
EUROGRAPHICS 2011/ N. W. John, B. Wyvill STAR – State of The Art Report

A Survey on Temporal Coherence Methods
in Real-Time Rendering

Daniel Scherzer1,2 Lei Yang3 Oliver Mattausch2 Diego Nehab4 Pedro V. Sander3 Michael Wimmer2 Elmar Eisemann5

1LBI for Virtual Archeology 2Vienna University of Technology 3Hong Kong UST 4IMPA 5Télécom ParisTech/CNRS-LTCI

Abstract
Nowadays, there is a strong trend towards rendering to higher-resolution displays and at high frame rates. This
development aims at delivering more detail and better accuracy, but it also comes at a significant cost. Although
graphics cards continue to evolve with an ever-increasing amount of computational power, the processing gain
is counteracted to a high degree by increasingly complex and sophisticated pixel computations. For real-time
applications, the direct consequence is that image resolution and temporal resolution are often the first candidates
to bow to the performance constraints (e.g., although full HD is possible, PS3 and XBox often render at lower
resolutions).

In order to achieve high-quality rendering at a lower cost, one can exploit temporal coherence (TC). The underlying
observation is that a higher resolution and frame rate do not necessarily imply a much higher workload, but a larger
amount of redundancy and a higher potential for amortizing rendering over several frames. In this state-of-the-art
report, we investigate methods that make use of this principle and provide practical and theoretical advice on how
to exploit temporal coherence for performance optimization. These methods not only allow incorporating more
computationally intensive shading effects into many existing applications, but also offer exciting opportunities for
extending high-end graphics applications to lower-spec consumer-level hardware. To this end, we first introduce the
notion and main concepts of TC, including an overview of historical methods. We then describe a key data structure,
the so-called reprojection cache, with several supporting algorithms that facilitate reusing shading information
from previous frames, and finally illustrated its usefulness in various applications.

1 Introduction

In order to satisfy the ever increasing market demand for
richer gaming experiences, developers of real-time rendering
applications are constantly looking for creative ways to fit
increased photo-realism, framerates, and resolution within the
computational budget offered by each new graphics-hardware
generation. Although graphics-hardware evolved remarkably
in the past decade, the general sense is that, at least in the
foreseeable future, any hardware improvement will be readily
be put to use toward one of these goals.

The immense computational power required to render a
single frame with desirable effects such as physically correct
shadows, depth-of-field, motion-blur, and global illumina-
tion (or even an effective ambient-occlusion approximation)
is multiplied by the demands of high-resolutions displays,
which require large scene descriptions to be manipulated (ge-
ometry, textures). The difficulty is compounded further by

the need to generate such frames continuously, as part of
real-time animation.

Although rendering at 30Hz (NTSC) is already considered
real-time, most modern LCD monitors and TVs can refresh
at least at 60Hz. Naturally, developers strive to meet this stan-
dard. Given that there is still a measurable task-performance
improvement in interactive applications as framerates in-
crease up to 120Hz [DER∗10b], there is justification to target
such high framerates. In this case, as little as 8 milliseconds
are available to produce each complete photo-realistic image,
and all involved calculations (including physical simulations
and other tasks unrelated to rendering itself) have to fit within
this time budget. Needless to say, this poses a difficult task.

The traditional approach to optimization in the context of
real-time rendering is to focus on improving the performance
of individual rendering tasks, one at a time. In this State of
The Art Report, we present results that are connected by a

c© The Eurographics Association 2011.

http://www.eg.org
http://diglib.eg.org

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 1: Real-time rendering applications exhibit a considerable amount of spatio-temporal coherence. This is true for camera
motion, as in the Parthenon sequence (left), as well as animated scenes such as the Heroine (middle) and Ninja (right) sequences.
Diagrams to the right of each rendering show disoccluded points in red, in contrast to points that were visible in the previous
frame, which are shown in green (i.e., green points are available for reuse). [Images courtesy of Advanced Micro Devices, Inc.]

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
o
h
e
re

n
c
e
 (

%
)

Frame number

Parthenon
Heroin

Ninja

Figure 2: Plot shows the percentage of surface points that
remain visible from one frame to the next for the animations
of Figure 1. Coherence in excess of 90% is typical of many
game-like scenes.

more general approach to optimization: exploiting temporal
coherence (TC).

Consider the examples shown in Figure 1. When framer-
ates are high, very little changes from one frame to the next.
Each visible surface point tends to remain visible across the
interval of several frames. Furthermore, points attributes (in-
cluding color) tend to maintain their values almost unchanged
throughout. To measure the amount of TC in these animation
sequences, Figure 2 plots the fraction of points that remain
visible from one frame to the next. We can see that fractions
of 90% and higher are typical.

Since an ever increasing slice of the rendering budget
is dedicated to shading surface points, such high levels of
TC presents a great opportunity for optimization. Rather
than wastefully recomputing every frame in its entirety from
scratch, we can reuse information computed during the course
of one frame (intermediate results, or even final colors) to
help render the following frames. The resulting reduction in
the average cost of rendering a frame can be used in a variety
of ways: from simply increasing the framerate to improving
the quality of each rendered frame.

Naturally, TC has been exploited since the early days of
computer graphics. We describe a variety of early applications
in Section 2. In Section 3, we move to methods that can be
used to take advantage of TC in real-time rendering scenarios.
Special attention is given to techniques based on reprojection.
Reprojection allows us to map a surface point in one frame
to the same surface point in a previously rendered frame.
Needless to say, this mapping plays a key role in the reuse
of information across frames. Reusing information involves
certain quality/performance trade-offs that are analyzed in
Section 4. Since the selection of a proper target for reuse can
modulate this trade-off, the same section discusses the most
important factors influencing this choice. Using Sections 3
and 4 as a basis, we then describe many applications that
take advantage of TC in Section 5. Finally, in Section 6, we
provide a comparison, an outlook on future directions and a
summary of the presentation.

2 Early approaches

This state-of-the-art report concentrates on recent real-time
rendering methods that exploit temporal coherence by reusing
information created previously. On the other hand, temporal
coherence has been around for almost as long as computer
graphics itself. For example, the term frame-to-frame coher-
ence was first introduced by Sutherland et al. [SSS74] in his
seminal paper “Characterization of Ten Hidden-Surface Al-
gorithms.” Therefore, we will summarize early developments
in which TC was already used in similar ways.

In particular, we will cover the use of temporal coherence
in ray tracing, in image-based rendering, and image and
render caches.

2.1 Ray-tracing

Temporal coherence was already used for the classical
ray tracing algorithm in order to speed up the calculation
of animation sequences. While these techniques are for of-
fline rendering, most of them already make use of forward
reprojection (Section 3.2) for reusing information.

Badt [BJ88] develop a forward reprojection algorithm that
uses object space information stored from the previous frame.
This allows approximating ray-traced animation frames of

c© The Eurographics Association 2011.

102

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

diffuse polygons. Adelson and Hodges [AH95] later extend
the approach to ray-tracing of arbitrary scenes. Havran et
al. [HBS03] reuse ray/object intersections in ray casted walk-
throughs. They do this by reprojecting and splatting visible
point samples from the last frame into the current, thereby
avoiding the costly ray traversal for more than 78% of the
pixels in their test scenes.

Leaving the concept of frame-based rendering behind,
Bishop et al. [BFMZ94] introduce frameless rendering, which
heavily relies upon TC for sensible output. Here each pixel
is rendered independently based on the most recent input,
thereby minimizing lag. There is no wait period till all pix-
els of a frame are drawn, but individual pixels stay visible
for a random time-span, until they are replaced with an up-
dated pixel. Note that this approach does not use the object
coherency that is such an integral part of many polygon ren-
derers. To avoid image tearing pixels are rendered in a random
order.

2.2 Image-based rendering
In the widest sense, temporal coherence also covers meth-

ods that replace parts of a scene with image-based proxy
representations. This can be interpreted as a form of reverse
reprojection (Section 3.1) applied to individual parts of a
scene. This idea was used most prominently in the so-called
hierarchical image cache and its variations [Sch96, SLS∗96],
where images (called impostors) of complex distant geometry
are generated on the fly and reused in subsequent frames,
thus reducing rendering times. The geometric error for such
systems has also been formally analyzed [ED07a]. Frame-
to-frame coherence is further exploited in various systems
that partition the scene into different layers [RP94, LS97],
while others augment the image-based representation with
depth information [SGHS98]. In this report however, we will
focus on methods that do not use proxy geometry to cache
information, but directly reuse rendered information from the
previous frame buffers.

2.3 Image and render caches
Image and render caches store the information generated

in previous frames in a data structure, and reuse this informa-
tion for the generation of the current frame, using different
reconstruction and mostly forward reprojection techniques
(Section 3.2).

Wimmer et al. [WGS99] accelerate the rendering of com-
plex environments by splitting the scene into a near field and
a far field: The near field is rendered using the traditional
rendering pipeline, while ray casting is used for the far field.
To minimize the number of rays cast, they use a panoramic
image cache and only recompute rays if a cache entry is not
valid anymore, where validity is based on the distance to the
original observer position where the pixel was generated. The
panoramic image cache avoids reprojection altogether, but
quickly becomes inaccurate for translational motion.

Qu et al. [QWQK00] use image warping to accelerate ray-

casting. The idea is to warp the output image of the previous
frame into the current frame using forward projection. Due
to the warping, pixels may fall between the grid positions of
the pixels of the current frame, therefore an offset buffer is
used to store the exact positions. Due to disocclusions, holes
can occur at some pixels. Here ray-casting is used to generate
these missing pixels. The authors propose to use an age stored
with each pixel, which is increased with each warping step to
account for the lower quality of pixels that have been warped
(repeatedly). Upon rendering a new output frame, this age can
be used to decide if a pixel should be re-rendered or reused.

Walter et al. [WDP99] introduce the render cache. It is
intended as an acceleration data structure for renderers that
are too slow for interactive use. In contrast to the previously
mentioned approaches, which store pixel colors, the render
cache is a point-based structure, which stores the complete 3d
coordinates of rendered points and shading information. By
using reverse reprojection, these results can be reused in the
current frame. Progressive refinement allows decoupling the
rendering and display frame rates, enabling high interactivity.
Walter et al. [WDG02] extend this approach with predictive
sampling and interpolation filters, while later work also ac-
celerates the render cache on the GPU [VALBW06, ZWL05].

Simmons and Sequin [SS00] use the graphics hardware
for reconstructing images from reprojected and new samples
by interpreting the samples as vertices of a spherical mesh,
called a tapestry.

3 Reprojection and data reuse
An important decision when utilizing TC is how the previ-

ously computed data is stored, tracked, retrieved and reused.
On modern graphics hardware, the most common way is to
store the desired data at visible surface points in viewport-
sized off-screen buffers at each rendered frame, usually re-
ferred to as history buffer, payload buffer or cache. When
generating the following frames, the data in the buffer are re-
projected to their new locations based on scene motion. Even
with hardware support, reprojection can still be a computa-
tionally challenging task. In this section, we first describe
two reprojection strategies that are commonly used in nu-
merous applications and can sometimes be interchanged to
suit special needs. In disoccluded regions where the previous
data is not available, we show how to fill in approximate
results that are visually plausible. Finally, we summarize dif-
ferent data reuse strategies that are commonly used in various
applications described in Section 5.

3.1 Reverse reprojection
A basic scenario of using TC is to generate a new frame

using data from a previously shaded frame. For each pixel
in the new frame, we can trace back to its position in the
earlier cached frame to determine if it was previously visi-
ble. If available, this cached value can be reused in place of
performing an expensive computation. Otherwise it must be
recomputed from scratch. This technique is called the Reverse

c© The Eurographics Association 2011.

103

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

t-1 t

p
1

p
2

pppppppπt-1(p1
)
πt-1(p2

)

Figure 3: The reverse reprojection operator. The shading
result and pixel depths of time t-1 are stored in screen-space
framebuffers (left). For each pixel p at time t (right), its
reprojected position πt-1(p) is computed to locate the corre-
sponding position at frame t-1. The recomputed scene depth
is compared to the stored pixel depth. A pair of matching
depths indicate a cache hit (p2), whereas inconsistent depths
indicate a cache miss (p1).

Reprojection Cache (RRC). It was proposed independently
by Nehab et al. [NSL∗07] and Scherzer et al. [SJW07], and
serves as a framework for a number of applications described
in Section 5.

