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Abstract

With shrinking process technology, the primary cause of transient faults in semiconductors shifts away from high-
energy cosmic particle strikes and toward more mundane and pervasive causes—power fluctuations, crosstalk, and
other random noise. Smaller transistor features require a lower critical charge to hold and change bits, which leads
to faster microprocessors, but which also leads to higher transient fault rates. Current trends, expected to continue,
show soft error rates increasing exponentially at a rate of 8% per technology generation. Existing transient fault
research in general-purpose architecture, like the well-established architectural vulnerability factor (AVF), assume
that all computations are equally important and all errors equally intolerable. However, we observe that the effect
of transient faults in graphics processing can range from imperceptible, to bothersome visual artifacts, to critical
loss of function. We therefore extend and generalize the AVF by introducing the Visual Vulnerability Spectrum
(VVS). We apply the VVS to analyze the effect of increased transient error rate on graphics processors. With this
analysis in hand, we suggest several targeted, inexpensive solutions that can mitigate the most egregious of soft
error consequences.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics Processors

1. Introduction

Exponential device scaling has produced incredible ad-
vances in the capability of today’s computing infrastructure.
Graphics processors have taken advantage of these scaling
trends to achieve dramatic increases in throughput. Semi-
conductor devices, however, have now become so small that
they are vulnerable to transient faults caused by cosmic and
terrestrial radiation; and to noise due to crosstalk, di/dt in-
duced voltage droop, and parameter variations. As the im-
portance of these phenomena all grow exponentially with
decreased feature size or supply voltage [SABR04], the ‘free
lunch’ of Moore’s Law for graphics architects approaches its
end. Future designs must be more aware of such low-level
physical challenges.

A transient, single bit corruption in a microelectronic cir-
cuit is termed a soft error. Soft errors have long been an
important design constraint in general purpose processor
design, especially in engineering reliable memory systems
for enterprise servers. They have yet to become a major
consideration in the design of graphics processing systems,
probably because the primary market is the consumer desk-
top, where reliability requirements are lower. Yet as soft
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error rates are projected to continue their current trend of
increasing at a rate of about 8% per technology genera-
tion [HKM∗03]—making soft error rates at 16-nm nearly
100 times that of the 180-nm generation [Bor05]—they will
soon become a driving concern for graphics architects. Ad-
vanced 3D graphics capabilities and expanding requirements
for 3D rendering in next generation operating systems, such
as Microsoft Windows Vista, will only exacerbate a problem
that otherwise would only have been important to compet-
itive game players, bringing soft error tolerance quickly to
the forefront of GPU reliability.

A soft error is distinguished from a hard error by its tran-
sient nature—a soft error is random, temporary, and unpre-
dictable. Soft errors are referred to by several names, includ-
ing transient fault, transient error, and single event upset
(SEU). While these are often used interchangeably, ‘soft er-
ror’ and ‘SEU’ have classically referred only to radiation-
induced transient faults. This subtlety seems to be largely
forgotten, and we choose to ignore it in this paper.

Not all errors are cause for concern. If errors do not matter
for architecturally correct execution (ACE)—in other words,
if they do not affect the final outcome of the computation—
they are harmless. An error might be harmless, for example,
if it strikes a storage location that is not currently in use (i.e.,
not ACE). Figure 1 illustrates a taxonomy for the classifica-
tion of soft errors.

The dominant metric for quantifying the chance of an er-
ror as a result of a transient fault is the Architectural Vulner-
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ability Factor or AVF [MER05]. The AVF of a structure is
a fraction from zero to one which represents the likelihood
that a transient fault in that structure will lead to a computa-
tional error. AVF takes into account the total amount of time
that each bit can contribute to a computation, the total num-
ber of bits in the structure, and the size of the structure. More
formally, Architectural Vulnerability Factor is:

AVF = ∑b∈B tb
|B|×∆t

(1)

where B is the set of all bits in the structure, tb is the total
time that bit b is ACE, and ∆t is the total time necessary to
complete the computation.
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Figure 1: A transient fault can lead to no error due to correction
or the effected bit being un-ACE, silent data corruption—an error
which is never discovered—or a true or false detected unrecoverable
error. This figure is based on Figure 1 in Mukherjee et. al. [MER05].

