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Abstract

A number of methods for constructing bounding volume hierarchies and point-based octrees on the GPU are based
on the idea of ordering primitives along a space-filling curve. A major shortcoming with these methods is that they
construct levels of the tree sequentially, which limits the amount of parallelism that they can achieve. We present
a novel approach that improves scalability by constructing the entire tree in parallel. Our main contribution is an
in-place algorithm for constructing binary radix trees, which we use as a building block for other types of trees.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

In the recent years, general-purpose GPU computing has
given rise to a number of methods for constructing bounding
volume hierarchies (BVHs), octrees, and k-d trees for mil-
lions of primitives in real-time. Some methods aim to max-
imize the quality of the resulting tree using the surface area
heuristic [DPS10], while others choose to trade tree quality
for increased construction speed [LGS∗09, PL10, GPM11].

The right quality vs. speed tradeoff depends heavily on
the application. Tree quality is usually preferable in ray trac-
ing [AL09] where the same acceleration structure is often
reused for millions of rays. Broad-phase collision detection
[Eri04] and particle interaction [YB11] in real-time physics
represent the other extreme, where construction speed is of
primary importance—the acceleration structure has to be re-
constructed on every time step, and the number of queries is
usually fairly small. Furthermore, certain applications, such
as voxel-based global illumination [CNS∗11] and surface re-
construction [ZGHG11], specifically rely on regular octrees
and k-d trees, where tree quality is fixed.

The main shortcoming with existing methods that aim
to maximize construction speed [GPM11, ZGHG11] is that
they generate the node hierarchy in a sequential fashion, usu-
ally one level at a time. This limits the amount of parallelism
that they can achieve at the top levels of the tree, and can
lead to serious underutilization of the parallel cores. The se-
quential processing is already a bottleneck with small work-
loads on current GPUs, which require tens of thousands of

independent parallel threads to fully utilize their computing
power. The problem can be expected to become even more
significant in the future as the number of parallel cores keeps
increasing. Another implication of sequential processing is
that the existing methods output the hierarchy in a breadth-
first order, even though a depth-first order would usually be
preferable considering data locality and cache hit rates.

In this paper, we introduce a fast method for constructing
BVHs, octrees, and k-d trees so that the overall performance
scales linearly with the number of available cores (Figure 1)
and the resulting data structure is always in a strict depth-first
order. We start by presenting a novel in-place algorithm for
constructing binary radix trees in a fully data-parallel fash-
ion, and then show how the algorithm can be used as a build-
ing block for efficiently constructing other types of trees.

2. Background

Lauterbach et al. [LGS∗09] were the first to present a parallel
method for constructing so-called linear BVHs by ordering
the input primitives along a space-filling curve. The idea is
to assign a Morton code for each primitive, sort the Morton
codes, and generate a node hierarchy where each subtree cor-
responds to a linear range of sorted primitives. The sorting
effectively groups the primitives so that ones close to each
other in 3D end up close to each other in the resulting tree.

The Morton code for a given point contained within the
3D unit cube is defined by the bit string X0Y0Z0X1Y1Z1 . . .
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Figure 1: Performance of BVH hierarchy generation for
Stanford Dragon (871K triangles). The y-axis corresponds
to millions of primitives per second and the x-axis to the
number of parallel cores relative to GTX 480. The solid red
line indicates the fastest existing method by Garanzha et
al. [GPM11], which is dominated by the top levels of the
tree where the amount of parallelism is very limited. Our
method, indicated by the dotted green line, parallelizes over
the entire tree and scales linearly with the number of cores.

where the x coordinate of the point is represented as
0.X0X1X2 . . ., and similarly for y and z coordinates. The Mor-
ton code of an arbitrary 3D primitive can be defined in terms
of the centroid of its axis-aligned bounding box (AABB). In
practice, the Morton codes can be limited to 30 or 63 bits in
order to store them as 32-bit or 64-bit integers, respectively.

The algorithm for generating BVH node hierarchy was
subsequently improved by Pantaleoni and Luebke [PL10]
and Garanzha et al. [GPM11]. Garanzha et al. generate one
level of nodes at a time, starting from the root. They process
the nodes on a given level in parallel, and use binary search
to partition the primitives contained within each node. They
then enumerate the resulting child nodes using an atomic
counter, and subsequently process them on the next round.