Formally, let ft denote the cache generated at time t, which
is a framebuffer holding the pixel data visible at that frame.
In addition to ft , we keep an accompanying buffer dt which
holds the scene depth in screen space. Let ft(p) and dt(p) de-
note the buffer values at pixel p∈Z2. For each pixel p=(x,y)
at time t, we determine the 3D clip-space position of its gener-
ating scene point at frame t-1, denoted by (x′,y′,z′) = πt-1(p).
Here the reprojection operator πt-1(p) maps a point p to its
previous position at frame t-1. Note that with this reprojection
operation, we also obtain the depth of the generating scene
point z′ at frame t-1. This depth is used to test whether the
current point was visible in the previous frame. If the repro-
jected depth z′ equals dt-1(x

′,y′) (within a given tolerance),
we conclude that the current pixel p and the reprojected pixel
ft-1(x

′,y′) are indeed generated by the same surface point.
In this case, the previous value can be reused. Otherwise no
correspondence exists and we denote this by πt-1(p) = ∅,
which we refer to as a cache miss. Additional tests such as
object-ID equality can also be employed to reinforce this
cache miss decision. The reverse reprojection operation is
illustrated in Figure 3.

3.1.1 Implementation
The RRC algorithm can be conveniently mapped to the

modern programmable rendering pipeline. A major task of
this is to compute the reprojection operator πt-1(p), which
maps each pixel p to its corresponding clip-space position
in the previous frame t − 1. At frame t, the homogeneous
projection space coordinates (xt ,yt ,zt ,wt)vert of each vertex
v are calculated in the vertex shader, to which the application
has provided the world, view and projection matrices and any
animation parameters. To perform correct reprojection, the

application also has to provide these matrices and animation
parameters at t− 1 to the vertex shading stage. In addition
to transforming the vertex at frame t, the vertex shader also
transforms the vertex using the matrices and parameters from
frame t − 1, thereby computing the projection-space coor-
dinates (xt-1,yt-1,zt-1,wt-1)vert of the same vertex at frame
t− 1. These coordinates are stored as vertex attributes and
are automatically interpolated by the hardware before reach-
ing the pixel stage. This gives each pixel p access to the
previous projection-space coordinates (xt-1,yt-1,zt-1,wt-1)pix.
The final cache coordinate πt-1(p) is obtained with a simple
division by (wt-1)pix within the pixel shader. Note that the
transformation only need to be computed at the vertex level,
thereby significantly reducing the computational overhead in
most scenes.

Because of arbitrary scene motion and animation, the pre-
vious position πt-1(p) usually lies somewhere between the
set of discrete samples in the cache ft-1 and thus some form
of resampling is required. Nehab et al. [NSL∗07] suggested
using hardware-assisted bilinear texture fetch for resampling.
In most situations this suffices for practical use. It is also used
to reconstruct the previous depth value, so that a more robust
cache-miss detection can be achieved.

3.2 Forward reprojection
Alternatively, instead of starting from every pixel in the

target frame, we can directly process the cache and map every
pixel in the cache into its new position. This has the advan-
tage that it does not require processing the scene geometry
for the new frame, which is desirable in some applications.
Nevertheless, it requires a forward motion vector (or disparity
vector) generated for each pixel, which is equivalent to the
inverse mapping of πt-1(p).

Yu et al. [YWY10] propose a forward reprojection method
that leverages the parallel data scattering functionality on
the GPU (available through CUDA or DirectX 11 Compute
Shader). For each pixel in the cache, they determine its new
position in the target frame by offsetting its current position
using the forward motion vector (disparity vector). Then
the depth of the current pixel is tested against the target
pixel for resolving visibility. This operation is performed
using the atomic min functionality to avoid parallel write
conflicts. Note that since there is no one-to-one mapping
between the source and the target pixels, holes can be present
after reprojection. To resolve this, Yu et al. [YWY10] propose
to increase support size of the reprojected pixel, i.e. write to
all four neighbors of each reprojected fractional position. This
works with near-view warping for their light field generation,
but may be insufficient for other applications where non-
uniform motion is involved.

Per-pixel forward projection can be difficult and costly
to implement on conventional graphics hardware (prior to
DirectX 11). It may also require applying complex filter-
ing strategies in order to acquire pixel-accurate results. A
way around these problems was described by Didyk et

c© The Eurographics Association 2011.

104

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

al. [DER∗10b]: they proposed an image warping technique,
which is efficient on conventional GPUs. The warping is
achieved by approximating the motion vector field with a
coarse grid representation, assuming that the vector field is
piecewise linear. An initial uniform grid is snapped to large
motion vector discontinuities in the previous frame. Then
the grid geometry is rendered to its new position dictated
by the motion vector field, so that its associated texture is
automatically warped. Occlusion and disocclusion are nat-
urally handled with grid folding and stretching. Note that
depth testing must be enabled in order to correctly resolve
occlusions and fold-overs.

A regular grid used by Didyk et al. [DER∗10b] can
have difficulties warping images with fine-detailed geometry.
They later propose an improved algorithm using adaptive
grids [DRE∗10]. Their new approach starts with a regular
grid (32×32). Then a geometry shader traverses all the quads
in the grid in parallel. Every quad that contains a disconti-
nuity is further partitioned in four. This process is iterated
until no quads need to be further partitioned. At that point,
the grid geometry is rendered as in the regular grid case. Due
to the adaptive grid, this new approach has better utilization
of computational resources, thereby significantly improving
the quality.

3.3 Handling disocclusion

The process of reprojection is essentially a non-linear warp-
ing and may leave the newly disoccluded regions incorrectly
shaded or blank. With reverse reprojection, we may have the
option to reshade these regions whenever a cache miss occurs.
However, this is not always desirable due to limited time
budget or other constraints imposed by the application. With
forward reprojection, there is usually no such option since
the shading input may not be available. Therefore, some form
of approximate hole filling needs to be performed in order to
reduce visual artifacts.

Andreev [And10] suggests an inpainting strategy that du-
plicates and offsets neighboring image patches into the hole
area from the four sides. This is efficiently implemented in a
pixel shader and can be performed iteratively until the hole
is completely filled. For a more robust solution, one can con-
sider using pull-push interpolation [MKC07]. The pull-push
algorithm consists of a pull phase and a subsequent push
phase. The pull phase iteratively computes coarser levels of
the image containing holes, forming an image pyramid. Each
pixel in a coarser level is the average of the valid pixels in
the corresponding four pixels from the finer level. The push
phase then operates in the inverse order and interpolates the
hole pixels from the coarser levels. This works best for the
small holes caused by per-pixel forward reprojection. With
larger holes, the interpolated pixels may appear blurred and
can be a source of artifacts as well.

Load/Reuse

Lookup Hit? Update

Recompute

yes

no

Figure 4: Schematic diagram of applying the reverse re-
projection cache to avoid pixel shading whenever possi-
ble [NSL∗07].

3.4 Cache refresh
A straightforward usage of data reprojection is to avoid

shading pixels that are visible in the previous frame. This can
apply to either part or the entire pixel shading computation.
For example, if we use RRC, the original pixel shader can be
modified to add a cache load and reuse branch, as shown in
Figure 4. When each pixel p is generated, the reprojection
shader fetches the value at πt-1(p) in the cache and tests if the
result is valid (i.e. cache hit). If so, the shader can reuse this
value in the calculation of the final pixel color. Otherwise, the
shader executes the normal pixel shading. Whichever route
the shader follows, it always stores the cacheable value for
potential reuse during the following frame.

Although a cached value can be continuously reused
throughout many frames, it may quickly become stale be-
cause of either shading changes or resampling error. Nehab
et al. [NSL∗07] propose to refresh (i.e. recompute) the value
periodically in order to counteract this effect. For a fixed
refresh rate, the screen can be divided into ∆n groups and
updated in a round-robin fashion in each frame by testing the
following condition for each pixel:

(t + i) mod ∆n = 0, (1)

where i is the group ID of the pixel and t is a global clock.
They suggest two simple ways of dividing the screen:

Tiled refresh regions. The screen is partitioned into a grid
of ∆n non-overlapping tiles, with pixels in a tile sharing
the same ID.

Randomly distributed refresh regions. The screen pixels
are equally partitioned into ∆n groups with each pixel
assigned a random group ID.

Interleaved refresh regions. The updated screen pixels are
uniformly distributed on a regular grid. For a static scene
and camera, interleaving n such images leads to an accurate
high resolution image of the scene.

With the tiled refresh strategy, pixels within a tile are re-
freshed at the same time. This leads to excellent refresh coher-
ence, but may lead to visible discontinuity at tile boundaries.
The randomly distributed refresh strategy updates pixels in a
random pattern. It exchanges sharp discontinuities for high-
frequency noise, which is usually less objectionable. Note
that it is recommended to assign the same ID to each 2×2 or

c© The Eurographics Association 2011.

105

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Lookup Hit?

Fetch cache
payload

Recompute
cache payload

Update cache,
Output color

yes

no

Compute shading
using payload

(a) one-pass implementation

Lookup Hit?

Fetch cache
payload

Discard pixel

Compute shading
using payload

Update cache,
Output color

yes

no Update cache,
Output color

first pass second pass

Recompute
cache payload

Compute shading
using payload

Original
shader

(b) two-pass implementation

Lookup Hit?

Fetch cache
payload

Discard pixel

Output cache
payloadyes

no

Recompute
cache payload

Output color

first pass third pass

Compute shading
using payload

Output cache
payload

second pass

(c) three-pass implementation

Figure 5: Three control flow strategies for accelerating pixel
shading using the RRC.

larger quad of pixels, because modern GPU performs lock-
step shading computation on such quads. The interleaved re-
fresh regions are easy to achieve by rendering low-resolution
frames and applying an distance-dependent offset on the ge-
ometry. For temporal integration such schemes are interesting,
as the combination of these samples leads to a high-resolution
shot.

In addition, care must be taken in order to maximize the
performance when implementing this scheme with RRC. The
fact that there are two distinct paths in Figure 4, i.e. cache
hit and cache miss, allows for several implementation al-
ternatives. The most straightforward approach is to branch
between the two paths (Figure 5(a)). This allows all the tasks
to be performed in a single rendering pass, but may suffer
from dynamic branching inefficiency particularly when the
refreshed region is not coherent and the branches are unbal-
anced. To achieve better performance, Nehab et al. [NSL∗07]
propose to defer the expensive recomputation and put it into
a separate pass, so that the branches are more balanced (Fig-
ure 5(b)). By relying on early-Z culling, the miss shader is
only executed on the cache-miss pixels that are automati-
cally grouped to avoid any performance penalty. If the hit
shader (green block in Figure 5) is also non-trivial to com-
pute, the branches in the first pass may still not be balanced.
Sitthi-amorn et al. [SaLY∗08a] propose to further separate
this part of the computation into a third pass (Figure 5(c))
in order to reduce dynamic branching cost. This three-pass
implementation also has the advantage that it does not require

muliple render-target support, but incurs more geometry pro-
cessing cost. The choice of strategy therefore is dependent
on the relative cost between vertex and pixel shading in the
target scene. Sitthi-amorn et al. [SaLY∗08a] give some em-
pirical performance analysis of these three implementations
in practice.

3.5 Amortized sampling

Another common strategy of data reuse is to combine pre-
vious shading results with the current one. Gradual phase-out
can then be used to avoid explicit refreshing pixels. This
strategy is usually applied to amortize the expensive task of
computing a Monte-Carlo integral, in which multiple spatial
samples are combined for each pixel. With data from the past,
each frame then only needs to compute a lot less samples
(typically only one) for each pixel in order to achieve a sim-
ilar image quality. This is beneficial to many high-quality
rendering effects described later, such as spatial anti-aliasing,
soft shadow and global illumination.

In order to efficiently reuse and combine previously com-
puted samples of a signal without increasing storage overhead,
Nehab et al. [NSL∗07] and Scherzer et al. [SJW07] propose
to combine and store all previously computed samples asso-
ciated with a surface point using a single running average.
In each frame, only one sample st(p) is computed for each
pixel p and is combined with this running average using a
recursive exponential smoothing filter:

ft(p)← (α)st(p)+(1−α) ft-1
(
πt-1(p)

)
. (2)

Here the running estimate of frame t is represented by ft and
is stored in the RRC. If we expand this recursive formula-
tion, we can see that the running estimate is equivalent to the
weighted sum of all the previous samples at the same surface
point. The weight of a single sample decreases exponentially
over time, and the smoothing factor α regulates the tradeoff
between the degree of variance reduction and responsive-
ness to changes in the sampled signal. For example, a small
value of α leads to a relatively slow decrease of the sample
weights, which effectively accumulates more samples in the
past and therefore produces a smoother result at the expense
of additional lag in the shaded signal.

The precise degree of variance reduction is given by

lim
t→∞

Var(ft(p))
Var(st(p))

=
α

2−α
. (3)

For example, choosing a value of α = 2/5 reduces the vari-
ance to 1/4 the original. This is roughly equivalent to com-
bining 4 previous samples with equal weights. On the other
hand, the actual number of frames contributing to ft with non-
trivial weights (i.e. larger than 8-bit precision 1/256) is 10,
which indicates that the contribution of any obsolete sample
will be smoothed out after 10 frames. This tradeoff between
smoothness and lag is illustrated in Figure 6. In practice, α

must be carefully set to obtain the best tradeoff.

c© The Eurographics Association 2011.