The history of soft errors is long and interesting, dating
back to the mid-1950s and in some cases involving some
amazing detective work to track down causes. The many
hard-learned lessons have had a huge influence on modern
fab technology. Unfortunately, discussion of this topic is out-
side of the scope of this paper. Interested readers should
start with the papers by Ziegler [ZCM∗96, Zie96] and Nor-
mand [Nor96].

In general-purpose computer systems, any ACE bit must
be assumed important. Even a single error in a low-order bit
in a commercial or scientific computation can invalidate a
computation. What makes graphics hardware unusual is that
most state on the graphics card—despite being technically
ACE—can tolerate some degree of error. Errors only matter
if they affect the user’s perceived experience. An error in a
single pixel, for example, may not be noticeable even if it
changes the color from white to black. Errors in other state
may create more visible errors, but if those errors only last a
single frame, the harm is minor.

This observation obviously does not apply to graphics
hardware used in non-visual applications (e.g. GPGPU)
where CPU error metrics are more directly applicable. If
these applications are of sufficient commercial value, they
may require cards with full error protection, such as ECC-
guarded video memory, and an efficient implementation of
that for graphics cards is left for future work.

This paper explores the implications of transient faults
in graphics hardware used for interactive consumer appli-
cations. It observes that common CPU metrics for determin-
ing transient fault vulnerability, such as AVF, do not fit well
with the workloads and expectations of graphics systems and
presents the Visual Vulnerability Spectrum as a more suit-
able taxonomy for classifying vulnerability on GPUs. Fi-
nally, this paper presents some initial suggestions for fault
protection and recovery mechanisms specifically tailored to
GPUs.

2. The Visual Vulnerability Spectrum

For CPU architectures, it must generally be assumed that any
transient fault resulting in a change in the final computation
is unacceptable. The workload of a graphics processor tends
to be more forgiving of most soft error effects. For this rea-
son, we argue that attempting to apply AVFs to GPUs can be
misleading.

Most soft errors in computation and memory on graph-
ics cards are acceptable or even unnoticeable. Consider, for
example, the color framebuffer. We ran a sequence of 589
frames from id Software’s Doom 3 with all features enabled
through an instrumented version of Mesa at 1600 × 1200
resolution with 32 bits of color. The color buffer for this
application is about 7.32MB. The mean depth complexity
during the sequence was 4.09, implying that many errors in
the color buffer are likely to be overwritten. However, the
AVF depends also on how long non-overwritten values are
resident in the framebuffer, and a detailed calculation using
Equation 1 (see Section 3.1) gives a framebuffer AVF of 0.48
(some representative images from this study appear in Fig-
ure 2). In other words, any single bit error in the framebuffer
has a 48% chance of affecting the final image. By traditional
AVF analysis, this is very high, arguing that we should con-
sider the color framebuffer a critical structure and heavily
protect it. Of course, in practice the opposite is true: a user
is quite unlikely to care about or even perceive a single-bit
error in a single pixel for a single frame!

This example underscores a key point of this paper: be-
cause all errors are not equal in the graphics workload, it is
more useful to think of GPU architectural vulnerability as a
multi-dimensional continuum rather than as a single scalar
chance for an error. We call this continuum the Visual Vul-
nerability Spectrum to emphasize its continuous nature, and
identify three primary axes to quantify important and orthog-
onal qualities of graphics computation vulnerability: extent,
magnitude, and persistence.

1. Extent refers to how many pixels will be affected as a
result of a soft error. Qualitatively, this axis ranges from
unnoticeable to whole screen. For example, our frame-
buffer example posited an error affecting one pixel in the
final image, which is probably unnoticeable extent, while
an error in a coefficient of the modelview matrix could
easily have a whole screen extent.

2. Magnitude describes the severity of the error across the
affected region of the final image. In principle, magnitude
is a complex perceptual function; in practice we approx-
imate magnitude using the L2 error in RGB color space
across affected pixels. Qualitatively, the magnitude axis
ranges from unnoticeable to insufferable. A change to the
low-order bit of a color channel would probably be unno-
ticeable, a clipping error that clipped away all geometry
at affected pixels would probably be considered insuf-
ferable, and an error changing global anti-aliasing state
might fall somewhere in between.

