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Figure 1: From left to right: Correct shadows, low-resolution shadows (sample per 8× 8 pixel tile), tiles that may contain
a shadow boundary (green/light gray), and an image showing accurately processed boundary tiles (darker gray) and data
copied from the low-resolution shadows (lighter gray). If a tile contains a shadow boundary (3rd image), the corresponding
low-resolution shadow data is more or less random. This is corrected by applying per-pixel rasterization to boundary tiles.

Abstract

The shadow volume algorithm is a popular technique for real-time shadow generation using graphics hardware.
Its major disadvantage is that it is inherently fillrate-limited, as the performance is inversely proportional to the
area of the projected shadow volumes. We present a new algorithm that reduces the shadow volume rasterization
work significantly. With our algorithm, the amount of per-pixel processing becomes proportional to the screen-
space length of the visible shadow boundary instead of the projected area. The first stage of the algorithm finds
8×8 pixel tiles, whose 3D bounding boxes are either completely inside or outside the shadow volume. After that,
the second stage performs per-pixel computations only for the potential shadow boundary tiles. We outline a two-
pass implementation, and also describe an efficient single-pass hardware architecture, in which the two stages are
separated using a delay stream. The only modification required in applications is a new pair of calls for marking
the beginning and end of a shadow volume. In our test scenes, the algorithm processes up to 11.5 times fewer
pixels compared to current state-of-the-art methods, while reducing the external video memory bandwidth by a
factor of up to 17.1.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shadowing I.3.1 [Computer Graphics]: Hardware Architecture—Graphics Processors

1. Introduction

Rendering of shadows is a key ingredient in computer-
generated images. Shadows both increase the level of re-
alism and provide information about spatial relationships
of objects. For real-time rendering, variants of the shadow
mapping algorithm [Wil78] and the shadow volume al-
gorithm [Cro77] are among the most popular techniques.
Shadow mapping is an image-based technique that often suf-
fers from aliasing problems. The shadow volume algorithm

does not have these issues, but has been criticized for its ex-
cessive use of fillrate. Shadow volumes are extruded from
shadow casters to the attenuation range of a light source.
Even relatively small objects, such as characters, often cre-
ate shadow volumes that cover a significant portion of the
screen.

The main motivation for our work is that when a shadow
volume is rasterized, only a small portion of the processed
pixels typically define the footprint of the shadow, and the
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resulting shadow often consists of large homogeneous areas.
Clearly, there appears to be ample room for improvement in
terms of performance.

We present a two-stage algorithm for hierarchical shadow
volume rendering. The first stage finds 8× 8 pixel tiles that
are either completely outside or inside shadow volumes of
individual objects, i.e., fully lit or fully in shadow. The re-
sults of this stage are valid after the entire shadow volume
has been processed. Therefore the shadow volumes need to
be either submitted twice, or the shadow volume triangles
need to be delayed in the rasterization pipeline by using a
delay stream [AMN03]. After the first stage is complete, the
second stage needs to perform per-pixel shadow volume ras-
terization only for the boundary tiles.

Compared to existing acceleration techniques [NVI03],
the results show that our algorithm processes 2.8–11.5 times
fewer pixels, and reduces the related bandwidth usage by a
factor of 2.4–17.1. We firmly believe that these results jus-
tify the proposed hardware modifications, because without
our new algorithm, up to over 90% of the total rendering
time was spent in shadow volume rasterization, as discussed
in Section 6.

Although this paper focuses on hard shadows, the tech-
nique can be used in different contexts as well. The soft
shadow volume algorithm [AAM03] can be accelerated,
since it contains a hard shadow volume pass, and its
culling optimization [ADMAM03] can benefit from our new
method.

The rest of the paper is organized as follows. We begin
by reviewing related work in Section 2, and proceed by de-
scribing our algorithm in Section 3. Section 4 outlines two
implementations, and Section 5 presents the details regard-
ing a hardware implementation, followed by our test results
and discussion in Section 6. Finally, we offer conclusions
and some thoughts on future work in Section 7.

2. Previous Work

In this section we focus on presenting previous work on real-
time generation of hard shadows using graphics hardware,
and briefly cover the use of delay streams. For a general
survey on shadow generation, consult Woo et al. [WPF90].
A more recent survey covering real-time algorithms is also
available [HM01].

