing is one approach which can
significantly reduce the overall computational time. How-
ever, the inherently sequential nature of how the irradiance
cache is created and used has previously prevented the max-
imum benefit being gained from this structure in any paral-
lel implementation. In this paper we have presented a novel
method of dividing the work load amongst the processors

of our cluster. This ensures that the computationally expen-
sive part of establishing the irradiance cache is dealt with by
a subset of dedicated processors, decreasing sharing over-
heads and latency. This allows a high sharing frequency, re-
ducing the number of redundant indirect diffuse samples that
need to be calculated. Such an approach has resulted in sig-
nificant performance increases in our parallel implementa-
tion.

Future work will investigate how the algorithm performs
within rendering of high-quality walkthroughs, in particu-
lar how the rendering cost could be dissipated from the first
frames to ensure a smoother frame rate. Part of this work will
also consider the use of the irradiance cache for dynamic
scenes [TMD∗04, SKDM05]. This approach could also be
combined with selective rendering approaches, primarily the
work of Yee et al. [YPG01] and Debattista et al. [DSSC05],
who modulate their selective rendering efforts on the irra-
diance cache according to models of visual perception. The
component-based model will be extended to handle radiance
caching, thus allowing interpolation for glossy reflections, as
proposed by [KGBP05].

References

[CDR02] CHALMERS A., DAVIS T., REINHARD E.: Practical
Parallel Rendering. AK Peters Ltd, July 2002.

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. In ACM SIGGRAPH ’84 (1984), pp. 137–145.

[CRMT91] CHEN S. E., RUSHMEIER H. E., MILLER G.,
TURNER D.: A progressive multi-pass method for global illu-
mination. In ACM SIGGRAPH ’91 (1991), pp. 165–174.

[DSSC05] DEBATTISTA K., SUNDSTEDT V., SANTOS L. P.,
CHALMERS A.: Selective component based rendering. In 3rd
Int. Conf. on Computer Graphics and Interactive Techniques in
Australasia and Southeast Asia (2005), ACM Press.

[GWS04] GUENTHER J., WALD I., SLUSALLEK P.: Realtime
Caustics using Distributed Photon Mapping. In Eurographics
Symposium on Rendering (2004).

[Hec90] HECKBERT P. S.: Adaptive radiosity textures for bidirec-
tional ray tracing. In ACM SIGGRAPH ’90 (1990), pp. 145–154.

[Her04] HERY C.: Rendering evolution at industrial light &
magic. In Rendering Techniques (2004), pp. 19–22.

[Jen01] JENSEN H. W.: Realistic image synthesis using photon
mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001.

[Kaj86] KAJIYA J. T.: The rendering equation. In ACM SIG-
GRAPH ’86 (1986), pp. 143–150.

[Kel97] KELLER A.: Instant radiosity. In ACM SIGGRAPH ’97
(1997), pp. 49–56.

[KGBP05] KRIVANEK J., GAUTRON P., BOUATOUCH K., PAT-
TANAIK S.: Improved radiance gradient computation. In SCCG
’05: 21st Spring Conf. on Computer graphics (New York, NY,
USA, 2005), ACM Press, pp. 155–159.

[KMG99] KOHOLKA R., MAYER H., GOLLER A.: MPI-
parallelized Radiance on SGI CoW and SMP. In ParNum ’99:
4th Int. ACPC Conf. (1999), Springer-Verlag, pp. 549–558.

c© The Eurographics Association 2006.

Debattista, K. & Santos, L. & Chalmers, A. / Component-Based Parallel Irradiance Cache

[LS98] LARSON G. W., SHAKESPEARE R.: Rendering with ra-
diance: the art and science of lighting visualization. Morgan
Kaufmann Publishers Inc., 1998.

[PMS∗99] PARKER S., MARTIN W., SLOAN P.-P. J., SHIRLEY

P., SMITS B., HANSEN C.: Interactive ray tracing. In Symp. on
Interactive 3D graphics (1999), ACM Press, pp. 119–126.

[RCJ98] REINHARD E., CHALMERS A., JANSEN F. W.:
Overview of parallel photo-realistic graphics. In Eurographics
’98 State of the Art Reports (August 1998), Eurographics Asso-
ciation, pp. 1–25.

[RCLL99] ROBERTSON D., CAMPBELL K., LAU S., LIGOCKI

T.: Parallelization of radiance for real time interactive lighting
visualization walkthroughs. In ACM/IEEE Supercomputing ’99
(1999), ACM Press, p. 61.

[SCM04] SUNDSTEDT V., CHALMERS A., MARTINEZ P.: High
fidelity reconstruction of the ancient egyptian temple of kalabsha.
In AFRIGRAPH 2004 (November 2004), ACM SIGGRAPH.

[SFWG04] STOKES W. A., FERWERDA J. A., WALTER B.,
GREENBERG D. P.: Perceptual illumination components: a new
approach to efficient, high quality global illumination rendering.
ACM Trans. on Graphics 23, 3 (2004), 742–749.

[Shi90] SHIRLEY P.: A ray tracing method for illumination cal-
culation in diffuse-specular scenes. In Graphics Interface ’90
(Toronto, Ontario, 1990), Canadian Information Processing So-
ciety, pp. 205–12.

[SKDM05] SMKY M., KINUWAKI S.-I., DURIKOVIC R.,
MYSZKOWSKI K.: Temporally Coherent Irradiance Caching for
High Quality Animation Rendering. In EUROGRAPHICS 2005
(Dublin, Ireland, 2005), vol. 24 of Computer Graphics Forum,
Blackwell.

[SP89] SILLION F., PUECH C.: A general two-pass method inte-
grating specular and diffuse reflection. In ACM SIGGRAPH ’89
(1989), pp. 335–344.

[SSH∗98] SLUSALLEK P., STAMMINGER M., HEIDRICH W.,
POPP J.-C., SEIDEL H.-P.: Composite lighting simulations with
lighting networks. IEEE Computer Graphics and Applications
18, 2 (1998), 22–31.

[TMD∗04] TAWARA T., MYSZKOWSKI K., DMITRIEV K.,
HAVRAN V., DAMEZ C., SEIDEL H.-P.: Exploiting temporal co-
herence in global illumination. In SCCG ’04: 20th Spring Conf.
on Computer graphics (New York, NY, USA, 2004), ACM Press,
pp. 23–33.

[War94] WARD G. J.: The radiance lighting simulation and ren-
dering system. In ACM SIGGRAPH ’94 (1994), pp. 459–472.

[WBWS01] WALD I., BENTHIN C., WAGNER M., SLUSALLEK

P.: Interactive rendering with coherent ray tracing. In Compu-
ter Graphics Forum (2001), Chalmers A., Rhyne T.-M., (Eds.),
vol. 20, Blackwell Publishers, Oxford, pp. 153–164.

[WCG87] WALLACE J. R., COHEN M. F., GREENBERG D. P.:
A two-pass solution to the rendering equation: a synthesis of ray
tracing and radiosity methods. In ACM SIGGRAPH ’87 (1987),
pp. 311–320.

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive global illumination using fast ray
tracing. In 13th Eurographics Workshop on Rendering (2002),
pp. 15–24.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. In ACM SIGGRAPH
’88 (1988), pp. 85–92.

[YPG01] YEE H., PATTANAIK S., GREENBERG D.: Spatiotem-
poral sensitivity and Visual Attention for efficient rendering of
dynamic Environments. In ACM Trans. on Computer Graphics
(2001), vol. 20, pp. 39–65.

c© The Eurographics Association 2006.