106

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

 100

R
at

io

Fr
am

es

α

Variance
Total fall-off

Figure 6: Trade-off between the amount of variance reduc-
tion (the variance-ratio curve), and the maximum frames of
lag that may exist in the current estimate (the total fall-off
curve) [NSL∗07]. This trade-off is controlled by the parame-
ter α.

4 Data reuse quality and performance

The ideal scenario for taking advantage of coherence is
when the value of interest obtained from a previous frame is
exactly the same as the desired one (i.e. were it recomputed
from scratch). In reality, when considering a target for reuse,
we often find that its value depends on inputs that are beyond
our control. These may include changing viewing parameters,
lighting conditions, time itself, and most importantly, user
interactions. Good targets for reuse are those that change little
under the range of expected input variation. Nevertheless,
even slow varying attributes must be eventually updated, and
we must also identify appropriate refresh periods.

Another important consideration is the cost of recomputing
each reused value. This is because the overhead associated
with obtaining previously computed values is not negligible
(see Section 3.1.1). If recomputing a value is cheap, reusing
it may not bring any performance advantage.

In summary, developers must identify computationally ex-
pensive intermediate computations that vary little under the
range of expected input changes, and determine the appro-
priate number of frames between updates and reuse. Given
the large number of different effects and input parameters
involved in a modern real-time rendering application, this
task can quickly become overwhelming. Recent efforts have
therefore focused on automating parts of this process.

4.1 Semi-automatic target identification

The system proposed by Sitthi-Amorn et al. [SaLY∗08b]
starts by analyzing the source-code of shaders and identify-
ing possible intermediate computations for reuse. During a
training session, the system automatically renders animation
sequences while gathering error and performance data on
shaders that have been automatically modified to cache and
reuse each candidate. The rendering sessions are designed to

ε1

ε2

ε3

ε4

Cluster A

Cluster B
Cluster C

1e-05

1e-04

0.001

0.01

0.1

1

0 10 20 30 40 50 60

A
ve

ra
ge

 P
ix

el
 E

rr
or

Average Render Time (ms)

Marble Shader
Δn=2

Δn=25
Δn=50

Cluster D

Figure 7: Trade-off between error and performance asso-
ciated to caching different intermediate results in a marble
shader. Each line shows the effect of varying the refresh pe-
riod ∆n between 2 and 50 frames on each choice of cached
intermediate computation. Interesting error thresholds εi are
marked, the results of which are shown in Figure 8. Original
shader runs at 29FPS, as indicated by the dashed line.

encompass the range of typical input variation, and are run
under a variety of different refresh periods.

Assuming the input variation is stationary, the authors
found empirical models for both the amount of error and the
rendering cost associated to reusing each possible intermedi-
ate value. These models were later shown to closely match
measurement data.

The expected error caused by reusing the value fm of a
given intermediate computation m over a period of ∆n frames
can be modelled by a parametric equation:

ε̂(fm,∆n) = αm

(
1− e−λm(∆n−1)

)
. (4)

Parameters αm and λm can be obtained by fitting the model
to data gathered in the training session.

Modelling the cost of rendering each pixel requires more
work. First, the system solves for an estimate of the average
time taken to render a pixel under both cache-hit and cache-
miss conditions. Denote these by ∆hit(fm) and ∆miss(fm),
respectively. These values are obtained by solving an over-
constrained linear system for ∆hit(fm) and ∆miss(fm):

Hi ∆hit(fm)+Mi ∆miss(fm)+ c = ∆ti. (5)

Each equation comes from measurements of different frames i
in the training sequence. Here, c is a constant rendering over-
head, Hi is the number of hits, Mi the number of misses,
and ∆ti the time to render frame i.

The average cost of rendering a single pixel can then be
modelled as

r̂(fm,∆n) = λ(∆n)∆hit(fm)+
(
1−λ(∆n)

)
∆miss(fm), (6)

c© The Eurographics Association 2011.

107

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

() PSNR=67 / FPS=30ε1 () PSNR=58 / FPS=34ε2 () PSNR=43 / FPS=82ε3 () PSNR=33 / FPS=90ε4

Figure 8: Results of selecting different error thresholds in Figure 7. The intermediate value selected for caching (payload) is
shown next to the final rendered results (final shading). Higher error thresholds allow for substantial parts of the computation to
be cached, leading to better performance at the expense of quality.

where λ(∆n) = µ(1− 1/∆n) is an empirical model for the
cache hit-rate as a function of ∆n, and µ is obtained by fitting
this model to the training data.

Using these models, the system allows the developer to
specify a target average pixel error. It then automatically se-
lects the shader component that provides the greatest improve-
ment in performance without exceeding the error threshold.

Figure 7 shows the error/performance behavior associated
to caching several different intermediate computations per-
formed by a marble shader. This shader combines a marble-
like albedo modeled as five octaves of a 3D Perlin noise
function, with a simple Blinn-Phong specular layer. Figure 8
show the results of rendering under each choice of error tol-
erance, in terms of both quality and performance. As the
user selects larger error thresholds, the system reacts by se-
lecting larger portions of the computation for caching (see
the payload), eventually including even the view-dependent
lighting, at which point undesirable artifacts appear. Never-
theless, substantial performance improvements are possible
below an acceptable error threshold (see e3 running at a 2.8x
improvement).

4.2 Reprojection errors and their accumulation
The strategies we use to obtain the values of previous com-

putations (see Section 3) can themselves inject unwanted
errors. Although such errors are indirectly modelled by the
automatic method described above, here we present a sim-
plified analysis of this specific issue (see [YNS∗09] for an
alternative, more detailed presentation).

Due to camera and object motions, the corresponding po-
sitions of any given surface point in two consecutive frames
generally involve non-integer coordinates in at least one of
them. Reprojection strategies must therefore resample any
data that is moved between frames. Bilinear filtering is, by
far, the most commonly used resampling strategy in real-time
reprojection applications. Mappings between consecutive
real-time frames tend to exclude large minifications, mak-

ing trilinear filtering unnecessary. It is therefore important to
understand the impact of bilinear filtering on the quality of
reprojected data.

Although analyzing the effect of general motion across
multiple frames is impractical, the special case of constant
panning motion is easy to describe mathematically, particu-
larly in one dimension (recall other types of motion can be
approximated by translation, at least locally).

Assume we have information stored in a frame ft that we
want to resample to time t +1. Constant panning motion with
velocity v can be described by πt+1(p) = p− v, for every
point p and time t. Without loss of generality, assume the
velocity is in [−0.5,0.5]. The entire resampling operation can
be rephrased in terms of the discrete convolution

ft→t+1 = ft ∗
[
v (1-v)

]
(7)

= ft ∗ kv, (8)

where we used the notation ft→t+1 to represent the new frame
containing only reprojected data. Under our assumptions, the
behavior of reprojection is therefore controlled by the effect
of the convolution kernel kv = [v (1-v)].

For each different velocity v, and for each frequency ω, we
compute the amplitude attenuation and the phase error intro-
duced by kv. Resulting plots are shown in Figure 9, where
shaded regions represent values between the extremes. As we
can see from the plots, reprojection through bilinear resam-
pling tends to attenuate and misplace high-frequencies. Not
visible from the plot is the fact that the problem is particularly
extreme when v =±0.5 and that it disappears when v = 0
(as expected from the interpolation property).

The effect of repeated resampling can also be analyzed:

ft→t+n = ft→t+n-1 ∗ kv (9)

= ft ∗

n in total︷ ︸︸ ︷
(kv ∗ · · · ∗ kv) . (10)

The trick is to interpret kv as the probability mass function

c© The Eurographics Association 2011.

108

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Amplitude attenuation Phase error

-Π -

Π

2

0
Π

2

Π

0.2

0.4

0.6

0.8

1.0

-Π -

Π

2

Π

2

Π

-

Π

2

Π

2

Figure 9: Amplitude response and phase error associated to
translation by linear resampling. Note that largest amplitude
attenuation and phase error happens for high frequencies.

of a Bernoulli distribution with success probability v. The
distribution has a variance of σ

2 = v(1− v). Repeatedly con-
volving kv with itself amounts to computing the sum dis-
tribution. By the Central Limit Theorem, this quickly con-
verges to a Gaussian. By the sum property of variance, we
have σ

2
n = nv(1− v). The progressively low-pass nature of

repeated resampling then becomes obvious in the formula for
the variance.

There are several alternatives to prevent the excessive blur
introduced by repeated resampling from causing objection-
able rendering artefacts. For example, we can periodically
recompute values instead of relying on reprojection. This is in
fact the approach followed by Sitthi-amorn et al. [SaLY∗08b]
(Section 3.4). Another alternative is to replace bilinear resam-
pling with an alternative strategy that has better frequency
properties, such as the one proposed by Yang et al. [YNS∗09]
(Section 5.3). Finally, in the context of computation amor-
tization described in Section 3.5, we can also progressively
attenuate the contribution of older frames, thereby limiting
the maximum amount of visible blur.

5 Applications

5.1 Pixel shader acceleration

One of the direct uses of the reverse reprojection cache is
to accelerate expensive pixel shading computations [NSL∗07,
SaLY∗08a,SaLY∗08b]. The basic idea is to bypass part or all
computation of the original pixel shader whenever there are
previous shading results available in the cache, as described
in Section 3.4. Figure 4 shows the flow chart of this type of
shading acceleration.

In addition to the marble shader described in Section 4.1,
we show two more results of accelerating expensive pixel
shaders using the RRC [SaLY∗08b]. The first shader is a
Trashcan environmental reflection shader from ATI’s Toyshop
demo, which combines a simple base geometry with a high-
resolution normal map and environment map to reproduce the

10%

5%

0%

Figure 10: Additional examples of shading acceleration us-
ing RRC. Each image compares (top) an input pixel shader
to (bottom) a version modified to cache some partial shading
computations over consecutive frames. The shading error
after applying the cache is illustrated in the inset images.

appearance of a shiny trashcan. The shader combines 25 strat-
ified samples of an environment map using a Gaussian kernel
to attenuate aliasing artifacts. In this example, we found that
caching the sum of 24 samples of the possible 25 gives the
most effective speed up without introducing too much visi-
ble artifacts (see Figure 10 (left) for a comparison). In other
words, the modified shader evaluates 24 samples every fourth
frame (on average) and evaluates the single sample with the
greatest reconstruction weight at every frame. Indeed, this
shader is not particularly suited for using TC to accelerate,
because all of the calculations depend strongly on the camera
position and cached values quickly become stale. Neverthe-
less, RRC provides a 2.1× performance improvement at an
acceptable level of error.

The second shader computes an approximate object space
ambient occlusion at each pixel for a chessboard scene with
the king piece moving and the rest pieces static. The basic
idea is to approximate the scene geometry as a collection
of discs which are organized in a hierarchical data structure
and stored as a texture. As each pixel is shaded, this data
structure is traversed to compute the percentage of the hemi-
sphere that is occluded. This calculation is combined with a
diffuse texture and a Blinn-Phong specular layer to produce
the final color. In this particular scene, the ambient occlusion
calculation is carried out by summing the contribution of the
king chess piece separately from the other pieces. We found
that caching the portion of the ambient occlusion calcula-
tion that accounts for only the static pieces gives the best
result. In other words, the contribution of the moving king
and the remaining shading are recomputed at every frame.
This provides a 8× speed-up for a marginal level of error and
is demonstrated in Figure 10 (right). Caching more compu-
tations such as the entire ambient occlusion calculation will
lead to visible error in the result although the speed-up factor
is also larger (15× or more).

5.2 Multi-pass effects

Effects such as motion blur and depth-of-field are most
easily understood and implemented as the accumulation of a
series of frames, respectively rendered under slight variations
in animation time or camera position, relative to a central

c© The Eurographics Association 2011.

109

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

frame [HA90]. Although rendering and accumulating mul-
tiple frames in order to produce a single output frame may
seem prohibitively expensive, the small magnitude of vari-
ation in input parameters between each accumulated frame
leads to large amounts of coherence between them. This
coherence has been successfully exploited in the context
of image-based rendering [CW93], ray-traced animation se-
quences [HDMS03], and more recently in real-time render-
ing [NSL∗07, YWY10]. Imperfections tend to be hidden by
the low-pass nature of these effects, leading to images that
are virtually indistinguishable from the brute-force results.
The savings in rendering cost can be used to either increase
quality by raising the number of accumulated frames, or to
increase the frame rate for a fixed quality setting.