Shadow mapping [Wil78] generates a depth buffer from
the point of view of the light source. This image, called a
shadow map, is a discretized representation of the scene ge-
ometry as seen by the light source. A pixel is in shadow if
its depth value, transformed into the light-space, is greater
than the corresponding depth value in the shadow map. The
discretization often causes aliasing artifacts such as jagged
shadow boundaries and incorrect self-shadowing. Sen et al.
[SCH03] improve the accuracy of shadow boundaries, and
give references to other work regarding the aliasing issues.

A shadow volume consists of three parts. The light cap
is the shadow casting object itself, the dark cap closes the
far end of the shadow volume at infinity or at the attenuation
range of the light source. The side quads, extruded from the
silhouette edges of the shadow caster, connect the two caps
into a closed volume.

In a hardware accelerated variant [Hei91] of the original
shadow volume algorithm [Cro77], the scene is first rendered
using ambient lighting. In the second pass, the shadow vol-
umes are rendered into the stencil buffer so that visible pixels
of the front-facing and back-facing triangles increment and
decrement the stencil values. This creates a shadow mask
in the stencil buffer, where values greater than zero indicate
that a pixel is in shadow. In a third pass, the scene is ren-
dered with full lighting, and the per-pixel shadow terms of
the stencil buffer are used to mask out shadowed pixels. This
method is commonly known as the Z-pass shadow volume
algorithm. In contrast to shadow mapping, the shadow vol-
ume algorithm does not suffer from aliasing problems.

Problems occur when the camera is inside a shadow vol-
ume, and a more robust solution is used nowadays. The Z-
fail algorithm has been independently described by Bilodeau
& Songy and by Carmack, as discussed by Everitt and Kil-
gard [EK02]. The depth test is simply reversed when render-
ing the shadow volumes, so that only the triangles that are
behind the contents of the Z-buffer affect the stencil buffer.
Two solutions are presented for the cases where a shadow
volume intersects the far plane of the view frustum.

Shadow Volume Optimizations Two-sided stencil test
[EK02] halves the geometry processing requirements of
shadow volumes. NVIDIA’s UltraShadow [NVI03] allows
the programmer to define the minimum and maximum depth
values for a shadow volume. A pixel cannot be inside the
shadow volume if the Z-buffer value of the pixel is out-
side the defined depth bounds. Therefore a significant por-
tion of shadow volume rasterization work can potentially
be avoided when the shadow receivers are outside the depth
bounds. As an optimization, the bounds can be clamped to
bounding volumes of local light sources or to scene geome-
try, e.g., walls of a room. Depth bounds testing is effective
when the shadow volume is approximately perpendicular to
the viewing direction. However, with other orientations the
bounds may cover a major part of the scene and the effi-
ciency degrades. Also, the testing does not accelerate the
rendering of shadowed regions.

Lengyel [Len02] uses the scissor test to limit the rasteriza-
tion work to portions of the screen bounded by the influence
region of the light source. McGuire et al. [MHE∗03] present
a framework that combines depth bounds and Lengyel’s scis-
soring with new optimizations. They introduce an algorithm
for creating the dark cap with a minimum number of trian-
gles, and thus in terms of triangle count the light cap be-
comes the most complex part of a shadow volume. The Z-
pass algorithm does not need the light cap, and thus it can be

c© The Eurographics Association 2004.



Aila and Akenine-Möller / A Hierarchical Shadow Volume Algorithm

faster to use Z-fail only for the shadow volumes that may in-
tersect the viewport [EK02]. Lloyd et al. [LWGM04] clamp
shadow volumes so that the rasterization is limited to re-
gions that contain shadow receivers. They also use occlu-
sion queries to avoid casting shadows from objects that are
entirely in shadow. All optimizations listed above can also
be used in conjunction with our algorithm.

Hybrid Algorithms McCool [McC00] uses a shadow map
and image-space edge detection to reconstruct the shadow
volume of a set of objects. This shadow volume does not
contain any overlapping volumes, which means that a lot of
redundant rasterization work can be avoided. However, the
creation of the shadow volume is rather complex and slow,
so the technique is not suitable for dynamic scenes. Also,
due to the discrete resolution of a depth map and the use of
an edge detection algorithm, robustness issues arise.