3. Persistence refers to how long the effect of a soft
error will remain active. Persistence is measured in
frames, typically 16-33 ms in real-time rendering appli-
cations such as video games. Qualitatively, persistence
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) and (d) are depth complexity maps of the frames displayed in (b) and (e) respectively. (c) and (f) are the respective AVF maps.
In the depth maps, white corresponds to a depth complexity of zero, while black represents a depth complexity of 51—the highest in our 589
frame sampling. In the AVF map, white represents an AVF of 1, while black is an AVF of 0. In (a), the depth complexity is reasonably consistent
across the frame, and so using any of mean or median will give reasonable estimates of AVF. In (d), most of the frame has little complexity.
The majority of the fragments are generated by a particle simulation that is entirely occluded from the vantage point of this image—note that
the complexity is not due to the foreground object in (e)!—which artificially drives up the AVF of the frame. The bottom frame has a depth
complexity of 4.80 and an AVF of 0.65, while the top has 2.24 and 0.48 respectively, even though, as is apparent from the depth maps, both of
these frames have similar complexity save the particle simulation.

ranges from transient—the effect disappears after a sin-
gle frame—to indefinite. An error in depth or color buffer
would be transient, since these are cleared every frame,
while an error in the value of a vertex buffer cached in on-
card memory could last an indefinite number of frames.
A hard error in our taxonomy would simply have a per-
sistence of permanent.

While many subtleties of soft error impact are not directly
captured in these three axes—for example, the severity of an
error that corrupts a vertex buffer which is rendered repeat-
edly throughout a frame depends in part on the exact intra-
frame timing of the error—we argue that the Visual Vulner-
ability Spectrum provides a sufficiently rich characterization
of the range of soft error effects to allow graphics architects
to usefully analyze soft error impact and protection schemes.

2.1. Application

To illustrate such an analysis, we have applied our taxonomy
to the OpenGL 2.0 state vector [SA04] and identified a short
list of state structures as high-priority candidates for soft er-
ror protection. Of course, there is no direct mapping between
the OpenGL API and actual hardware structures, but suit-
able architectural details are not usually publicly available
and the GL state is sufficient to delineate the different cate-
gories of vulnerability and indicate what types of hardware
protection, if any, might be justified.

• Matrix stack: Almost any error in the matrix stack can
produce errors in the final image with large extent and

magnitude. A matrix stack error at the base of the stack
could persist for several frames.

• Scissor, depth, and alpha test enable bits and func-
tions: For example, if the programmer enables the depth
test but a transient fault disables it, all subsequent geome-
try will write to the framebuffer. For simple applications,
this effect could potentially persist until the application is
terminated.

• Viewport function coefficients: Errors in the viewport
will affect how much of the scene is displayed or how
large the scene appears in the available viewport.

• Depth range: With errors in the depth range state, order-
dependent occlusion errors could appear in the output im-
age. This piece of state is often set during the initializa-
tion phase of an application or game and never modified
again, so an error here will likely persist until the applica-
tion completes.

• Clip plane function coefficients: Arbitrary errors in
the clipping planes can cause clipping of geometry that
should appear in the final image. Like the depth range,
this state will often be unmodified by the programmer af-
ter initialization.

• Lighting enable bits: Enabling lighting in a scene with
no lights will yield a black screen, while disabling it
will eliminate most lighting effects—assuming that fixed-
function OpenGL lighting is being used rather than pro-
grammable shading.

• Culling enable bits: Toggling the state of back- or front-
face culling enable bits will change which geometry is al-
lowed to change the image.
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• Polygon state including offset, stippling, and fill
modes: Changes to these state can drastically affect the
appearance of rendered polygons.

• Texture enable, active texture, and current texture
unit: Errors here will change which, if any, texture is ap-
plied to geometry.

• Individual texture state: Though individual texels are
not high priority, errors that corrupt the associated tex-
ture state—texture dimensions, the format of the texels,
clamping or wrapping mode, etc.—can have high extent,
magnitude, and persistence.