Since these methods are targeted for real-time ray tracing,
they are each accompanied with a high-quality construction
algorithm to allow different quality vs. speed tradeoffs. The
idea is to use the high-quality algorithm for a relatively small
number of nodes near the root, and the fast algorithm for the
rest of the tree. While we do not explicitly consider such
hybrid methods in this paper, we believe that our approach
is general enough to be combined with any appropriate high-
quality algorithm in the same fashion.

Zhou et al. [ZGHG11] also applied the idea of using Mor-
ton codes to construct octrees in the context of surface recon-
struction. Instead of generating the hierarchy in a top-down
fashion, they start with the leaf nodes and perform a series of
parallel compaction operations to determine their ancestors,
one level at a time.

Binary radix trees. Given a set of n keys k0, . . . ,kn−1
represented as bit strings, a binary radix tree (also called a
Patricia tree) is a hierarchical representation of their com-
mon prefixes. The keys are represented by the leaf nodes,
and each internal node corresponds to the longest common
prefix shared by the keys in its respective subtree (Figure 2).

Figure 2: Ordered binary radix tree. Leaf nodes, numbered
0–7, store a set of 5-bit keys in lexicographical order, and
the internal nodes represent their common prefixes. Each in-
ternal node covers a linear range of keys, which it partitions
into two subranges according to their first differing bit.

In contrast to a prefix tree, which contains one internal node
for every common prefix, a radix tree is compact in the sense
that it omits nodes with only one child. Therefore, every bi-
nary radix tree with n leaf nodes contains exactly n− 1 in-
ternal nodes. Duplicate keys require special attention—this
is discussed in Section 4.

We will only consider ordered trees, where the children
of each node—and consequently the leaf nodes—are in lexi-
cographical order. This is equivalent to requiring that the se-
quence of keys is sorted, which enables representing the keys
covered by each node as a linear range [i, j]. Using δ(i, j)
to denote the length of the longest common prefix between
keys ki and k j, the ordering implies that δ(i′, j′) ≥ δ(i, j)
for any i′, j′ ∈ [i, j]. We can thus determine the prefix cor-
responding to a given node by comparing its first and last
key—the other keys are guaranteed to share the same prefix.

In effect, each internal node partitions its keys according
to their first differing bit, i.e. the one following δ(i, j). This
bit will be zero for a certain number of keys starting from ki,
and one for the remaining ones until k j. We call the index of
the last key where the bit is zero a split position, denoted by
γ ∈ [i, j−1]. Since the bit is zero for kγ and one for kγ+1, the
split position must satisfy δ(γ,γ+1) = δ(i, j). The resulting
subranges are given by [i,γ] and [γ + 1, j], and are further
partitioned by the left and right child node, respectively.

In the figure, the root corresponds to the full range of keys,
[0,7]. Since k3 and k4 differ at their first bit, the range is split
at γ = 3, resulting in subranges [0,3] and [4,7]. The left child
further splits [0,3] at γ = 1 based on the third bit, and the
right child splits [4,7] at γ = 4 based on the second bit.

3. Parallel Construction of Binary Radix Trees

A naïve algorithm for constructing a binary radix tree would
start from the root, find the first differing bit, create the child
nodes, and process each child recursively. This approach is
inherently sequential—even though we know there are go-
ing to be n−1 internal nodes in the end, we have no knowl-
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Figure 3: Our node layout for the tree of Figure 2. Each in-
ternal node has been assigned an index between 0–6, and
aligned horizontally with a leaf node of the same index. The
range of keys covered by each node is indicated by a hori-
zontal bar, and the split position, corresponding to the first
bit that differs between the keys, is indicated by a red circle.

edge of which keys they cover before having processed their
ancestors. Our key insight in enabling parallel construction
is to establish a connection between node indices and keys
through a specific tree layout. The idea is to assign indices
for the internal nodes in a way that enables finding their chil-
dren without depending on earlier results.