Govindaraju et al. [GLY∗03] use a combination of shadow
maps and object-space shadows on a three-PC system to
generate hard shadows in complex environments. Their op-
timizations for limiting the number of shadow casters and
receivers could also be used for accelerated rendering of
shadow volumes.

Chan and Durand [CD04] first determine the boundary
pixels of shadow regions from a low resolution shadow map.
The boundary pixels are then processed accurately using
shadow volumes, while the rest of the pixels are handled
with the shadow map.

Occlusion Culling Meissner et al. [MBGS01] perform two-
pass visibility driven rasterization by first marking the tiles
that are fully hidden and then skipping the subsequent raster-
ization to those tiles. Our algorithm bears some similarities
to this technique.

The delay stream [AMN03] is a hardware mechanism that
delays triangles in the rasterization pipeline. It can be used to
generate Z-buffer information early in the pipeline, and after
that the triangles are pushed into the delay stream. At a later
stage, the triangles are popped, and at that time it is likely
that enough Z-buffer information has been accumulated, so
that many additional triangles can be culled.

3. Hierarchical Shadow Volume Algorithm

The following explanation of our new algorithm assumes
that the frame buffer has been divided into 8×8 pixel tiles.
For each tile, the zmin [AMS03] and zmax [Mor00] of the Z-
buffer are maintained. The vertical and horizontal bounds of
a tile, along with its zmin and zmax define a three-dimensional
axis-aligned box in screen space. After rasterization of the
scene, the box contains all the visible geometry, and is there-
fore a 3D bounding box of the tile.
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Figure 2: This 2D illustration of our algorithm assumes
the Z-fail algorithm, and thus only the parts of the shadow
volumes that are behind the rendered geometry can affect the
stencil buffer. The boundary tiles (B) contain intersections of
rendered geometry and shadow volume triangles. A visible
shadow boundary can only exist inside the B-tiles, and thus
only these tiles need to be rasterized accurately. For all other
tiles, it is sufficient to execute the shadow volume algorithm
for a single point inside the tile, because the result is the
same for the whole tile. The L-tiles are fully lit and the S-
tiles are fully in shadow.

3.1. Geometrical Explanation

Our algorithm builds on the fundamental observation that a
visible shadow boundary can be inside a tile only if at least
one shadow volume triangle intersects with the 3D bounding
box of the tile. Two facts guarantee that the approach works.
First, shadow volumes are closed by definition. Second, the
triangles defining a shadow volume indicate transitions be-
tween light and shadow, i.e., if there are no intersections in-
side a tile, the tile cannot contain a shadow boundary. Hence,
it is sufficient to execute the shadow volume algorithm for a
single, arbitrarily chosen point inside a non-boundary tile in
order to determine the shadow term for all pixels inside the
tile. Figure 2 illustrates the idea in two dimensions.

Intuitively the shadow volume algorithm corresponds to
shooting a ray through a point inside the tile, and count-
ing the number of intersected frontfacing and backfacing
triangles. A key to our method is that depending on which
point is chosen, the number of intersections along the ray
can change, but the net result is always the same. As an ex-
ample, consider the leftmost shadow volume in Figure 2 that
resides completely inside a single tile. Depending on which
point (i.e., vertical ray in Figure 2) we choose inside the tile,
the shadow volume may either be completely missed, or the
test point will register one back-facing and one front-facing
triangle, which cancel each other. The correct result is ob-
tained in both cases: the shadow volume does not contribute
to the visible shadow, and can be culled.

3.2. Algorithm Outline

Our algorithm executes in two stages. The process begins
when a marker, BSV (Beginning of Shadow Volume), is en-
countered. First, the screen-space tiles are classified to be
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either fully lit, fully in shadow, or potentially containing a
shadow boundary. This classification depends on the shadow
volume as a whole, and remains incomplete until the corre-
sponding ESV (End of Shadow Volume) marker is received.
When the classification is complete, it can be exploited for
efficient rasterization, as we will see in Section 4.