• Current drawbuffer: Advanced applications making
heavy use of render-to-texture often change render targets,
but simpler applications may never modify the render tar-
get, so that an error corrupting the render target could eas-
ily result in a black screen until the application terminates.

• Uniform and control-related shader state: This in-
cludes the compiled program store, instruction counter,
and uniform registers shared by all invocations of a
shader. An error to a uniform register could affect all ver-
tices or pixels processed by the shader for the remainder
of the frame, and possibly (for simple applications using
only one shader) persist for many frames. Errors in control
state such as shader instruction counters could potentially
crash the GPU.
Structures of intermediate importance include:

• Vertex array enable bit, size, type, stride, pointer, high-
order bits of vertex array elements, and the entire con-
tents of all index arrays: Some experiments and results
with this state are discussed in Section 3.

• Vertex attribute arrays: Similarly for normal, fog, color,
edge, index, and texture coordinate arrays.

• High levels of the hierarchical z-pyramid: An incorrect
depth test due to an error in the z-pyramid will have an ex-
tent of xn×xn pixels, where x is typically 8 pixels and n is
the level of the pyramid where the error occurred. Hard-
ware using more than a single-level hierarchical depth test
might want to protect those levels with n >= 2. However,
such errors only persist for one frame.

• Texture contents: A corrupted bit in a texel could occa-
sionally have large extent, for example if the texel is mag-
nified or wrapped across many pixels. While the texture
is cached on the card, the error may have a persistence of
many frames. However, most errors will have relatively
low magnitude.

Here are a few examples of items that are not important in
most rendering applications:
• The framebuffer: A single bit error in the framebuffer

will probably only affect one pixel. While this will poten-
tially fall very high on the magnitude axis, it will have
a very low extent (1 pixel) and persistence (1 frame).
Note that if the framebuffer stores something other than
raw frame data—like compressed data or context switch
objects—then it is more vulnerable at least in terms of ex-
tent and perhaps in other dimensions.

• Shader data registers: Unlike the uniform registers men-
tioned above, the input and temporary registers that vary
with each pixel or vertex being processed will have a per-
sistence of no more than one frame, and in the case of
pixel shaders, an extent of no more than one pixel.

• Antialiasing state: An error in antialiasing state will
likely persist for the remaining lifetime of the application,
yielding a high persistence value, but extent will be low,
since the errors will only show up only at high-frequency
edges, as will magnitude which will be determined by a
weighted average of colors that correctly occur in or near
any given sample.

• Various non-array vertex attribute state: Including
color, texture coordinates, normals, and generic shader at-
tributes. This state can drastically affect all polygons us-
ing the corrupt vertex, but will not persist.
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Figure 4: Histograms showing soft error extent and magnitude.

3. Characterization and Results

We describe two example experiments to illustrate the con-
cepts in this paper. The first calculates a traditional AVF for
the depth buffer; the second illustrates how the VVS could
be characterized for a particular structure, in this case the
vertex buffer.

3.1. Calculating AVF of GPU Structures

We instrumented Mesa-6.4.1 [P∗06] to count depth buffer
reads and writes and to dump this data, per frame, to disk.

We implemented Equation 1, AVF = ∑b∈B tb
|B|×∆t , in Mesa by

placing a framebuffer sized—1600×1200—matrix, contain-
ing: arrays of 51 sequence numbers and ACE bit counters; an
index into those arrays; a depth (so that we can easily per-
form a depth complexity analysis); and read and write coun-
ters. From a previous, simpler experiment, we know that no
frame in the 589 frame demo1 sequence—a demo path that
ships with Doom 3—has a depth complexity of greater than
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Figure 5: These traces show error per frame from a set of reference images. Both graphs are based on the same set of faults in vertex array
data and the same reference images. Further, this data is based on the assumption that the vertices have been downloaded to GPU memory
but are not updated over the course of these 589 frames—each individual error persists for the duration of the simulation. Note that while
frame RMS error tends to move with extent, or affected pixels, they are not directly proportional since frame RMS error also incorporates the
magnitude of the error.