The real-time approach proposed in [NSL∗07] starts by
completely rendering a central frame into a buffer. Then,
when rendering the accumulated frames, shading information
is obtained from the central frame by reverse reprojection.
The extent to which performance is improved depends on the
relative cost between rendering the central frame (geometry
+ shading) and rendering each accumulated frame (geom-
etry + cache-lookup). This is because reverse reprojection
requires rasterizing the geometry of each accumulated frame
(see Section 3.1). Improvements are therefore limited when
geometry is complex and shading is relatively simple. Yu
et al. [YWY10] propose to use forward reprojection (Sec-
tion 3.2) in order to decouple this overhead from geometry
complexity. They also apply a blurring pass to the reprojected
frames before accumulation, so that the undersampling and
disocclusion artifacts are attenuated.

Another rendering scenario that is closely related to depth-
of-field is stereographic rendering. Two views are rendered
from the same scene, one from the viewpoint of each eye of
a virtual observer. Then, one of many different methods is
used to expose each of the user’s eyes to the corresponding
image (e.g. shutter glasses, polarization filters), leading to
the perception of depth. Stereographic rendering has recently
gained increased attention given the success of 3D cinemato-
graphic productions as well as the increased availability of
3D-capable consumer hardware (TV sets, portable videogame
consoles etc).

One way to avoid the doubling of cost-per-frame that
would result from the brute-force approach to stereographic
rendering is to instead render only one frame from the stereo
pair and then warp it to produce the other frame. This is a
well established idea that was successfully used in the context
of stereographic ray-tracing [AH93] (where rendering cost
was extremely high) and in stereographic head-tracked dis-
plays [MB95] (where warping was used to efficiently update
a previously rendered stereo pair to compensate for user head
movements).

Since per-pixel depth information is a natural by-product
of real-time rendering, generating the mapping between two
stereo views is particularly easy. The challenges are in the

design of an efficient warping procedure that adapts to sharp
features and attenuates any artefact resulting from surface
points that are only visible from one of the viewpoints.

One way to perform this operation is to rely on an adaptive
warping grid [DRE∗10] (see Section 3.2) to transform one
view into another. Didyk et al. further propose to exploit tem-
poral coherence, by analyzing the camera movement from
one frame to the next. Depending on the camera movement
and the previously computed frame, it can be more advanta-
geous to render and then warp either the left or the right eye
view. E.g., imagine a panning motion from left to right. Here,
a right eye view in frame i might be very close to a left eye
view in frame i+1. Consequently, it makes sense to render
the right eye view in frame i+1. The rendered frame and the
previous are then warped to produce a left eye view for frame
i+1. In particular, for a static camera and scene, the result is
indistinguishable from a two-view rendering.

5.3 Shading antialiasing
One of the direct applications of amortized sampling (Sec-

tion 3.5) is to supersample procedural shading effects, which
usually contain high-frequency components that are prone
to aliasing artifacts. By accumulating jittered samples gener-
ated in previous frames using amortized sampling, the extra
frequency bands can be effectively suppressed. However,
supersampling usually requires a small exponential smooth-
ing factor α in order to gather sufficient samples. This has
an undesired side effect that the running estimate can be
overblurred because of excessive repeated resampling of the
cache (Section 4.2).

Yang et al. [YNS∗09] propose to keep a higher-resolution
(2×2) running average in order to counteract this overblur-
ring artifact. To reduce the overhead of maintaining such a
high-resolution buffer, they store the 2×2 quadrant samples
of each pixel into four subpixel buffers {bk}, k ∈ {0,1,2,3}
using the interleaved sampling scheme. Each subpixel buffer
is screen sized and manages one quadrant of a pixel. These
subpixel buffers are updated in a round-robin fashion, i.e.
only one per frame.

Reconstructing a subpixel value from the four subpixel
buffers involves more work. Note that in the absence of scene
motion, these four subpixel buffers effectively form a higher-
resolution framebuffer. However, under scene motion, the
subpixel samples computed in earlier frames reproject to off-
set locations. Conceptually, Yang et al. [YNS∗09] forward
reproject all the previous samples into the current frame and
compute a weighted sum of these samples using a tent ker-
nel, as indicated in Figure 11. This effectively reduces the
contribution of distant samples and limits the amount of blur
introduced. It also correctly handles both static and moving
scenes simultaneously.

In addition to the higher resolution buffer, they also pro-
pose empirical methods to estimate reconstruction errors as
well as the amount of signal change in real-time, and limit α

c© The Eurographics Association 2011.

110

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 11: Sampling from multiple subpixel buffers. To prop-
erly reconstruct the quadrant value, Yang et al. [YNS∗09]
use nonuniform blending weights defined by a tent function
centered on the quadrant being updated. (a) In the absence
of local motion, only the correct pixel has non-zero weight in
the tent, so no resampling blur is introduced; (b) For a mov-
ing scene, the samples are weighted using the tent function,
and higher weights are given to samples closer to the desired
quadrant center to limit the amount of blur.

accordingly such that a minimum amount of refresh is guar-
anteed. The reconstruction error is estimated by deriving an
empirical relationship between the fractional pixel velocity
v, α, and the error. Signal change, on the other hand, is es-
timated by a smoothed residual between the aliased sample
and the history value. The user set thresholds for both errors,
and the bounds for α are computed based on the error values.

Figure 12 shows the result of applying amortized sampling
to antialiasing a horse-checkboard scene, which includes an
animated wooden horse galloping over a marble checkered
floor. The result using 4×4 subpixel buffers shows significant
improvement over regular amortized sampling (1× viewport-
sized cache), with only a minor sacrifice of speed. In fact, the
PSNR shows that this technique offers better quality when
compared to the conventional 4×4 stratified supersampling,
which runs at a six times lower framerate.

5.4 Shadows

Shadows are widely acknowledged to be one of the global
lighting effects with the most impact on scene perception.
They are perceived as a natural part of a scene and give
important cues about the spatial relationship of objects.

Due to its speed and versatility, shadow mapping is one of
the most used real-time shadowing approaches. The idea is to
first create a depth image of the scene from the point of view
of the light source (shadow map). This image encodes the
front between lit and unlit parts of the scene. On rendering
the scene from the point of view of the camera each fragment
is transformed into this space. Here the depth of each trans-
formed camera fragment is compared to the respective depth
in the shadow map. If the depth of the camera fragment is
nearer it is lit otherwise it is in shadow (see Figure 13).

HORSE SCENE Amort1× mov (88fps, 23dB) Amort4× mov (64fps, 31dB)

No AA (140fps, 16dB) Reference Amort4× still (64fps, 40dB)

Figure 12: Comparison between no antialiasing, amortized
supersampling with viewport-size cache (Amort1×), amor-
tized supersampling with improved 2× 2 subpixel buffers
(Amort4×), and the ground-truth reference result for a
horse-checkerboard scene [YNS∗09]. The 4× still image
approaches the quality of the reference result, whereas the
motion result provides an acceptable approximation without
overblurring.

Figure 13: If the rasterization of the shadow map changes
(here represented by a right shift), the shadowing results may
also change. On the left three fragments are in shadow, while
on the right five fragments are in shadow. This results in
flickering or swimming artifacts in animations.

5.4.1 Pixel correct shadows

The most concerning visual artifacts of shadow mapping
originate from aliasing due to undersampling. The cause for
undersampling is in turn closely related to rasterization that
is used to create the shadow map itself. Rasterization uses
regular grid sampling for rasterization of its primitives. Each
fragment is centered on one of these samples, but is only
correct exactly at its center. If the viewpoint changes from
one frame to the next, the regular grid sampling of the new
frame is likely to be completely different than the previous
one. This frequently results in artifacts, especially noticeable

c© The Eurographics Association 2011.

111

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

for thin geometry and the undersampled portions of the scene
called temporal aliasing.

This is especially true for shadow maps. Due to shadow
map focusing, a change in the viewpoint from one frame
to the next also changes the regular grid sampling of the
shadow map. Additionally the rasterized information is not
accessed in the original light-space where it was created, but
in eye-space, which worsens these artifacts. This frequently
results in temporal aliasing artifacts, mainly flickering (See
Figure 13).

The main idea in [SJW07] is to jitter the view port of
the shadow map differently in each frame and to combine
the results over several frames, leading to a higher effec-
tive resolution. Figure 15 shows the gradual refinement after
accumulating results from multiple frames.

Exponential smoothing as described in Section 3.5 is em-
ployed here on the shadow map tests st [p]. This serves a dual
purpose. On the one hand temporal aliasing can be reduced
by using a small smoothing factor α. On the other hand, the
shadow quality can actually be made to converge to a pixel-
perfect result by optimizing the choice of the smoothing
factor.

Figure 14: LiSPSM (left) gives good results for a shadow
map resolution of 10242 and a view port of 1680× 1050,
but temporal reprojection (middle) can still give superior
results because it uses shadow test confidence, defined by the
maximum norm of shadow map texel center and current pixel
(right).

The smoothing factor α allows balancing fast adaption
on changing input parameters against temporal noise. With
a larger smoothing factor, the result depends more on the
new shadow results from the current frame and less on older
frames and vice versa. To this end, the smoothing factor
is determined per-pixel according to the confidence of the
shadow lookup. This confidence is defined to be higher if
the lookup falls near the center of a shadow map texel, since
only near the center of shadow map texels it is very likely
that the sample actually represents the scene geometry (see
Figure 14). In the paper the maximum norm of the current
pixel p and the shadow map texel center c is used to account
for this

conf = (1−max(|px− cx| , |py− cy|) ·2)m , (11)

but other norms could be used as well. The parameter m
defines how strict this confidence is applied. m < 4 results in
fast updates were most shadow map lookups of the current

frame have a big weight and the resulting shadow has noisy
edges. m > 12 results in accurate but slow updates were most
lookups from the current frame have small weight.

The authors found out that m should be balanced with cam-
era movement. When the camera moves fast m can be small
because noise at the shadow borders is not noticed. Only for
a slowly moving camera or a still image are higher values of
m necessary. This is motivated by the human visual system,
which tends to integrate over motion, thereby allowing for
noisier edges when strong movement is present. This confi-
dence can now be directly used in the exponential smoothing
formula (see Section 3.5)

ft [p]← (conf)st [p]+ (1− conf) ft-1
(
πt-1(p)

)
. (12)

Figure 15: Shadow adaption over time of an undersam-
pled uniform shadow map after 0 (top-left), 1 (top-middle),
10 (top-right), 20 (bottom-left), 30 (bottom-middle) and 60
(bottom-right) frames.

5.4.2 Soft shadows
In reality most light sources are area light sources and

hence most shadows exhibit soft borders. Light source sam-
pling [HH97] creates a shadow map for every sample (each
on a different position on the light source) and calculates the
average (= soft shadow) of the shadow map test results si for
each pixel (see Figure 16). Therefore, the soft shadow result
from n shadow maps for a given pixel p can be calculated by

ψn(p) =
1
n

n

∑
i=1

si(p). (13)

The primary problem here is that the number of samples
(and therefore shadow maps) to produce smooth penumbrae
is huge. Therefore this approach can be inefficient in practice.
Typical methods for real-time applications approximate an
area light by a point light located at its center and use heuris-
tics to estimate penumbrae, which leads to soft shadows that
are not physically correct (see Figure 17, left). Here overlap-
ping occluders can lead to unnatural looking shadow edges,
or large penumbrae can cause single sample soft shadow
approaches to either break down or become very slow.

One observation is that the shadow sampling can be
extended over time. It is for example possible to change
the sampling pattern on the source in each frame, hereby
trading aliasing artifacts with less objectionable random

c© The Eurographics Association 2011.

112

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 16: Light sampling with 1, 2, 3 and 256 shadow maps
(left to right).

noise. This is particularly easy to achieve for symmet-
ric light sources [ED07b, SEA08]. More generally, light
source area sampling can be formulated in an iterative man-
ner [SSMW09], by evaluating only a single shadow map per
frame. Reformulating Equation 13 gives

ψ(p) = s(p)+Σ(p)
n(p)+1

Σ(p) =
n(p)

∑
i=1

si(p). (14)

were s(p) is the hard shadow map result for the current frame
and pixel and n(p) is the number of shadow maps evaluated
until the last frame for this pixel. Note that now n depends on
the current pixel because dependent on how long this pixel
has been visible, a different number of shadow maps may
have been evaluated for this pixel. Calculation of this formula
is straight forward if n(p) and Σ(p) are stored in a buffer
(another instance of the RRC: see Section 3.1). With this
approach, the soft shadow improves from frame to frame and
converges to the true soft shadow result if pixels stay visible
"long enough" (see Figure 18, upper row).

In practice this can result in temporal aliasing for small n.

Figure 17: Left side: PCSS 16/16; Overlapping occlud-
ers (upper row) and bands in big penumbras (lower row)
are known problematic cases for single-sample approaches.
Right side: soft shadows exploiting TC

Figure 18: Convergence after 1,3,7,20 and 256 frames; upper
row: sampling of the light source one sample per frame; lower
row: soft shadows with TC.

Figure 19: Structure of the soft shadows with TC algorithm.