In general there are a number of shadow casters per light
source, and in the following explanation each shadow cast-
ing object creates a separate shadow volume. Furthermore,
the depth buffer has been initialized by rendering the scene
geometry. The rest of this section explains the two stages of
our algorithm in detail without being limited to any specific
implementation.

3.2.1. Stage 1: Low-Resolution Shadows and Tile
Classification

The tile classification is performed by using a per shadow
volume (PSV) buffer, which stores for each tile an 8-
bit stencil value and a Boolean boundary. Initially
boundary=false and stencil=Sclear, where Sclear is
the stencil buffer clear value. Without loss of generality, the
rest of this paper assumes that stencil values greater than
Sclear indicate shadow.

If a triangle intersects with the 3D bounding box of a tile,
there is a potential shadow boundary inside the tile. Such
boundary tiles are marked by setting their boundary to
true. The intersection needs to be computed in a conserva-
tively correct manner, i.e., at least all the actual intersections
must be detected. Notice that any tile can be classified as a
boundary tile without introducing visual artifacts.

If none of the shadow volume triangles intersect with the
3D bounding box of a tile, the entire tile is either fully lit
or fully in shadow. Thus the classification can be carried out
by executing the shadow volume algorithm for a single, ar-
bitrarily chosen sampling point inside the tile. The shadow
volume algorithm updates the stencil of the tile by using
the defined stencil and depth modes.

After an entire shadow volume has been processed, the
corresponding tile classifications are ready. If the bound-
ary bit of a tile is set, per-pixel stencil rasterization is
needed in order to determine the exact shadow boundary.
Otherwise the rasterization can be skipped, because the en-
tire tile is either in shadow (stencil>Sclear) or lit with
respect to the current shadow volume.

The classification allows alternating between Z-pass and
Z-fail algorithms, and does not pose limitations on the
shadow volume topology or on the ordering of the triangles.

3.2.2. Stage 2: Stencil Buffer Updates

When the ESV marker has emerged from Stage 1, the
shadow volume triangles are rasterized according to the tile
classifications in the corresponding PSV-buffer. The follow-
ing three cases are possible:

1. Tile is fully inside the shadow volume (S-tiles in Fig-
ure 2). All pixels in the tile are set to be in shadow.

2. Tile is fully outside the shadow volume (L-tiles). No up-
dates needed.

3. The shadow volume intersects the 3D bounding box of
the tile (B-tiles). Per-pixel stencil operations are per-
formed, as requested by the application.

4. Implementing the Algorithm

Our algorithm can be implemented in various ways. We first
introduce a hierarchical variant of the stencil buffer in or-
der to make the stencil buffer updates in Stage 2 more ef-
ficient. We then briefly outline a two-pass implementation,
and finally explain a more efficient single-pass implemen-
tation using a delay stream. Both implementations use the
hierarchical stencil buffer.

4.1. Hierarchical Stencil Buffer

We propose a two-level version of the stencil buffer. For each
8× 8 pixel tile, the minimum and maximum stencil buffer
values, Smin and Smax, are maintained in a low-resolution
stencil buffer. Furthermore, we propose that the stencil test
is carried out as follows. If the result of the stencil test can
be determined from [Smin,Smax], the per-pixel stencil buffer
must not be accessed. For example, if Smin = Smax = 1, the
per-pixel values are not needed for any of the stencil com-
parison modes. This opens the possibility of not updating or
accessing the per-pixel stencil values unless absolutely nec-
essary.

4.1.1. Optimized Stage 2: Hierarchical Updates

The stencil buffer updates in Section 3.2.2 can be optimized
by using the hierarchical stencil buffer:

1. Tile is fully inside the shadow volume. The correspond-
ing entry in the low-resolution stencil buffer is updated.
Per-pixel operations to the tile are skipped.

2. Tile is fully outside the shadow volume. No updates
needed.

3. The shadow volume intersects the 3D bounding box of
the tile. Per-pixel stencil operations are performed, as re-
quested by the application. Smin and Smax are updated ac-
cording to the per-pixel stencil buffer rasterization.