51. Each time a new fragment is tested, a global sequence
number is incremented and stored in the sequence number
element indexed by the current index for that sample, and 32
depth tests are performed–Mesa uses a 32 bit depth buffer–
one for each bit in the depth value XORed with 2bit. At the
end of each frame, we compute per pixel AVFs by, for each
element in the matrix: subtracting from each sequence num-
ber number in the sample’s array the sequence number be-
fore it (subtracting zero from the first element); multiplying
that difference by the corresponding ACE bit count; and di-
viding by 32 times the final sequence number (32 bits of data
over sequence number units of time). Of course this assumes
that fragments are tested at constant intervals, but this is not
a poor assumption. A global sum is used to calculate the per-
frame AVF.

3.2. Vertex Fault Injection

To illustrate how a specific class of errors can be an-
alyzed with the VVS framework, we implemented a
Chromium [HHN∗02] Stream Processing Unit (SPU) to
simulate transient faults in graphics memory by injecting er-
rors into vertex position arrays. These faults are injected un-
der various constraints to simulate different memory man-
agement configurations and transient fault protection tech-
niques. We then analyze the extent, magnitude, and persis-
tence of the resulting errors.

Cosmic and terrestrial ray flux is uniformly distributed
over small areas and over time; transient faults due to other
causes (crosstalk, voltage droop, etc.) may be less uniform
but are impossible to model accurately without detailed
hardware knowledge. We therefore assume that all vertices
are equally likely to be corrupted, and inject faults into ver-
tices being processed after random intervals averaging 1
fault per 100,000 vertices†. After some transformations in

† This corresponds with approximately one corruption per frame in
our Doom 3 trace—much higher than would be expected from cos-
mic radiation, but not unreasonable for an aggressively overclocked
GPU built on a near-future semiconductor technology node.

Chromium, all vertices come to our fault injection SPU in
the form of glVertex3fv() calls. We randomly choose
a vertex and a flip a random bit from that vertex’s position
values. We pass the new, corrupt value on to the renderer, and
perhaps back into memory. Implementing the high-order bit
memory protection scheme discussed in Section 4 is as sim-
ple as not performing bit flips in the protected high-order
bits.

Figure 4 analyzes the extent and magnitude of errors
caused by individual vertex faults. Figure 4(a) shows a his-
togram of errors classified by the number of affected pixels.
Most errors affect zero pixels, such as when the corrupted
vertex is occluded or off-screen, or when the corruption is
too small to visibly affect the geometry. However, about 10%
of the errors have nonzero extent. Note that the histogram
bucket size increases exponentially: each column represents
errors affecting twice as many pixels on average as the pre-
vious column. Thus errors captured in the right side of the
histogram are much more severe than errors on the left side.
The figure compares the severity of the errors resulting from
protecting the high-order 8 and 16 bits of the 32-bit posi-
tion values to the errors that occur with no protection. These
results show that protecting even a fraction of the bits signif-
icantly reduces the number of errors with severe extent.

Figure 4(b) uses a similar histogram to show the distri-
bution of error magnitudes, measured as RMS difference
of affected pixels in RGB color space. Again, protecting a
fraction of the bits significantly reduces error magnitude. In
other words, not only are fewer pixels affected by errors, but
the effect of the errors on those fewer pixels is also reduced.

When analyzing the persistence of soft error corruption to
vertex data, we must consider two scenarios: streaming ver-
sus cached vertex buffers. In the first scenario, vertex data
is streamed from system main memory, downloaded to the
graphics card each frame. Thus all errors will have a persis-
tence of one frame. To implement, we modify only the data
that is passed downstream in the Chromuim SPU chain to
ensure the resulting errors only affect the current frame.

The more interesting analysis of persistence occurs in the
second scenario of cached vertex buffers, which once down-
loaded to graphics memory remain there and are not modi-
fied for some time. Persistence is now a function of when and
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(a) A corrupted frame with 8 bits of protection
per vertex.

(b) The same frame with 16 bits of protection. (c) Two frames before Figure 6(a).

(d) Corrupted pixel map of (a). (e) Corrupted pixel map of (b) (f) Corrupted pixel map of (c).