Care has to be taken how to manage those cases. When a pixel
becomes newly visible and therefore no previous information
is available in the RRC, a fast single sample approach (PCSS
with a fixed 4x4 kernel) is employed to generate an initial
soft shadow estimation for this pixel. For all other n the
expected standard error is calculated and if it is above a
certain threshold (expected fluctuation in the soft shadow
result in consecutive frames) a depth-aware spatial filter is
employed to take information from the neighborhood in the
RRC into account (see Figure 19). This approach largely
avoids temporal aliasing and can be nearly as fast as hard
shadow mapping if all pixels have been visible for some
time and the expected standard error is small enough (see
Figures 18 and 17).

c© The Eurographics Association 2011.

113

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

5.5 Global Illumination
It is a major goal of real-time research to achieve plausible

(and in the long run, physically correct) global illumination.
In this section, we present several techniques that explore
TC in the attempt to approximate global illumination effects
in real-time. Many techniques can be found in the excellent
survey by Damez et al. [DDM03]. Nonetheless, the focus is
often on off-line solutions or it is assumed that knowledge of
subsequent keyframes is available. For interactive rendering
this is not always achievable and it is difficult to exploit
such algorithms on current GPUs that are in the focus of our
overview.

The radiance emitted from point p into direction ω can be
described by the rendering equation [Kaj86, ATS94]

L(p,ω) = Le(p,ω)+
1
π

∫
Ω

fr(p,ω′,ω)Li(p,ω′)(np ·ω′)dω
′.

(15)
Ω denotes the space of all hemispherical directions, Le is the
self emission, fr is the bidirectional reflectance distribution
function (BRDF), Li is the incident light from direction ω

′,
and np is the surface normal.

Global illumination algorithms often use Monte-Carlo sam-
pling to evaluate this multi-dimensional integral in a feasible
way. We can exploit TC between consecute frames, e.g., by
spreading the evaluation of the integral over time.

5.5.1 Screen-space ambient occlusion
Ambient occlusion [CT81] is a cheap but effective approx-

imation of global illumination which shades a pixel with
the percentage of the hemisphere that is blocked. It can be
seen as the diffuse illumination of the sky [Lan02]. Ambient
occlusion of a surface point p is computed as

AO(p,np) =
1
π

∫
Ω

V (p,ω′)
(
np ·ω′

)
dω
′. (16)

V is the inverse binary visibility function, with V (p,ω′) = 1
if the visibility in this direction is blocked by an obstacle, 0
otherwise.

Screen-space ambient occlusion (SSAO) methods [Mit07]
sample the frame buffer as a discretization of the scene geom-
etry. These methods are of particular interest for real-time ap-
plications due to the fact that the shading overhead is mostly
independent of scene complexity, and several variants of
SSAO have been proposed since [FC08, BSD08, SKUT∗10].
We assume that any SSAO method can be written as an aver-
age over contributions C depending on a series of samples si:

SSAOn(p) =
1
n

n

∑
i=1

C(p,si), (17)

where a typical contribution function for a single SSAO sam-
ple can be

C(p,si) =V (p,si)max(cos(si−p,np),0). (18)

si is an actual sample point around p, and V (p,si) is now a

Figure 20: SSAO without TC using 32 samples per pixel with
(a) a weak blur, (b) a strong blur (both 23 FPS), (c) temporal
SSAO using 8–32 samples (initially 32, 8 in a converged state)
(45 FPS). (d) Reference solution using 480 samples (2.5 FPS).
The scene has 7M vertices and runs at 62 FPS without SSAO.

binary visibility function that is resolved by evaluating the
depth test for si.

Reverse reprojection allows us to cache and reuse previ-
ously computed SSAO samples. The properties of SSAO (rel-
atively low-frequency, independence from light-source, local
support of the sampling kernel) are beneficial for using TC,
as it was already demonstrated in commercial games [SW09].
In the following we discuss the temporal SSAO (TSSAO)
method of Mattausch et al. [MSW10], who focus on improv-
ing the accuracy and visual quality of SSAO for an equal
number of samples per frame or less, and introduce an invali-
dation scheme that handles moving objects well.

A comparison of conventional SSAO with TSSAO is
shown in Figure 20. The noisy appearance of a coarse SSAO
solution that uses only a few samples (image a) can be im-
proved with a screen-space spatial discontinuity filter. How-
ever, the result of this operation can be quite blurry (image
b). As long as there is a sufficient history for a pixel, TSSAO
produces smooth but crisp SSAO without depending on heavy
post-processing (image c).

c© The Eurographics Association 2011.

114

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

s2s1

s3

s4
p

s2 t-1

s1 t-1

s3 t-1

s4 t-1pt-1

Frame t-1

Frame t

|s
2 t-1 -p

t-1 |

|s
2 -p|

reproject

s2 t-1

Figure 21: The distance of p to sample point s2 in the current
frame differs significantly from the distance of pt−1 to s2t−1

in the previous frame, hence we assume that a local change
of geometry occurred, which affects the shading of p.

Integration over time: In frame t, we calculate a new con-
tribution Ct from k new SSAO samples.

Ct(p) =
1
k

jt (p)+k

∑
i= jt (p)+1

C(p,si), (19)

where j f (p) counts the number of unique samples that have
already been used in this solution. We combine the new con-
tribution with the previously computed solution

SSAOt(p) =
wt−1(pt−1)SSAOt−1(pt−1)+ kCt(p)

wt−1(p)+ k
(20)

wt(p) = min(wt−1(pt−1)+ k,wmax). (21)

The weight wt−1 represents the number of samples that have
already been accumulated in the solution, until wmax has
been reached. The solution converges very quickly, and this
predefined maximum controls the refresh rate, and ensures
that the influence of older contributions decays over time.

Note that for TSSAO, spatial filtering only has to be ap-
plied in regions where the solution has not sufficiently con-
verged. This is done by shrinking the screen-space filter
support proportionally to the convergence wn/wmax. The re-
sults of the filtering can be further improved by making it
convergence-aware, i.e., assigning higher weights to suffi-
ciently converged filter samples.

Detecting changes: Special attention must be paid to the
detection of cache misses (i.e., pixels with an invalid SSAO
solution). A cached value of a pixel is invalid if either one of
the following three conditions has occurred: 1) a disocclusion
of the current pixel, 2) the pixel was previously outside the
frame buffer. 3) a change in the sample neighborhood of the
pixel. Case 1) and case 2) can be handled like conventional
cache misses as described previously in Section 3.3. However,
we additionally have to check for case 3), because nearby

Figure 22: Moving dragon model using no invalidation (left,
causing severe artifacts in the shadow), and using an invali-
dation factor set to a proper value (right, no artifacts).

changes in the geometry can affect the shading of the current
pixel.

Checking the complete neighborhood of a pixel would be
prohibitively expensive, and therefore we use sampling (i.e.,
we simply reuse the available set of samples generated for
computing Ct(p)). We can estimate the validity of reusing
sample position sit−1 in the current frame by evaluating a
measure of change with respect to the configuration of p
relative to si between frame t − 1 and t. As illustrated in
Figure 21, we compute the distance differences

δ(si) = ||si−p|− |sit−1 −pt−1||. (22)

as our measure of change. Note that we could have addi-
tionally used the angular differences (i.e., |cos(si−p,np)−
cos(sit−1 − pt−1,npt−1 |). In this case however, we would
have to store the surface normals of every pixel in the previ-
ous frame. It is sufficient to use those samples that lie in front
of the tangent plane of p for the neighborhood test, since only
those samples actually modify the shading.

Smooth invalidation: Consider for example a slowly de-
forming surface, where the SSAO will also change slowly. In
such a case it is not necessary to fully discard the previous
solution. Instead we introduce a new continuous definition of
invalidation that takes a measure of change into account. This
measure of change is given by δ(si) at validation sample po-
sition si, as defined in Equation 22. In particular, we compute
a confidence value conf(si) between 0 and 1. It expresses the
degree to which the previous SSAO solution is still valid:

conf(si) = 1− 1
1+Sδ(si)

. (23)

The invalidation factor S is a parameter which controls
the smoothness of the invalidation. The overall confi-
dence conf(p) in the previous SSAO solution is given by
min(conf(s0), ..,conf(sk)). This value is used to attenuate
the weight wt given to the solution of the previous frame in
Equation 21.

Figure 22 shows the effect of the invalidation and smooth
invalidation factor on a scene with a moving object. Setting
the invalidation factor S to (15≤ S≤ 30) usually gives good
results.

c© The Eurographics Association 2011.

115

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 23: (Left) Instant radiosity shoots paths from the light
source, and creates virtual point lights at the intersection with
geometry. (Middle) Using shadow maps, the visibility of each
VPL and their contribution to the current image is determined.
(Right) Temporal coherence: When the view point or light
source moves, one of the VPLs becomes invisible from the
light source, all the others are reused. Image courtesy of
Samuli Laine.

5.5.2 Instant radiosity
Instant radiosity [Kel97] is a hardware-friendly global illu-

mination method that computes so called virtual point lights
(VPLs) along the intersections of a light path with a surface,
and uses them for indirect scene illumination. The visibility
is resolved by computing an individual shadow map for each
VPL. The shadow map computation is also the main bottle
neck of the algorithm, as it requires to sample the scene many
times for a reasonable number of VPLs. This drawback pre-
vents real-time frame rates for the original version of this
algorithm. In the following we will demonstrate how to use
object-level and pixel-level TC to improve performance and
visual quality of this important global illumination algorithm.

Incremental instant radiosity: By reusing VPL visibility
over time, Laine et al. [LSK∗07] exploit object-level TC to
reach real-time frame rates. For the sake of performance, this
algorithm only computes first-bounce indirect illumination,
which is sufficient in most cases. Nevertheless, hundreds of
shadow maps are needed for convincing global illumination.
In order to keep the number of VPL computations per frame
feasible for real-time purposes, this algorithms reuses the
valid VPLs from the last frame and recomputes only a small
budget of invalid shadow maps in a frame. A VPL stays valid
if it is within the light frustum and is not occluded from the
light source (which is tested with a ray caster). The algorithm
is visualized in Figure 23.

The main task of this algorithm is to incrementally keep
a good distribution of the VPLs during consecutive frames.
Assuming a 180◦ spotlight, we use the fact that a cosine-
weighted distribution on a hemisphere corresponds to a uni-
form distribution on a disc (shown in Figure 24). In order
to manage the VPL distribution on the unit disc, the algo-
rithm creates a 2D Delaunay triangulation. To choose the
best position for new VPLs, we minimize dispersion, which
is computed as the radius of the largest empty circle that
contains no sample points. In case of omni-directional light
sources, we operate on the unit sphere instead of the unit disc.

Note that the algorithm captures changes in the scene with

Figure 24: An uniform distribution on the unit disc corre-
sponds to a cosine-weighted distribution on a hemisphere.
The VPL management aims to keep the uniformity of the
VPLs on the unit disc while recomputing a budget of VPLs
per frame. Image courtesy of Samuli Laine.

a certain latency, and shadows cast from dynamic objects are
not supported. The authors report a speedup from 1.4–6.8 for
different scenes and resolutions. In their tests, they fixed the
number of VPLS to 256 and the recomputation budget to 4–8
VPLs.

Imperfect shadow maps: Based on the observation that
coarse visibility is sufficient for low-frequency global illumi-
nation, Ritschel et al. [RGK∗08] significantly accelerate the
VPL generation for instant radiosity. They use a point-based
scene representation, and distribute these points among the
VPLs to generate so called imperfect shadow maps. While
each shadow map is sampled with only a coarse subset of
scene points, holes can be closed with a push-pull algorithm.
This method allows hundreds of shadow map-based visibility
queries per frame in at least interactive time.

However, even such a large number of queries are insuffi-
cient to avoid typical undersampling artifacts, e.g., resulting
in flickering between frames if the VPLs are recomputed.
In order to improve the visual quality and reduce these arti-
facts, it is straightforward to combine the imperfect shadow
mapping approach with temporal reprojection.

The main problem of using TC for global illumination is
the global nature of changes of the lighting conditions and the
scene configuration – some tradeoff between smoothing and
correctness is inevitable and a satisfactory general solution
is hard to find. Knecht et al. [KTM∗10] chose to use a con-
fidence value instead of a binary threshold for invalidation.
In particular, the confidence in reusing a previous solution is
guided by the amount of change of a pixel between the previ-
ous and current frame. They introduce a couple of parameters
of a rather ad-hoc nature:

εpos = ||(xt − xt−1;yt − yt−1;dt −dt−1)wp||
εnorm = (1−n ·nprev)wn

εill = saturate(||It − It−1||3)wi

con f = saturate(1−max(εpos;εnorm;εill))cB. (24)

c© The Eurographics Association 2011.