Per-pixel rasterization and the related video memory
bandwidth are limited to the boundary tiles. In general, this
results in significant reduction of fillrate requirements, as il-
lustrated in Figure 1. It is worth pointing out that the hier-
archical stencil buffer alone would provide only small per-
formance improvements; the two-stage shadow volume al-
gorithm is needed for efficiently exploiting the hierarchical
updates.
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4.1.2. Final Lighting Pass

After all shadow casters have been processed, the full light-
ing contribution of the light source is accumulated into the
frame buffer so that the shadow terms are read from the hi-
erarchical stencil buffer. Per-pixel stencil values are fetched
only for the boundary tiles of the combined shadow area of
all shadow volumes. This provides an additional reduction
to the memory bandwidth requirements.

4.2. Two-Pass Implementation

Perhaps the simplest implementation of our algorithm re-
quires the application or the device driver to submit each
shadow volume twice. The two passes then correspond to
Stage 1 and optimized Stage 2. However, this alternative
would need a second geometry pass and further modifi-
cations to the applications in order to facilitate efficient
pipelined execution.

4.3. Single-Pass Implementation Using a Delay Stream

This single-pass implementation uses the optimized Stage 2,
whereas Stage 1 remains identical to Section 3.2.1. Between
the two stages, the triangles defining a shadow volume are
temporarily stored into a delay stream, which is a ring buffer
in external video memory [AMN03]. Unlike delayed occlu-
sion culling, our algorithm uses the delay stream only for
shadow volumes. Note that the same stream could be used
by both algorithms. The ESV marker is passed directly from
Stage 1 to Stage 2 without going through the delay stream.
The rest of this section explains our architecture in detail,
and a general overview is given in Figure 3.

4.3.1. Delay Stream

The delay stream should be large enough to hold all the tri-
angles of a single shadow volume in order to delay the sten-
cil buffer rasterization up to the point when the classifica-
tion is finished. Typically the geometry defining a shadow
volume consumes only a small amount of memory for two
reasons. First, the shadow triangles usually contain only po-
sitional information, i.e., no colors or texture coordinates
per vertex, and this leads to good compression of the delay
stream. Second, for the majority of shadow volumes, only
the side quads are needed [MHE∗03], and for a mesh of n
triangles, the number of silhouette edges can be as low as
O(
√

n) [SHSG01].

In certain pathological cases, e.g., when all objects of a
scene are presented as a single triangle soup, the allocated
delay stream may not be able to store even one entire shadow
volume. If this happens, the per-pixel stencil buffer rasteri-
zation has to start before the tile classification is complete,
and the performance degrades gracefully towards the tradi-
tional shadow volume algorithm. Visual artifacts are avoided
by treating all tiles as boundary tiles until the classification
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Figure 3: The positioning and connections of our algorithm
inside a modern programmable graphics pipeline. The new
units and on-chip caches are marked with gray.

finishes. After that, the remaining per-pixel rasterization is
skipped for tiles that were classified to be fully in shadow.
The upper bound of per-pixel stencil rasterization work is
equal to the traditional shadow volume algorithm.

4.3.2. Further Optimizations

Usually there are multiple objects casting shadows from a
light source. When the contribution of a shadow volume is
added to the stencil buffer, the overall area covered by the
shadow grows monotonically. For example, a tile that has
been previously classified as being fully in shadow cannot
be downgraded to a boundary tile. This is especially useful
for scenes that have a high depth complexity, such as a city
scene.

We perform this check by using a full shadow (FS) buffer,
which stores one bit per tile. This optimization needs a sep-
arate FS-buffer because the contents of the stencil buffer are
modified during the rasterization of a shadow volume, and
are thus in a meaningful state only between two shadow vol-
umes. Therefore we must update the FS-buffer exactly once
per shadow volume. For this purpose, we add a Boolean
first to each tile in the PSV-buffer, and initialize them
to true immediately after receiving the BSV in Stage 1. If
the first bit of a tile is set, the FS bit is set to true if
Smin > Sclear and to false otherwise. The first is then
cleared in order to avoid examining the stencil buffer during
the processing of a shadow volume. Subsequent rasterization
to a tile is skipped if the FS bit is set to true.

Appendix A contains pseudo code for Stages 1 and 2. The
use of FS-buffer makes the performance of our algorithm
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slightly dependent on the processing order of shadow vol-
umes. However, we have not optimized our test applications
to take this into account.