Let us assume that the leaf nodes and internal nodes are
stored in two separate arrays, L and I, respectively. We define
our node layout so that the root is located at I0, and the in-
dices of its children—as well as the children of any internal
node—are assigned according to its respective split position.
The left child is located at Iγ if it covers more than one key,
or at Lγ if it is a leaf. Similarly, the right child is located at
Iγ+1 or Lγ+1. The layout is illustrated in Figure 3.

An important property of this particular layout is that the
index of every internal node coincides with either its first or
its last key. This follows by construction—the root is located
at the beginning of its range [0,n− 1], the left child of any
internal node is located at the end of its range [i,γ], and the
right child is located at the beginning of its range [γ+1, j].

Algorithm. In order to construct a binary radix tree, we
need to determine the range of keys covered by each inter-
nal node, as well as its children. The above property readily
gives us one end of the range, and we will show how the
other end can be found efficiently by looking at the nearby
keys. The children can then be identified by finding the split
position, by virtue of our node layout.

Pseudocode for the algorithm is given in Figure 4. We pro-
cess each internal node Ii in parallel, and first determine the
“direction” of its range by looking at the neighboring keys
ki−1, ki, ki+1. We denote the direction by d, so that d = +1
indicates a range beginning at i and d = −1 a range ending
at i. Since every internal node covers at least two keys, we
know that ki and ki+d must belong to Ii. We also know that
ki−d belongs to a sibling node Ii−d , since siblings are always
located next to each other in our layout.

1: for each internal node with index i ∈ [0,n−2] in parallel
2: // Determine direction of the range (+1 or -1)
3: d← sign(δ(i, i+1)−δ(i, i−1))
4: // Compute upper bound for the length of the range
5: δmin← δ(i, i−d)
6: lmax← 2
7: while δ(i, i+ lmax ·d) > δmin do
8: lmax← lmax ·2
9: // Find the other end using binary search

10: l← 0
11: for t←{lmax/2, lmax/4, . . . ,1} do
12: if δ(i, i+(l + t) ·d) > δmin then
13: l← l + t
14: j← i+ l ·d
15: // Find the split position using binary search
16: δnode← δ(i, j)
17: s← 0
18: for t←{dl/2e,dl/4e, . . . ,1} do
19: if δ(i, i+(s+ t) ·d) > δnode then
20: s← s+ t
21: γ← i+ s ·d +min(d,0)
22: // Output child pointers
23: if min(i, j) = γ then left← Lγ else left← Iγ

24: if max(i, j) = γ+1 then right← Lγ+1 else right← Iγ+1
25: Ii← (left, right)
26: end for

Figure 4: Pseudocode for constructing a binary radix tree.
For simplicity, we define that δ(i, j)=−1 when j 6∈ [0,n−1].

Now, the keys belonging to Ii share a common prefix that
must be different from the one in the sibling by definition.
This implies that a lower bound for the length of the prefix
is given by δmin = δ(i, i−d), so that δ(i, j)> δmin for any k j
belonging to Ii. We can satisfy this condition by comparing
δ(i, i− 1) with δ(i, i+ 1), and choosing d so that δ(i, i+ d)
corresponds to the larger one (line 3).

We use the same reasoning to find the other end of the
range by searching for the largest l that satisfies δ(i, i+ ld)>
δmin. We first determine a power-of-two upper bound lmax >
l by starting from 2 and increasing the value exponentially
until it no longer satisfies the inequality (lines 6–8). Once
we have the upper bound, we find l using binary search in
the range [0, lmax−1]. The idea is to consider each bit of l in
turn, starting from the highest one, and set it to one unless the
new value would fail to satisfy the inequality (lines 10–13).
The other end of the range is then given by j = i+ ld.

δ(i, j) tells us the length of the prefix corresponding to Ii,
which we shall denote by δnode. We can, in turn, use this to
find the split position γ by performing a similar binary search
for largest s ∈ [0, l− 1] satisfying δ(i, i+ sd) > δnode (lines
17–20). If d = +1, γ is then given by i+ sd, as this is the
highest index belonging to the left child. If d =−1, we have
to decrement the value to account for the inverted indexing.