116

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 25: Imperfect shadow maps still show some artifacts
with 256 VPLS, which can be smoothed out using TC. Image
courtesy of Martin Knecht.

The first equation computes a distance value using screen-
space position and depth, the second equation takes the dif-
ferences in the normals into account, the third the difference
in the illumination values. The weights wp, wn, and wi are
highly scene dependent and require fine tuning of the user.
The final confidence is computed as the maximum of these
measures multiplied with some base confidence cB, and is
then used as the weight of a standard exponential smoothing
operation (see Section 3.5).

As can be seen in Figure 25, TC improves the quality
and reduces the noise (resulting in distracting flickering ar-
tifacts during animations). Due to the low frequency nature
of indirect illumination, the motion blur like artifacts caused
by moving light sources and animated objects are not very
distracting in the general case.

5.6 Spatio-temporal upsampling
In addition to TC, spatial coherence may also exist within

shading signals (e.g. low-frequency diffuse shading). Herzog
et al. [HEMS10] propose a spatio-temporal upsampling tech-
nique that exploits temporal and spatial redundancy. Strong
temporal changes (e.g., moving lights) are handled with spa-
tial upsampling, while constancy is exploited to ensure a
high-quality convergence via temporal upsampling. Such
spatio-temporal filtering is often applied for video restora-
tion [Tek95, BM05] and can also be used to suppress aliasing
artifacts [Shi95].

The basic approach of spatio-temporal upsampling follows
a joint- or cross- bilateral upsampling [TM98, SB95, ED04,
PSA∗04, KCLU07] scheme:

ft(p) =
1

∑wswtw f

T

∑
q=0

∑
j∈N{pq}

ws(pq, j) wt(pq, j) w f (q) f l
t−q(ĵ), (25)

whereN describes a spatial neighborhood around a pixel and
q is an index that indicates the frames over time. Hence, the
double summation takes space and time into account. ws is a
spatial weight that evaluates world-space distance and simi-
larity of samples based on surface properties such as normals
or material indices. wt is a binary occlusion test (checking
whether the reprojected pixel pq = πt-q(p) is actually visible

in the corresponding frame). w f describes a temporal fade-
out that reduces the influence of older pixels. 1

∑ wswt w f is a
normalization term that normalizes the weighting coefficients.
f l
t−q are low resolution frames that were created using an

interleaved pixel refresh at time t − q and consequently, ĵ
describes the corresponding position of the position j in the
low resolution image. While, in theory, it seems that many
previous frames have to be kept in memory, choosing expo-
nential weights allows for an accumulation in a single history
buffer [HEMS10].

Nonetheless, when involving samples from previous
frames, it is important to detect which pixel shading values
are still useful for the current frame. E.g., for a fast mov-
ing light, shadows might change their location and easily
pollute a temporal integration. In order to capture these ef-
fects, Herzog et al. propose to examine the temporal gradient
of the previously-constructed frame and the only spatially-
upsampled current frame. If the gradient is low, more con-
fidence is given to temporal weights, if not, the algorithm
favors spatial upsampling techniques to produce the final
high-quality version of the current frame. The intuition is
simple. If a region of an image changed little over time,
it is useful to exploit more samples from previous frames.
Nonetheless, if strong changes occurred, older values should
be considered unreliable. In order to make this solution more
robust to outliers, a temporal smoothing is applied to the
gradient.

Each low-resolution shading frame f l
t−q is produced using

interleaved sampling, meaning that the camera changed to
ensure that when putting all low resolution images together,
one can actually produce a complete high-resolution render-
ing without artifacts. In practice, the temporal fadeout makes
it impossible to ensure a perfect match, but the quality is still
higher than for spatial or temporal upsampling alone.

5.7 Frame interpolation

Frame interpolation is widely applied in video encoding
and uses temporal redundancy to allow for a better compres-
sion behavior. We will investigate compression and streaming
briefly in Section 5.10. Here, we analyze a second reason to
employ frame-interpolation strategies: hold-type blur.

Nowadays, hold-type displays, such as LCD screens, show
an image over a longer period of time instead of flashing it on
the screen. The resulting perceptual effects are very interest-
ing. In fact, moving content is perceived blurred because the
eye tracks the content over the screen. During the eye motion,
the image content stays partly constant (due to an insufficient
framerate) which leads to an integration of the image on the
retina (not unlike motion blur) [KV04]. For a long time, a lot
of the blur perception was wrongly attributed to the display’s
response time, but Pan et al. [PFD05] showed that only 30 %
of the perceived blur are a consequence of it. The remaining
70 % are mostly a result of hold-type blur. Especially for low
frame rates this effect can have dramatic consequences and re-

c© The Eurographics Association 2011.

117

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

duce the image quality drastically [Jan01], but even reaction
times decrease and task performance is reduced [DER∗10b].

Modern TVs try to optimize image quality by employing
interpolation schemes [FPD08]. While an accurate interpo-
lation and matching of content over time can become very
difficult for a TV set because optical flow is challenging to
compute robustly, a rendering context offers many advantages
because the problem becomes actually much simpler. It is
possible to derive accurate velocity and geometric informa-
tion from a scene by simply rendering it into a buffer. Hereby,
one can avoid approximate image-based estimates. TV sets
are still successful in many cases because, at high frame rates,
the precision of our perception is reduced. Consequently, in-
termediate images do not have to exhibit the same quality as
key frames.

Didyk et al. [DER∗10b] build upon the observation that
intermediate frames can be of lower quality and exploit the
effect algorithmically. They produce a high-frame rate se-
quence that is then directly fed unaltered to a high-refresh
LCD screen.They rely on one key observation which is that
the human visual system spreads high-frequencies of one
frame over succeeding blurred frames if a sufficiently high
frame rate is reached [TV05]. Hereby, they can hide poten-
tial artifacts in warped frames. Precisely, they extrapolate a
given image and blur all parts of the warped image that might
potentially exhibit a reduced image quality. The frequencies
that are lost by the blurring process in the extrapolated frames
can be compensated for in the unwarped original frame. In
the affected regions, the amplitude of the high frequencies is
increased according to the blur that is applied to the succes-
sive frames. Because artifacts are hidden by the blur, a very
cost-effective grid warping strategy can be used. This grid
is deformed by velocity vectors that are directly extracted
from the scene and a snapping process ensures that the main
discontinuities are respected. The technique is successful
enough to enable the addition of two intermediate frames. In
other words, a 40 Hz sequence can be transformed into a 120
Hz output that is almost indistinguishable from an actually-
rendered 120 Hz sequence, which was confirmed by a user
study.

Andreev [And10] also applies a temporal upsampling
scheme, but makes use of a more costly warping strategy.
They target only a single in-between frame to successfully
transform 30 Hz sequences to 60 Hz. The idea is to rely again
on a frame extrapolation, but to further separate static and
dynamic content. Static elements are usually well handled by
warping strategies, but dynamic objects can hide – and when
warped, unveil – important parts of the scene. Consequently,
holes can appear in the extrapolated frames. Andreev pro-
poses to copy static pixel patches from the neighborhood to
fill up these holes. The dynamic content is then added on top
of the final shot. The algorithm is useful and well-adapted
for current game consoles (XBox, PS3). It finds application
in several shipping game titles which shows its practical

Figure 26: Examples of stylizing a frame from a rendered
3D animation of a tank scene (left) and a 3D animation of a
lizard with a still photograph in the background (right).

relevance. Andreev [And10] also explored a solution that
interpolates between two frames which gave more accurate
results, but found that it had the drawbacks that it required
more computational resources and added an extra frame of
latency.

5.8 Non-photorealistic rendering
Real-time reprojection has also been used by a non-

photorealistic rendering (NPR) system that converts ani-
mated scenes to artistic brush stroke renderings of different
styles [LSF10]. Computing a new set of NPR strokes from
scratch in each frame of an animation sequence results in sig-
nificant flickering artifacts. Instead, the algorithm maintains
temporal coherence by treating brush strokes as particles and
advecting the vast majority of them accoding to the scene
motion.

In order to advect brush strokes, the algorithm generates a
buffer that stores per-pixel forward motion vectors for the an-
imated scene. This buffer can be efficiently computed on the
GPU by using reprojection to calculate the forward motion
vector from frame t−1 to frame t in the vertex shader. The
motion vector is interpolated by the hardware and provided
as input to the pixel shader. Much like traditional reprojec-
tion, the pixel shader homogenizes the motion vector and
then outputs the result to the render target in the clip space
of frame t− 1. Finally, each brush stroke particle uses this
motion vector buffer to forward reproject its position from
frame t−1 to frame t. Figure 26 shows examples of synthetic
scenes rendered with this system.

5.9 Discrete LOD blending
The idea behind discrete level-of-detail (LOD) techniques

is to use a set of representations with differing complexities
(level-of-detail) for one model and select the most appropri-
ate representation for rendering at runtime. Complexity can
for instance vary in the employed materials or shaders or in
the amount of triangles used. Due to memory constrains and
the effort in creating them only a small number of LODs is
being used and therefore switching from one representation
to another can lead to noticeable popping artifacts. A theo-

c© The Eurographics Association 2011.

118

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

retical solution would be to switch only when the respective
pixel output of two representations is indistinguishable. This
so called late switching has practical problems. First, it is
hard to guarantee equality in pixel output for a given view
scenario and lighting without rendering both representations
first, which of course defeats the purpose. Second, the idea
of switching as late as possible counteracts the potential gain
of employing LODs in the first place. In practice switching is
done as soon as "acceptable".

Figure 27: LOD interpolation combines two buffers contain-
ing the discrete LODs to create smooth LOD transitions. First
and second column: buffers; last column: combination. The
top row shows the two LODs in red and blue respectively.

A more practical solution to this problem proposed by
[GW06] is to include a transition phase during which both
LODs are rendered and then blended into the final im-
age [GW06]. Apart from other problems, this approach re-
quires that the geometry (and the shaders) of both LODs have
to be rendered in this transition phase, thereby generating
a higher rendering cost than the higher quality level alone
would incur. To circumvent this [SW08] have introduced
LOD interpolation (see Figure 27). The idea is that by using
TC the two LODs required during an LOD transition can be
rendered in subsequent frames. Two separate render passes
are used to achieve the transition phase between adjacent
LOD representations: Pass one renders the scene into an off-
screen buffer (called LOD buffer). For objects in transition
one of the two LOD representations is used and only a certain
amount of its fragments are rendered (see Figure 28), depend-
ing on where in the transition (i.e., how visible) this object
currently is. This is later repeated in the next frame using the
other LOD representation and rendering into a second LOD
buffer. The second pass combines these two LOD buffers (one
from the current and one from the previous frame) to create
the desired smooth transition effect.

To determine the number of fragments to render for a given
representation, so-called visibility textures are used. Each
encodes a visibility threshold function visTex(p)→ [0..1]
that maps the object-space coordinate (before any animation

fragments

LOD K+1LOD K

distance

all

0
transition

Figure 28: Transition phase from LODk to LODk+1:
left:LODk; middle: midway in the transition all fragments of
both LODs are drawn; right: LODk+1; Below: First LODk+1
is gradually introduced till all its fragments are drawn. Then
LODk is gradually removed by rendering fewer and fewer
fragments. The top two rows show the result of our method
and a false color illustration.

is applied) of a given fragment p to the fragments visibility
threshold.

This allows individual fragments to be discarded by com-
paring the output of this function to an objects visibility
threshold ι. ι encodes were in the transition phase a repre-
sentation currently is and is given by the transition function
depicted in Figure 28

Writing this process as a function gives discard : R3×
[0..1]→{true, f alse}

discard : (p, ι) 7→ visTex(p)< ι. (26)

Note that even though the visibility function may be contin-
uous, the thresholding operation gives a binary result and
therefore no semi-transparent pixels appear, which avoids
blending and the costly ordering of fragments.

By using different visibility textures, one can control in
which way the individual fragments of a given object become
visible. Examples include a uniform noise pattern, a function
that decreases from the center outward, or any other function
best suited to a given object. This has the effect that the
amount and distribution of the visible fragments of an object
can be controlled (see Figure 29). Also note that although
visTex is given as a 3D function it is often not necessary to
store it in a 3D texture, as can be seen by the noise texture
example.

c© The Eurographics Association 2011.

119

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 29: A uniform noise visibility texture (left) applied to
two different models with visibility ι = 0.5).

5.10 Streaming

Remote rendering

Remote rendering is a current trend that receives an in-
creasing attention. Many companies such as OnLive, OTOY
or Gaikai focus on the particular topic of game streaming. In
such a scenario it is more than important to exploit TC in
order to reduce bandwidth and computational effort on the
server side.

In most cases the underlying technology for game stream-
ing is closely related to video compression, with a few excep-
tions that transfer API calls directly to the client [NDS∗08],
but such an architecture assumes very advanced client hard-
ware that can deal with all rendering commands.