Figure 6: Images (a) and (b) show the same frame from two different vertex array fault injection sequences in Doom 3. The sequence that
produced (a) protected the high-order 8 bits of each vertex, while the sequence that produced (b) protected the 16 highest-order bits. (d)
and (e) are corrupted pixel maps of (a) and (b) respectively. The reference image is not included since, while (b) is not a perfect image, it
is indistinguishable from the reference. The triangle that has been affected by the error in (b) moved such a small distance that most of the
fragments it generates map to exactly the same color and screen-space position. (c) and (f) show the same error as the other images, but two
frames earlier, in the frame in which the error actually occurred. In the sequence that generated these images, vertices were assumed to be
downloaded each frame, so errors do not persist between frames, therefore this error no longer exists in this sequence during the frame in (a)
and (b), and in fact, in this sequence, the frame in (a) and (b) is identical to the reference image.

for how long the corrupted geometry appears on the screen,
which in turn depends on the scale of the error and the mo-
tion of the player. To implement, we modify the vertex array
data directly, causing the errors to persist for many frames.
Figure 5 shows a plot of total error over the course of the
589-frame trace sequence, measured both as extent (5(a))
and total frame RMS error (5(b)), which essentially repre-
sents extent times magnitude. In these plots, soft error per-
sistence manifests as the tendency of errors to remain con-
stant for several frames. Figure 5 also illustrates the effect of
protecting varying numbers of bits in the input. Once again,
protecting only a few bits greatly reduces the total effect of
most errors.

In truth, Doom 3 falls somewhere between these two mod-
els: while some objects are downloaded for rendering every
frame, most of the vertex data is stored in VBOs and is only
downloaded by Doom 3 once. VBOs are managed by the
graphics driver, which generally attempts to cache them on-
card whenever possible for optimal performance.

4. Transient Fault Protection Schemes for GPUs

The fact that typical consumer applications for graphics
hardware can tolerate some errors allows novel, low-cost er-
ror protection that still successfully limits severity of soft er-
rors. As mentioned, this differs from general-purpose hard-
ware, where any error to ACE state should be corrected. Here
we propose some initial possibilities for graphics-specific

protection and hope that future work will explore additional
techniques.

As discussed in Section 2.1, only a small amount of state
requires any protection, especially if visually significant er-
rors can be tolerated for short periods of time—on the order
of one to a few frames. The frame buffer can be left com-
pletely unprotected, because single errors will likely affect
only one pixel. Even the z-buffer can be left unprotected, be-
cause errors will only persist for at most one frame. Most of
the remaining large objects in memory, such as vertex stor-
age, textures, etc. will benefit from protection, because they
may not be reloaded every frame. But this protection need
only detect errors, assuming all this state can be reloaded;
and detection need only operate on approximately a once
per frame basis. A small amount of state that is rarely modi-
fied, such as various enable bits, coefficients, etc. is more im-
portant and should be fully protected. Other persistent state,
such as vertices and shader code, requires only periodic error
detection, just to prevent persistent errors.

4.1. Full Protection

Specifically, we propose full protection for the various en-
able bits, array state (not array data), viewport and clip plane
coefficients, depth range, polygon state, current drawbuffer
ID, uniform and control-related shader state and the matrix
stack. The likelihood that these small state elements will be
corrupted by radiation strikes is infinitesimally small, but the
effects could be dramatic and lasting. More importantly, this
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state is vulnerable to errors from non-ideal circuit behavior
and stability due to deep-submicron scaling.

Since these items are all small, the overhead of this pro-
tection is also small. Simple choices include upsizing the
devices used to implement this state, hence increasing their
critical charge Qcrit (the size of the disruption needed to
change a transistor’s state), or ECC. Full redundancy is a
possibility but requires an XOR to compare the two copies
and detect an error, as well as some mechanism to recover
from the error. Triple redundancy allows correction but re-
quires even more overhead.

4.2. Simple Parity Protection

The shader program store at each shader unit may not be
updated for long periods of time, especially if organized
as a cache. Errors in the shader code could be catastrophic
and persistent. Simple detection suffices, because the shader
code can be reloaded and re-initialized. This suggests con-
ventional parity protection on a per-line basis for the pro-
gram store. This may be more important for vertex shaders,
because errors in a vertex can affect a large extent, while er-
rors in a fragment are limited to a pixel. In a unified shader
model, all shader stores will require this capability.