Given i, j, and γ, the children of Ii cover the ranges
[min(i, j),γ] and [γ+ 1,max(i, j)]. For each child, we com-
pare the beginning and end of its range to see whether it is a
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leaf, and then reference the corresponding node at index γ or
γ+1 in accordance with our layout (lines 23–24).

GPU implementation. The algorithm can be imple-
mented on a GPU as a single kernel launch, where each
thread is responsible for one internal node. Assuming that
the length of the keys is fixed, δ(i, j) can be evaluated effi-
ciently by computing logical XOR between the two keys and
counting the leading zero bits in the resulting integer. This
can be done either by using the __clz() compiler intrinsic
in CUDA, or by converting the integer to floating point and
then calculating 31−blog2 xc. When searching for lmax on
lines 5–8, we have found that it is beneficial to start from a
larger number, e.g. 128, and multiply the value by 4 instead
of 2 after each iteration to reduce the total amount of work.

Time complexity. For a node covering l keys, each of the
three loops executes at most dlog2 le iterations. Since l ≤ n
for all n− 1 internal nodes, this leads to a worst-case time
complexity ofO(n logn) for the entire tree. The worst case is
only realized when the height of the tree grows proportional
to n. However, in practice the height is limited by the length
of the keys, and is often proportional to logn. For height h,
we can obtain a tighter bound of O(n logh) because most of
the subtrees are guaranteed to be small if the tree is shallow.

4. BVHs, Octrees, and k-d Trees

BVHs. Following in the footsteps of Lauterbach et al.
[LGS∗09], we construct a BVH for a set of 3D primitives as
follows: (1) assign a Morton code for each primitive accord-
ing to its centroid, (2) sort the Morton codes, (3) construct
a binary radix tree, and (4) assign a bounding box for each
internal node. We contribute to steps 3–4.

If the Morton codes of all primitives are unique, it is easy
to see that the binary radix tree is identical in structure to the
corresponding linear BVH—identifying the common pre-
fixes between the Morton codes is equivalent to bucketing
the primitives recursively according to each bit. The case of
duplicate Morton codes has to be handled explicitly, since
our construction algorithm relies on the keys being unique.
We accomplish this by augmenting each key with a bit rep-
resentation of its index, i.e. k′i = ki⊕ i, where ⊕ indicates
string concatenation. In practice, there is no need to actually
store the augmented keys—it is enough to simply use i and
j as a fallback if ki = k j when evaluating δ(i, j).

Previous methods for linear BVHs calculate the bound-
ing boxes sequentially in a bottom-up fashion, relying on
the fact that the set of nodes located on each level is known
a priori. We adopt a different approach where the paths from
leaf nodes to the root are processed in parallel. Each thread
starts from one leaf node and walks up the tree using par-
ent pointers that we record during radix tree construction.
We track how many threads have visited each internal node
using atomic counters—the first thread terminates immedi-
ately while the second one gets to process the node. This

way, each node is processed by exactly one thread, which
leads to O(n) time complexity. The number of global atom-
ics can be reduced by using faster shared memory atomics
whenever we detect that all the leaves covered by a given
internal node are being processed by the same thread block.

Octrees. To construct an octree for a set of points, we ob-
serve that each 3k-bit prefix of a given Morton code maps
directly to an octree node at level k. We can enumerate these
prefixes by looking at the edges of a corresponding binary
radix tree—an edge connecting a parent with a prefix of
length δparent to a child with a prefix of length δchild rep-
resents all subprefixes of length δparent +1, . . . ,δchild. Out of
these, bδchild/3c−bδparent/3c are divisible by 3. We evalu-
ate these counts during radix tree construction, and then per-
form a parallel prefix sum to allocate the octree nodes. The
parents of the octree nodes can then be found by looking at
the immediate ancestors of each radix tree node.