Video-encoded rendering does not require a powerful
client, but the bandwidth requirements can be high. Hence,
temporal redundancy and perceptual limitations are a crucial
component for such encoding algorithms. E.g., it is possible
to exploit the reduced accuracy of the human visual system
to pre-filter in-between frames to reduce the required band-
width [FB08].

Usually, video encoding makes use of so-called I-frames
that are only internally encoded and produce precise movie
information. These I-frames are rare and completed by P-
frames that rely on previous, and B-frames that make use
of previous and following images. The latter type delivers
quality-wise superior results, but is difficult to exploit for
real-time applications. Because of the dependency on future
frames, a delay is enforced which can be particularly prob-
lematic for lower frame rates. Furthermore, in the extreme
case, if a frame drop occurs, very noticeable artifacts can
arise.

A complete survey of video encoding goes clearly beyond
the scope of this document. Here, we will describe some
particular insights that relate to 3D rendering. Video com-
pression for rendering should exploit the particularity of the
content. One example is that many attributes can be extracted
from the 3D scene itself which can then be used to improve
the compression algorithms. One example is to accelerate
the encoding process through the use of object-motion vec-
tors [FE09] that are applied to predict pixel motion. The TC
of the animation in the scene is, hereby, directly exploited.

This solution can be very successful and enable higher com-
pression [WKC94] than standard matching techniques.

One can even go further and rely on the scene attributes
for reconstruction purposes. In fact, the previously dis-
cussed spatio-temporal upsampling strategies (Section 5.6)
are very good candidates for application in a streaming con-
text [PHE∗11]. Such a combination has several advantages.
Not only the bandwidth, also the server workload is tackled
(only small resolution images are produced and transferred).
Furthermore, as the previous frame is still present on the
client when the new frame is supposed to be reconstructed,
the algorithm can exploit this knowledge during compres-
sion and rely on these values as predictors for statistics-based
encoding schemes [PHE∗11].

This field of research is still relatively novel and it is likely
to evolve significantly, but the mentioned recent advances
illustrate the importance of exploiting TC in this context.

Large-data visualization

One particularly challenging field are large data sets. Here,
content streaming is a topic that becomes increasingly impor-
tant, especially due to the wealth of scanned data that often is
tremendous in size. These difficult-to-render data sets exceed
available memory capacities by far.

Usually, data structures are used to decompose the original
data set in a hierarchical manner. The idea is to use struc-
tures that can be selectively refined. Once the right refinement
scale is established for a view, only local modifications are
applied that update the structure for the next frame. This lazy
update scheme implicitly exploits TC because the modifica-
tions from one frame to the other can often be drastically
limited. In some cases, even movement prediction can prove
successful [LKR∗96]. In any case, deriving an entirely new
refinement would lead to a huge performance overhead.

These data structure hierarchies are further designed in a
flexible way, in the sense that the actual geometric informa-
tion is only transferred into them, when there is a request
for it during rendering. In fact, not all data is needed at each
point in time, as for a given viewpoint, occlusion can be
exploited and unnecessary details omitted, which leads to
a much smaller data subset that still produces a complete
image.

In a STAR, this topic cannot be completely explored in
depth and solutions exist for many different types of in-
put data, varying from geometric models [WDS04], over
point clouds [WBB∗07], to recent volume-rendering ap-
proaches [GMAG08, CNLE09].

To illustrate the principle, we will base our discussion on
ray-tracing queries. The main observation is that ray tracing
is a useful tool, not only to produce images, but also to deter-
mine data fetches [WDS04]. Typically, scenes are organized
in form of a tree (Figure 30 illustrates several levels of detail
corresponding to levels in this tree). Rays then traverse the

c© The Eurographics Association 2011.

120

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

Figure 30: At the basis of volume-data streaming algorithms is a hierarchical scene representation. Here, several levels of detail
are illustrated. The resolution is switched automatically during the ray-tracing step, depending on the distance. Not all data is in
memory at once, only the parts that are actually currently under use reside in memory.

tree and test geometry intersections in each traversed node.
The idea is that initially each node of the tree can be empty
and will only be filled progressively during rendering. When-
ever a ray reaches such an empty node, a data request is
triggered and the ray potentially stopped, or traced against a
simplified representation that fits into memory. In this way,
the rays themselves control the level of detail, as well as
frustum culling, or occlusion tests. No special handling of
acceleration techniques is needed and, in particular, as rays
tend to vary little from one view to the next (e.g., for a pure
rotation of the camera many rays remain almost unchanged),
the temporal redundancy is implicitly handled.

Such strategies have proven particularly efficient in the
context of volume rendering [GMAG08, CNLE09]. Here, a
multi-resolution data representation is arranged in the tree
and whenever data is missing, rays do not need to be canceled,
but can instead walk up the tree to access lower-resolution
versions of the data. To deal with the memory constraints,
such algorithms typically employ an LRU-cache mechanism
(least-recently used), i.e., newly loaded elements will replace
those that have not been accessed for a longer time. As ele-
ments tend to be active over coherent periods of time, such
strategies prove particularly useful and can be implemented
very efficiently on modern GPUs [CNSE10].

5.11 Online occlusion culling
Culling techniques like view-frustum culling [AM00] and

visibility culling are important acceleration techniques for
rasterization-based real-time rendering. View-frustum culling
simply prunes all objects in the scene which don’t intersect
the current view frustum. Visibility culling prunes all objects
that are occluded by other objects as early as possible in
the pipeline. Using visibility culling we can achieve output-
sensitivity, in the sense that the render time depends only
on the complexity of the actually visible objects, not the
complexity of the whole scene.

Visibility can be preprocessed by subdividing the view
space into volumetric regions known as view cells and com-
puting the potentially visible sets (PVSs) for each view cell
in a lengthy offline step. An attractive alternative is online
occlusion culling, where visibility is computed on the fly for
the current view point. Online occlusion culling does not

require a preprocess to store visibility information, and natu-
rally allows for dynamic scenes. The major challenge for any
online culling algorithm is to reduce the overhead caused by
the online visibility calculations (the occlusion queries). A
common use of occlusion queries is to conservatively test the
visibility of a simple proxy geometry, e.g., the bounding box
of a more complex object.

The importance of TC for online occlusion culling cannot
be stressed enough - in fact utilizing TC is one of the key
concepts to make online occlusion culling feasible in practice
(together with using spatial hierarchies to exploit spatial co-
herence). Naively querying all objects leads to many wasted
queries. The query overhead can become unacceptable in sit-
uations when most objects in the scene are visible. Therefore
we exploit TC, assuming that objects that are (in)visible in
one frame are likely to remain (in)visible in future frames.
Using TC, we can substantially reduce the number of issued
occlusion queries, as well as hide their latency.

5.11.1 Exploiting TC

The following general strategy is implemented in differ-
ent forms by all state-of-the-art occlusion culling algorithms:
First we establish a visible front by rendering those objects
that were visible in the previous frame. Then we query the
visibility of the previously invisible objects against this visi-
ble front. At last, to keep the overdraw low, we have to update
the visibility classifications of the objects from the visible
front. This can be done in a lazy manner, e.g., by querying
each object every n frames (assuming coherence over several
frames).

The clever hierarchical z-buffer algorithm proposed by
[GKM93] uses both spatial hierarchies and TC in the manner
described above for maximal efficiency. To accelerate visi-
bility queries, it maintains a two-fold hierarchy - an image
pyramid over the z-buffer and an octree hierarchy over the
objects. The feasibility of this algorithm suffers from the
drawback that only parts of it are supported by the hardware.
The conceptually related algorithm of [ZMHI97] aims to
speed up the queries by utilizing fast texture hardware.

c© The Eurographics Association 2011.

121

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

5.11.2 Hardware occlusion queries
Since the GeForce3 hardware accelerated occlusion

queries are supported on consumer graphics hardware. Hard-
ware occlusion queries can be issued for a batch of rendered
geometry. The query result is fetched with another command
and simply returns the number of visible pixels. While hard-
ware occlusion queries are fast, the queries still come with
a non-negligible cost, and they have a certain latency until
the query result is available on the CPU. Algorithms have to
find a way to fill this latency in a meaningful way. A naive
hierarchical implementation which waits for the query result
at each node before further traversing a hierarchy can actually
slow down rendering significantly due to CPU stalls – this is
where TC comes into play.

5.11.3 Coherent hierarchical culling (CHC)
The coherent hierarchical culling (CHC) algo-

rithm [BWPP04] utilizes TC to avoid such CPU stalls.
This algorithm is conceptually simple and intuitive, while
providing good performance in standard cases of moderate
occlusion. It works with any kind of hierarchy that stores the
geometry in the leaves. To establish the visible front, the
CHC algorithm traverses hierarchy nodes in a front-to-back
order.

The algorithm exploits temporal and spatial coherence by
identifying invisible subtrees. To avoid wasted interior node
queries, it starts issuing queries at the previous cut in the
hierarchy (i.e., it queries previously invisible subtrees and
visible leaves).

Furthermore, CHC assumes that previously visible leaves
stay visible, and never waits for their query result. Instead,
these nodes are always rendered in the current frame. Their
visibility classifications are updated for the next frame once
the result is available. For this purpose the pending queries are
managed in a dedicated query queue. Fortunately, hardware
occlusion queries provide a cheap way to check if a query
result is available. This way, we can do some traversal and
rendering on the CPU while the GPU is busy computing the
query results, avoiding CPU stalls and GPU starvation.

5.11.4 Making further use of temporal coherence
The original CHC algorithm works sufficiently well in

many situations, but still suffers from considerably overhead
because of a) the large overall number of queries, b) the
relatively high cost of individual queries.

The CHC++ algorithm [MBW08] addresses the before
mentioned drawbacks by making better use of temporal and
spatial coherence. It extends the CHC algorithm with a couple
of simple but effective optimizations, leading to a speedup of
2-3 times compared to the previous state-of-the-art. The most
important optimizations are:

Queues for batching of queries: A huge portion of the
query cost in CHC is caused by the GPU state changes due
to the constant interleaving of render and query mode (e.g.,

VFC
 12

 10

 8

 6

 4

 2

Time [ms]

 1700 1800 1900 2000 2100
Frame

VFC+PVS

CHC++

 1600

Figure 31: Comparison of view frustum culling (VFC), view
frustum culling and potentially visible sets (VFC+PVS), and
CHC++ [BMW∗09].

depth write on / off). Hence we aim to issue batches of queries
instead of individual queries. For this purpose we append a
node to a so called query candidate queue before it is queried,
and then issue many queries at once. This reduces the number
of state changes by one to two orders of magnitude. Note that
we exploit coherence among (previously invisible) nodes in a
batch, as we assume that mutual occlusion of these nodes is
not relevant.

Multiqueries: CHC++ compiles multiqueries, which are
able to cover more nodes by a single occlusion query. This
method is able to reduce the number of queries for previously
invisible nodes up to an order of magnitude by making better
use of TC. The decision of including a node in a multiquery
is based on its history. I.e., nodes that were invisible for a
long time are likely to stay invisible, hence they can be han-
dled by a single query. Note that the nodes can be spatially
completely unrelated.

Randomized sampling pattern for visible nodes: The al-
gorithm applies a temporally jittered sampling pattern for
scheduling queries for previously visible nodes. This method
reduces the number of queries for visible nodes and while
spreading them evenly over the frames of the walkthrough.
It avoids potential frame rate drops that happen because of
many queries being issued in the same frame due to simulta-
neous visibility changes (e.g., all rooftops of a town become
visible in the same frame).

Figure 31 shows timings in the Powerplant scene with 12M
triangles (using a NVIDIA GeForce 280 GTX). Interestingly,
online occlusion culling with CHC++ is faster than rendering
based on potentially visible sets (PVSs) in this walkthrough.
In moderately to highly occluded scenarios, the overhead
of the online occlusion culling algorithm typically is less
than the overhead caused by the greater conservativity of

c© The Eurographics Association 2011.

122

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

preprocessed visibility (as view cells under a certain size are
not feasible).

5.12 Temporal perception
This report presented several algorithms that exploit TC

of data. In other words, the redundancy of information over
time. But in fact, TC can also be used in an inverse manner
to produce richer content by exploiting elements of percep-
tion which seems to be a very promising avenue for future
endeavors. Here, we will focus on two examples (color and
resolution increase) that represent first steps in this direction
of research.

One of the oldest examples to enrich graphics by exploit-
ing temporal effects is to rely on flickering to increase the
computer’s color palette. The most prominent representatives
of such a technique are DLP projectors that display, in a co-
herent way, the three color channels of an image in rapid
succession. These separate signals are then integrated by the
eye so that an observer perceives a fully colored image.