5. Hardware Implementation of Single-Pass Algorithm

The pipelined processing of shadow volumes deserves spe-
cial attention. The tile classifications are made individually
for each shadow volume, and thus Stages 1 and 2 are gener-
ally processing different shadow volumes. Therefore multi-
ple per shadow volume (PSV) buffers are needed. We handle
this by allocating in the driver a small number of buffers, ac-
cording to the screen resolution. The buffers are stored in ex-
ternal video memory and accessed through an on-chip cache.

A PSV-buffer is locked for a particular shadow volume in
Stage 1 when BSV is encountered. If no buffers are available,
the unit stalls. The buffer is released in Stage 2 after ESV is
received. Only a part of each buffer is generally accessed by
a shadow volume, and thus a clear bit [Mor00] per 32× 32
pixels provides a fast way of clearing the necessary parts of
the PSV-buffers in Stage 1.

5.1. New Hardware Resources

The new hardware resources consist of computational logic
in Stages 1 and 2, a delay stream, additional instances of the
low-resolution rasterizer and early occlusion test units, and
on-chip storage. The amount of new logic is fairly low as can
be seen from the pseudo code in Appendix A. The only non-
trivial operations are finding the intersection of a shadow
volume triangle with the 3D bounding box of a tile, and de-
termining if the triangle is behind the bounding box. How-
ever, both of these questions need to be answered already in
the preceding “Early Occlusion Test” unit (Figure 3) in order
to perform zmin and zmax culling. Such a unit already exists
in most modern graphics chips, and thus the implementation
details are omitted from this paper.

The delay stream is a ring buffer in external memory, and
the new hardware units are limited to a simple history-based
compression [AMN03], which eliminates duplicate vertices
and stores only the active attributes of vertices, i.e., the po-
sition. The render state changes are also stored, although
there are usually very few of them during the rasterization
of shadow volumes.

On-chip storage consists of the PSV-buffer cache, FS-
buffer and Smin,max buffers. Since the tile classification (Sec-
tion 3.2.1) allows arbitrary positioning of the sample point
within the tile, one can let four tiles, placed in a 2× 2 con-
figuration, share the same sample point, and thus also the
same stencil value in the PSV-buffer. In this approach,
the sample point is located at the shared corner of the four
tiles. The storage for the PSV-buffer is then 2 + 8/4 = 4
bits per tile. A 2kB cache was used in our tests. The FS-
buffer uses one bit per tile, which corresponds to 2.5kB in
1280×1024 resolution.

Smin,max can be useful for generic computations using the
stencil buffer. However, if they are only used for the pur-
poses of shadow volume rendering, the stencil value can
mean only one of two things, namely the pixel being lit or
in shadow. With such encoding "1" indicates shadow and
"0" means lit, and partial shadow is indicated by Smin = 0
and Smax = 1. While this 1-bit representation is adequate
for shadows, it imposes two limitations. First, the function
deciding what stencil values correspond to shadow should
not be changed between constructing and using the stencil
buffer. This does not appear to be a serious limitation in prac-
tice. Second, the Smin,max buffers contain meaningful data for
shadow computations, but should be disabled for other com-
putations that perform stencil tests. One way of implement-
ing this is to prefix the stencil test with a new shadow test,
which uses Smin,max. The traditional stencil test is executed
only if the shadow test cannot determine the results, e.g.,
a tile is partially in shadow or the shadow test is disabled.
As a result, the size of Smin,max can be made as small as
5kB in 1280×1024 resolution. For comparison, the existing
zmin,max buffers consume 16 times more memory, assuming
16-bit depth values.

6. Results and Discussion

The performance of our single-pass algorithm was bench-
marked using walkthroughs in four scenes (Table 1). The
complexity of the scenes is rather accurately illustrated by
the average number of rendered shadow volume triangles
per frame. Only eight were rendered in the Simple scene,
and at the other end of the scale, 572k in the Powerplant.
The two intermediate scenes, Knights (18k) and Amphithe-
ater (6.6k), include various animated characters. All mea-
surements were done using a single light source, and for
Simple scene, Knights, and Powerplant the light source was
moving.