4.3. Periodic Error Detection

The dominant graphics memory today is Samsung and ATI’s
GDDR3. This is high-bandwidth, double data-rate VRAM is
engineered specifically for graphics, with neither error de-
tection nor correction [Sam05]. This memory is the primary
store for most off-chip objects, including vertices, shader
code, textures, and the z-buffer.

We can take advantage of the fact that most of the off-
chip graphics state we are concerned with, including ver-
tices, shaders, textures, normals, texture coordinates, and
other such data, is replicated in the CPU-side driver space
and hence resides in the CPU’s main memory. In a modern,
fault-tolerant system, it is safe to assume that this is pro-
tected with ECC.

Even in persistent state such as vertices and shaders, er-
rors disrupting a few frames are usually tolerable. What we
wish to protect against are persistent errors that would not go
away without added hardware protection. To achieve this,
we need only implement a low-cost, low-frequency detec-
tion mechanism, using the driver’s copy of data to replace
erroneous graphics data whenever an error is detected. We
call this technique Periodic Error Detection and present two
ways of implementing it here. The key is to observe that we
need only detect errors over large objects, and this compu-
tation is off the critical path, allowing hardware implemen-
tations optimized to avoid any impact on access latency or
bandwidth. Depending on the anticipated error rate, a single
parity bit per object may suffice, or a slightly more sophisti-
cated check may be needed, such as a checksum. Of course,
any solution of this nature requires driver support, the imple-
mentation of which may be non-trivial.

The advantage of this graphics-specific approach is that
only a few error checks are needed, the state to be stored is
small (e.g., one parity bit per row in the RAM), and the de-
tection need only be performed on a relatively infrequent ba-
sis. Conventional DRAM, on the other hand, provides parity
on a per-byte basis, or ECC on a per-word basis; and every
DRAM access requires error detection/correction.

The one problem with the graphics-specific approach is
that, if we only detect errors across an entire row, it requires
the ability to perform error detection across a large quantity
of data. Reading all this data off the GDDR just for parity

checks is undesirable. There are two ways to achieve this
functionality with minimal overhead. The first piggybacks
on the existing refresh mechanism inside the GDDR. The
second piggybacks on existing streaming accesses, such as
accessing a vertex array.

4.3.1. Refresh-based techniques.

DRAM cells do not maintain a connection to the power sup-
ply and hence cannot maintain their contents. The charge
stored in a cell gradually leaks away over time. SRAM, in
contrast, maintains a connection to the power supply, at the
expense of additional transistors, inferior area efficiency, and
higher power.

This means that DRAM requires periodic refresh, in
which a row of the DRAM is read out of the data array and
immediately written back. A typical retention time for data
is on the order of 10s of milliseconds; the datasheet for the
GDDR [Sam05] specifies that data must be refreshed every
32ms, which conveniently is about the time for processing
1–2 frames. Since the chip contains 4K rows, this means
that a row must be accessed for refresh every 7.8µs. These
refreshes are mandatory, and while the bits are available in
the buffer before writeback, an error detection such as parity
can be computed. The error detection is therefore performed
one row at a time, as each row is accessed. This requires at
most one element of check state per row (e.g. 1 parity bit
per 16 Mbit row), and at least one element of check state
per bank (e.g. 1 parity bit per 64 Mbit bank). This requires
only a simple error-checking circuit on the DRAM chip that
is capable of completing the computation for a single row in
7.8µs, and possibly the ability to combine that with results
from a prior row if the error detection is aggregated instead
of being performed on a per-row basis.

When an error is detected, the driver must be notified to
reload appropriate state. A brute-force solution is for the
driver to cause the entire state of the graphics computation
to be reloaded. While the expense of this is considerable, it
may be tolerable if errors are relatively rare.

The cost of error recovery can be reduced if the driver can
attribute errors to specific objects that must be reloaded, such
as vertex arrays. This presupposes driver-level data struc-
tures capable of identifying which, if any, memory objects
(textures, vertex buffers, depth or color render targets, etc.)
are resident at the given address, so that those objects can be
reloaded if necessary when a fault occurs at that address. A
simple ordered list of all objects requiring protection would
suffice. Only objects requiring protection need to be entered
into this list. Then if a row does not match an object in the
list, the error can be ignored.