The processing thus consists of seven steps: (1) calculate
Morton codes for the points, (2) sort the Morton codes, (3)
identify duplicates, i.e. points falling within the same leaf
node, by comparing each pair of adjacent Morton codes, (4)
remove the duplicates using parallel compaction, (5) con-
struct a binary radix tree, (6) perform parallel prefix sum
to allocate the octree nodes, and (7) find the parent of each
node. We contribute to steps 5–7.

k-d trees. The radix tree produced by step 5 above can be
interpreted directly as a k-d tree over the points. Every inter-
nal node partitions the points according to the next bit in the
Morton codes after their common prefix, which is equivalent
to classifying them on either side of an axis-aligned plane in
3D. A prefix of length δ corresponds to a plane perpendic-
ular to the dth main axis, where d = δ mod 3. The position
of the plane is given by 0.BdBd+3 . . .Bδ−31, where Bi repre-
sents the ith bit of the prefix.

5. Results

We implemented our algorithms using CUDA 4.0 on
GeForce GTX 480, installed in a PC with 2.80 GHz Intel
Core i7 CPU running Windows 7. We used the efficient par-
allel primitives by Merrill and Grimshaw [MG10] for sort-
ing and compaction. For comparison, we also implemented
the methods by Garanzha et al. [GPM11], without top-level
SAH splits, and Zhou et al. [ZGHG11]. We used 30-bit Mor-
ton codes in all benchmarks for maximum performance.

To gauge scalability, we simulated larger GPUs with N
times as many cores and N times the memory bandwidth by
breaking each kernel launch into N equal sized groups of
thread blocks. Assuming that each group was executed con-
currently in its own portion of the simulated GPU, the execu-
tion time would be dictated by the longest running group. We
thus timed each group separately, and reported the largest
execution time.

Table 1 shows a breakdown of BVH construction times
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Common Build AABB
Scene Cores Eval Sort Our Prev Our Prev

Fairy Forest
1× 0.05 0.56 0.15 1.88 0.23 0.29

(174K tris)
2× 0.03 0.33 0.09 1.75 0.13 0.22
4× 0.02 0.30 0.05 1.68 0.08 0.19

Conference Room
1× 0.08 0.78 0.24 1.93 0.35 0.38

(283K tris)
2× 0.04 0.51 0.13 1.72 0.19 0.26
4× 0.03 0.31 0.08 1.58 0.12 0.20

Stanford Dragon
1× 0.22 1.67 0.65 3.14 1.10 1.03

(871K tris)
2× 0.12 1.09 0.34 2.38 0.57 0.60
4× 0.06 0.64 0.18 1.97 0.30 0.38

Turbine Blade
1× 0.45 2.73 1.28 4.73 2.10 1.77

(1.77M tris)
2× 0.23 1.63 0.65 3.19 1.07 0.96
4× 0.12 1.08 0.34 2.37 0.56 0.55

Table 1: BVH construction times for our method (Our) and
Garanzha et al. (Prev) in milliseconds, with varying num-
ber of cores relative to GTX 480. The processing consists
of Morton code evaluation (Eval), sorting (Sort), hierarchy
generation (Build), and bounding box calculation (AABB).

for a set of test scenes. With 1× cores, the performance of
our radix tree construction is 4–13× compared to the hier-
archy generation of Garanzha et al. The ratio is highest with
small scenes, where the lack of parallelism in the compari-
son method is the most pronounced. The effect of increasing
the number of cores is illustrated in Figure 5. The time re-
quired to evaluate and sort the Morton codes is the same for
both methods, and decreases gradually with increasing par-
allelism. Hierarchy generation and AABB calculation con-
sistently amount to 40–50% of the total time in our method,
whereas the comparison method becomes severely bottle-
necked by the hierarchy generation as the number of cores
increases.

Table 2 shows a similar breakdown of octree construction
times, using centroids of the triangles as the input points.
Our method consistently performs and scales better than the
comparison method, but the difference is not as pronounced
as with BVHs. The main reason is that octrees have signifi-
cantly fewer levels, which reduces the sequential processing
overhead in the comparison method.

Discussion. Our parallel radix tree construction algorithm
is a powerful building block that can be used to avoid se-
quential bottlenecks in the construction of various spatial
acceleration structures. Unlike existing hierarchy generation
methods, it outputs nodes in a strict depth-first order and
scales well for different workloads as well as for large GPUs.
For future work, we believe that our method for construct-
ing octrees could be extended to support triangle meshes
through 2.5D rasterization and spatial hashing.
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