Three different variants of the shadow volume algorithm
were implemented inside MESA (www.mesa3d.org),
which is a software renderer with an OpenGL-like inter-
face. The first variant is a brute force approach, the second
is based on depth bounds [NVI03], and the third is our hier-
archical algorithm. All three utilize zmin, zmax, and lossless
compression for the Z-buffer [Mor00]. The compression is
assumed to reduce Z-buffer bandwidth usage by 50%. The
depth bounds were computed separately for each shadow
casting object. The bounds were initialized with the bound-
ing box of the shadow caster, and then extended to include
the intersection of the view frustum and the shadow volume
of the bounding box. In Amphitheater shadow volumes are
extruded from the local light source to infinity instead of the
attenuation range, and thus the tightness of depth bounds
could have been further improved by clamping the bounds
to the bounding volume of the light source.

The images were rendered at 1280×1024 resolution, and
all accesses to zmin,max, Smin,max and FS-buffer were on-chip.
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Simple scene Knights Powerplant (Section 16) Amphitheater

Algorithm BF DB H BF DB H BF DB H BF DB H

Stencil BW in shadow pass 0.54 0.48 0.03 48.96 18.65 5.90 4329 1798 123 9.59 9.05 1.66

Z-buffer BW in shadow pass 0.05 0.05 0.05 3.00 3.00 2.93 160.3 160.3 115.1 0.97 0.97 0.84

Stencil BW in lighting pass 1.24 1.24 0.02 0.82 0.82 0.11 1.16 1.16 0.01 0.81 0.81 0.07

PSV BW from 2kB cache - - 0.005 - - 0.035 - - 29.2 - - 0.19

Delay stream BW - - 0.001 - - 0.43 - - 15.1 - - 0.16

Total bandwidth 1.82 1.77 0.10 52.78 22.46 9.40 4490 1959 283 11.37 10.82 2.91

#Pixels in shadow pass (M) 0.28 0.25 0.02 25.67 9.78 3.48 2269 943 99 5.03 4.74 0.94

Ratio in bandwidth 1.03:1 17.6:1 2.35:1 5.61:1 2.3:1 16.0:1 1.05:1 3.91:1

Ratio in #processed pixels 1.1:1 12.7:1 2.63:1 7.38:1 2.4:1 22.9:1 1.06:1 5.35:1

Table 1: Average per-frame statistics for brute force (BF), depth bounds (DB) and our hierarchical algorithm (H) in 1280×
1024 resolution with 32-bit depth buffer and 8-bit stencil buffer. All bandwidth (BW) measurements are shown in megabytes
(MB). Ratios are relative to the brute force algorithm.

The measured total bandwidth in Table 1 refers to the cost
of constructing the shadow mask into the stencil buffer, and
then fetching the shadow terms in the subsequent illumi-
nation pass. Z-fail was used in the Simple Scene, Knights
and Powerplant due to its robustness. Adaptive switching be-
tween Z-pass and Z-fail could have reduced the number of
shadow volume triangles, but we did not implement it be-
cause the fillrate measurements are independent of the trian-
gle count, and there is no proof that either Z-pass or Z-fail
has better bandwidth usage. However, the Amphitheater is
publicly available as a part of an application that readily im-
plements the switching. The size of the delay stream was set
to 1MB, and Stage 2 started to process a shadow volume as
soon as Stage 1 finished classifying it.

Our algorithm reduced the total bandwidth by a factor of
3.9–17.6 compared to the brute force variant, and by a factor
of 2.4–17.1 compared to the depth bounds. In the shadow
volume pass, our algorithm processed 5.3–22.9 times fewer
pixels than brute force, and 2.8–11.5 times fewer than depth
bounds.

We argue that it is the number of processed pixels that
ultimately limits the performance. The bandwidth to exter-
nal memory is a smaller problem, because less than three
bytes were transferred per pixel for Knights, Powerplant, and
Amphitheater. Also, it might be possible to reduce the band-
width further by employing compression techniques to the
stencil buffer. For Powerplant, our largest scene, as many as
2.2 billion pixels were processed every frame by the brute

force algorithm. The depth bounds reduced the number of
pixels to 943 million, and our algorithm provided a further
reduction to 99 million. In an additional test, the brute force
variant ran at less than one frame per second on a 3GHz Pen-
tium 4 with an ATI Radeon 9800XT graphics card. When
the shadow volume rasterization was omitted, the frame rate
jumped to over 50. Thus the overall performance of the ap-
plication was clearly bounded by the processing of shadow
volumes. Assuming a 20-fold speedup in the shadow volume
rasterization, a hardware implementation of our algorithm
should boost the overall frame rate from 1 to around 15.