4.3.2. Demand error checking.

In demand error checking, the graphics driver calculates
check state for each object of interest and associates that bit
with the data structure that it downloads to the GPU. Each
time that object is accessed, error detection is performed.
Since the error detection is only done in conjunction with
an access that would be performed anyway, and since it is
not time-critical, the overhead should be small, for exam-
ple a parity checker that operates while data streams off the
GDDR. Buffering the data allows for a simpler, lower-cost
error checker that can lag behind the data streaming off the
memory, performing the check computations as the main
graphics operations proceed. The error check is not in the
critical path and only imposes the cost of the fanout. On de-
tecting an error, the check circuitry alerts the graphics driver
to download a new copy of the data.

Demand parity is best used with large blocks of state that
will be read in a repeatable manner; vertex and index arrays
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are an obvious target for this technique. For objects that are
accessed with different ranges, such as index arrays, each
possible range requires a check value. This requires a table,
probably stored in graphics memory as well.

4.4. High-Order Bit Protection

Unlike general-purpose computations, high-order bits are
more important for graphics than low-order bits. Section 3.2
demonstrates this for vertex array data. This motivates a pro-
tection scheme in which only the x highest order bits of each
array element are protected. Based on the results in Sec-
tion 3.2, 16 bits seems to be sufficient here, protecting the
sign, the exponent, and the 7 highest-order bits of the man-
tissa in IEEE single-precision floating point. This idea can
be implemented in conjunction with one of the previous two
techniques: either placing the highest order bytes of all array
data in protected memory or implementing error detection
only across the highest order two bytes and leaving the re-
maining bytes unchecked.

5. Conclusions and Future Work

We have raised the problem of transient faults in graphics
architecture. We provide the first attempt to characterize the
impact and nature of soft errors in the graphics workload.
Transient errors have been an important concern in general
purpose architecture for nearly three decades. They have not
yet posed a problem for graphics processors, but as technol-
ogy processes continue to shrink, the soft error problem will
soon be relevant in the graphics domain. We believe that the
time to start thinking about it is now.

Our specific contributions include:

1. We have shown that AVF is a poor metric for vulnerabil-
ity in GPUs, because it treats all errors that affect the final
result as equally intolerable. GPU workloads are more
forgiving—many errors can be ignored or corrected af-
ter the fact—but also more complex. To illustrate these
points, we have performed experiments (using a test trace
from a state-of-the-art game) to analyze AVF and inves-
tigate fault injection results.

2. We have proposed the Visual Vulnerability Spectrum to
classify transient faults on the GPU. The VVS extends
and generalizes the traditional AVF, characterizing faults
on three orthogonal axes: Extent, Magnitude, and Persis-
tence. State that falls high on two or three of these axes is
important and may require protection.

3. We have presented several simple protection and re-
covery schemes for some graphics memory. The novel,
graphics-specific solutions piggyback on existing mech-
anisms in the graphics workload. These schemes exploit
the tolerance of the graphics workload by performing er-
ror checking off of the critical path, imposing little to no
overhead. Since most GPU state is backed up in reliable
storage on the other side of the PCI-E bus, these schemes
also take advantage of reliable backing store for recovery.

Our analysis identified critical graphics state based on
the application of the Visual Vulnerability Spectrum to the
OpenGL state vector. Real GPUs do not directly implement
OpenGL, as the driver translates the calls into hardware-
specific instructions. While most of the OpenGL state we
identified requires analogous state on the GPU, there is
likely additional state that is critical as well.

Our treatment of the VVS has been mostly qualitative,
with the goal of arguing for a graphics-specific treatment
of soft-error protection. Future work needs to better identify
important state and quantitatively evaluate its importance us-
ing the VVS, including detailed fault injection studies.

The protection techniques we proposed can probably be

improved upon: more effective and efficient protection tech-
niques are another important area for future work. Cost-
effective ways to support full protection are also needed for
GPGPU and other applications that do not offer the visual
latitude assumed here. Application of ideas from the Redun-
dant Multithreading [MKR02] literature look like viable so-
lutions in such domains, especially when it becomes impor-
tant that combinational logic, in addition to state, be pro-
tected.
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