It may seem surprising that the Z-buffer bandwidth is also
reduced by our algorithm. This results from skipping the
processing of tiles that are already in shadow due to previous
shadow volumes. In the Powerplant scene, a further reduc-
tion of bandwidth usage of 15MB (5%) was obtained when
the cache for the PSV-buffers was doubled from 2kB to 4kB.

It is worth emphasizing that the performance ratio be-
tween our algorithm and depth bounds gets even larger with
higher resolutions, because the rasterization work done by
our algorithm is primarily affected by the length of the
shadow boundary. In contrast, with depth bounds at least
the whole shadow area needs to be rasterized accurately.
When resolution increases, the length of the shadow bound-
ary typically grows much slower than the covered area. At
2048× 1536 resolution, our algorithm performed an addi-
tional 20–30% better than depth bounds.
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Discussion The performance of our algorithm could be fur-
ther improved by combining it with depth bounds testing,
which offers a complementary and inexpensive way to dis-
card tiles prior to Stage 1. In applications that always ex-
trude the shadow volumes to infinity instead of the attenua-
tion range the performance of depth bounds testing could be
further improved by limiting the bounds with bounding vol-
umes of light sources and with scene geometry. Under such
circumstances, accurately computed depth bounds would al-
low skipping boundary tiles that are not affected by the light
source, and thus also optimize the per-pixel operations in
Stage 2.

The performance improvements are a result of hierarchi-
cal processing of non-boundary tiles. The worst case input
for our algorithm would be a very complex object, such as
a tree that could at least theoretically cast shadows that have
a boundary inside every tile. In such cases, hierarchical pro-
cessing cannot be exploited due to the complete lack of co-
herence in shadowed regions.

Highly tessellated shadow casters, such as the characters
in the Knights scene, result in long and narrow shadow vol-
ume triangles that may not cover even a single tile entirely.
That does not reduce the performance of our algorithm be-
cause we consider the shadow volume as a whole, and the
size of individual triangles is not important.

7. Conclusions and Future Work

We have presented a new algorithm for accelerated rendering
of shadow volumes. For a single-pass implementation using
a delay stream, the benchmarks indicate that our shadow vol-
ume culling algorithm processes 2.8–11.5 times fewer pix-
els, and performs between 2.4 and 17.1 times fewer accesses
to external memory than previous methods. Thus, we argue
that the main critique against shadow volumes is eliminated
by our method.

In future work, we would like to make an accurate com-
parison of computational and bandwidth requirements of our
hierarchical shadow volume algorithm and the shadow map-
ping algorithm. A performance evaluation with different tile
sizes is also an interesting line of future work. Furthermore,
it might be fruitful from a performance viewpoint to study in
which order the shadow volumes should be submitted.
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Appendix A: Pseudo Code

Stage 1 (Z-fail)

for each tile t overlapped by the triangle:

 if (triangle intersects 3D bounding box of t)
  t.PSV.boundary = true;

 else if (triangle behind 3D bounding box of t &&
     t's sample point inside triangle)
  if (triangle front-facing)
   t.PSV.stencil = t.PSV.stencil - 1;
  else
   t.PSV.stencil = t.PSV.stencil + 1;

Stage 2 (Optimized Architecture)

for each tile t overlapped by the triangle:

 if (t.PSV.first == true)
  t.PSV.first = false;
  if (t.Smin > Sclear) // in shadow before this SV
   t.FS = true;

 if (t.FS == true)         // already in shadow
  continue;

 if (t.PSV.boundary == true)
  rasterizeToStencilBuffer(); // updates Smin/Smax too

 else if (t.PSV.stencil > Sclear)  // full shadow
  t.Smin = t.Smax = t.PSV.stencil;
  t.FS = true;
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