Similar to the DLP principle one can increase the available
colors of a screen or machine. Back when color palettes were
limited, having darkened tints of colors (e.g., for shadows)
was not always possible. By flickering the corresponding el-
ements on the screen a simple solution to extend the palette
was born. For an observer these flickered colors mix because
at higher frame rates the eye no longer distinguishes each
frame individually. The same procedure is often employed in
LCD screens under the name of Frame Rate Control. In prac-
tice, the material is often limited to 6 bits per color channel,
whereas the graphics card produces 8-bit color channels. The
solution is to represent fractional colors by displaying the
immediate neighbors in quick succession over time [Art04].
Again, the eye integration delivers the illusion that what was
observed on the retina is actually the fractional color value.

Besides more colors, also resolution and details can be
addressed. It is known that object discrimination is more
successful for subpixel camera panning than for correspond-
ing static frames [KDT05, BSH06]. Didyk et al. [DER∗10a]
pushed this observation further by exploiting the temporal
coherence of eye movement for apparent resolution enhance-
ment. In other words, they are able to produce the illusion of
high resolution on a low resolution screen and, hereby, even
surpass the physical boundaries. Precisely, their setup is a
low-resolution screen on which moving content is displayed
at a high-refresh rate. When the eye starts tracking the in-
formation on the screen, several frames will be successively
integrated on the retina. By predicting the eye movement it is
possible to derive an image sequence such that the integrated
response on the retina approaches a high-resolution image
content. The accuracy of the tracking is assured by the human
visual system’s smooth-pursuit eye motion. This mechanism
leads to an almost perfect stabilization for steady linear mo-
tion with velocities in the range of 0.625−2.5◦/s [LRP∗06].
The low-resolution image sequence itself is derived using an
optimization framework that takes eye integration and flicker

perception into account to ensure that this sequence integrates
properly on the retina.

6 Conclusion
In this report, we have described real-time rendering tech-

niques that take advantage of temporal coherence by reusing
expensive calculations from previously rendered frames. As
a result, both performance and quality of many common
real-time rendering tasks can be improved.

We started by showing that real-time rendering applica-
tions exhibit a significant amount of spatio-temporal coher-
ence, thus motivating data reuse in shading computations. We
then briefly surveyed the historical approaches focused on
off-line methods before describing the real-time techniques
which constitute the main focus of this report. We introduced
the basic algorithm for performing real-time reprojection on
the GPU. The approach allows the shader to efficiently query
shading results from an earlier rendered frame (reverse repro-
jection), or similarly, map a shading result from the current
frame to the next frame (forward reprojection). We then an-
alyzed the quality vs. speed tradeoffs associated with data
reuse.

We presented several applications that take advantage of
data reuse. We started with the basic application of directly
reusing results of an expensive shading computation, such
as a procedural noise shader, from an earlier frame time. For
applications that accumulate results from multiple renderings
of the same scene, such as stereo, motion blur, and depth-of-
field rendering, we showed how to reuse shading results from
a “central frame” when rendering the remaining accumulated
frames, thereby reducing rendering times considerably.

Some expensive per-pixel computations often require ap-
proximating an integral by combining multiple spatial sam-
ples, such as shadow computation. To address those scenarios,
we described how to amortize computation by combining re-
sults from multiple frames in order to achieve better results
for antialiasing, pixel correct shadows, and soft shadows,
among other applications. Using reprojection for these tech-
niques allows for a much larger number of samples for the
same rendering time budget. The amortized approach also al-
lows for a smoothly varying shading result instead of the “all
or nothing” reuse strategy of the earlier applications that ei-
ther fully reuse the earlier results or compute it entirely anew.
We showed significant improvement in quality and speed for
these amortized approaches and analized the tradeoff between
lag and aliasing in the rendered result. We also showed how
TC can be used to compute not only efficient shadows from a
light source, but also efficient global illumination approxima-
tions through amortization. We then presented techniques to
combine both spatial and temporal upsampling using a joint
bilateral filter that considers samples from recent rendered
frames, and how to increase framerates by generating new
intermediate frames by taking advantage of TC.

Finally, we showed how TC can be used to improve quality

c© The Eurographics Association 2011.

123

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

or accelerate a variety of tasks. Forward reprojection was ap-
plied to smoothly advect brush strokes for non-photorealistic
rendering of animated scenes. TC was used to render tran-
sition phases for discrete LOD blending, thereby avoiding
popping artifacts and creating a smooth transition between
levels of detail. We then showed how TC has also been ex-
plored for streaming content, such as improved compression
for remote rendering of synthetic scenes (e.g., games), and
large-data visualization. Another area that has been explored
is how to use TC to accelerate occlusion culling. Finally, we
showed techniques that consider elements of perception of
the human visual system in order to increase the apparent
number of colors and apparent resolution of the image.

To summarize, this report surveyed strategies for reusing
shading computations during real-time rendering. These
strategies are very generally applicable as demonstrated on a
very large number of different application scenarios. While
relatively recent, this research trend has already found uses
in the gaming community. With the continued increase in
complex shading effects, frame rates, screen resolution, and
rendering hardware features, we expect that techniques that
take advantage of temporal coherence will become even more
prevalent.

References
[AH93] ADELSON S. J., HODGES L. F.: Stereoscopic Ray-

Tracing. The Visual Computer 10, 3 (1993), 127–144. 10

[AH95] ADELSON S. J., HODGES L. F.: Generating exact ray-
traced animation frames by reprojection. IEEE Comput. Graph.
Appl. 15, 3 (1995), 43–52. 3

[AM00] ASSARSSON U., MÖLLER T.: Optimized view frustum
culling algorithms for bounding boxes. Journal of graphics, GPU,
and game tools 5, 1 (2000), 9–22. 21

[And10] ANDREEV D.: Real-time frame rate up-conversion for
video games. In ACM SIGGRAPH 2010 Talks (7 2010). 5, 18

[Art04] ARTAMONOV O.: X-bit’s guide: Contem-
porary lcd monitor parameters and characteristics.
http://www.xbitlabs.com/articles/monitors/
display/lcd-guide_11.html, October 2004. 23

[ATS94] ARVO J., TORRANCE K., SMITS B.: A framework for
the analysis of error in global illumination algorithms. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
1994), ACM, pp. 75–84. 14

[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZAGIER E.
J. S.: Frameless rendering: double buffering considered harmful.
In SIGGRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (New York, NY,
USA, 1994), ACM, pp. 175–176. 3

[BJ88] BADT JR. S.: Two algorithms for taking advantage of
temporal coherence in ray tracing. VC 4 (1988), 123–132. 2

[BM05] BENNETT E. P., MCMILLAN L.: Video enhancement
using per-pixel virtual exposures. ACM Transactions on Graphics
24, 3 (2005), 845–852. 17

[BMW∗09] BITTNER J., MATTAUSCH O., WONKA P., HAVRAN
V., WIMMER M.: Adaptive global visibility sampling. In SIG-
GRAPH ’09: ACM SIGGRAPH 2009 Papers (New York, NY,
USA, 2009), ACM. 22

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM SIG-
GRAPH 2008 talks (2008). 14

[BSH06] BIJL P., SCHUTTE K., HOGERVORST M. A.: Appli-
cability of TOD, MTDP, MRT and DMRT for dynamic image
enhancement techniques. In Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series (2006), vol. 6207. 23

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PURGATH-
OFER W.: Coherent hierarchical culling: Hardware occlusion
queries made useful. Computer Graphics Forum 23, 3 (Sept.
2004), 615–624. Proceedings EUROGRAPHICS 2004. 22

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (I3D) (Boston, MA, Etats-Unis, feb
2009), ACM, ACM Press. to appear. 20, 21

[CNSE10] CRASSIN C., NEYRET F., SAINZ M., EISEMANN E.:
Efficient Rendering of Highly Detailed Volumetric Scenes with
GigaVoxels. In book: GPU Pro. A K Peters, 2010, ch. X.3, pp. 643–
676. 21

[CT81] COOK R. L., TORRANCE K. E.: A reflectance model
for computer graphics. In SIGGRAPH ’81: Proceedings of the
8th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1981), ACM, pp. 307–316. 14

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for image
synthesis. In SIGGRAPH ’93: Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1993), ACM, pp. 279–288. 10

[DDM03] DAMEZ C., DMITRIEV K., MYSZKOWSKI K.: State
of the art in global illumination for interactive applications and
high-quality animations. Computer Graphics Forum 22, 1 (Mar.
2003), 55–77. 14

[DER∗10a] DIDYK P., EISEMANN E., RITSCHEL T.,
MYSZKOWSKI K., SEIDEL H.-P.: Apparent display reso-
lution enhancement for moving images. ACM Transactions on
Graphics (Proceedings SIGGRAPH 2010, Los Angeles) 29, 3
(2010). 23

[DER∗10b] DIDYK P., EISEMANN E., RITSCHEL T.,
MYSZKOWSKI K., SEIDEL H.-P.: Perceptually-motivated
real-time temporal upsampling of 3D content for high-refresh-rate
displays. Computer Graphics Forum 29, 2 (2010), 713–722. 1, 5,
18

[DRE∗10] DIDYK P., RITSCHEL T., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P.: Adaptive image-space
stereo view synthesis. In Proc. Vision, Modeling and Visualization
Workshop (11 2010). 5, 10

[ED04] EISEMANN E., DURAND F.: Flash photography enhance-
ment via intrinsic relighting. In ACM Transactions on Graphics
(Proceedings of Siggraph Conference) (2004), vol. 23, ACM Press.
17

[ED07a] EISEMANN E., DÉCORET X.: On exact error bounds
for view-dependent simplification. Comput. Graph. Forum 26, 2
(2007), 202–213. 3

[ED07b] EISEMANN E., DÉCORET X.: Visibility sampling on
gpu and applications. Computer Graphics Forum (Proceedings of
Eurographics 2007) 26, 3 (2007). 13

[FB08] FUJIBAYASHI A., BOON C. S.: A masking model for
motion sharpening phenomenon in video sequences. IEICE Trans-
actions on Fundamentals of Electronics, Communications and
Computer Sciences E91-A, 6 (2008), 1408–1415. 20

[FC08] FOX M., COMPTON S.: Ambient occlusive crease shading.
Game Developer Magazine (March 2008) (March 2008). 14

c© The Eurographics Association 2011.

124

http://www.xbitlabs.com/articles/monitors/display/lcd-guide_11.html
http://www.xbitlabs.com/articles/monitors/display/lcd-guide_11.html

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

[FE09] FECHTELER P., EISERT P.: Depth map enhanced mac-
roblock partitioning for H.264 video coding of computer graphics
content. In Intern. Conf. on Image Proc. (2009), pp. 3441–3444.
20

[FPD08] FENG X.-F., PAN H., DALY S.: Comparisons of motion-
blur assessment strategies for newly emergent LCD and backlight
driving technologies. Journal of the Society for Information Dis-
play 16 (2008), 981–988. 18

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical Z-
buffer visibility. In Computer Graphics (Proceedings of SIG-
GRAPH ’93) (1993), pp. 231–238. 21

[GMAG08] GOBBETTI E., MARTON F., ANTONIO J., GUITIAN
I.: A single-pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. Vis. Comput.
24, 7 (2008), 797–806. 20, 21

[GW06] GIEGL M., WIMMER M.: Unpopping: Solving the image-
space blend problem for smooth discrete lod transitions. Computer
Graphics Forum 26, 1 (Mar. 2006), 46–49. 19

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
hardware support for high-quality rendering. In Proc. SIGGRAPH

’90 (1990), ACM, pp. 309–318. 10

[HBS03] HAVRAN V., BITTNER J., SEIDEL H.-P.: Exploiting
temporal coherence in ray casted walkthroughs. In SCCG ’03:
Proceedings of the 19th spring conference on Computer graphics
(New York, NY, USA, 2003), ACM Press, pp. 149–155. 3

[HDMS03] HAVRAN V., DAMEZ C., MYSZKOWSKI K., SEIDEL
H.-P.: An efficient spatio-temporal architecture for animation
rendering. In EGRW ’03: Proceedings of the 14th Eurographics
workshop on Rendering (2003), Springer, pp. 106–117. 10

[HEMS10] HERZOG R., EISEMANN E., MYSZKOWSKI K., SEI-
DEL H.-P.: Spatio-temporal upsampling on the GPU. In Sym-
posium on Interactive 3D Graphics and Games (2010), ACM.
17

[HH97] HECKBERT P. S., HERF M.: Simulating Soft Shad-
ows with Graphics Hardware. Tech. Rep. CMU-CS-97-104,
CS Dept., Carnegie Mellon U., Jan. 1997. CMU-CS-97-104,
http://www.cs.cmu.edu/ ph. 12

[Jan01] JANSSEN R.: Computational Image Quality. Spie Press,
Bellingham, Washington USA, 2001. 18

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Com-
put. Graph. 20, 4 (1986), 143–150. 14

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTEN-
DAELE M.: Joint bilateral upsampling. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (2007). 17

[KDT05] KRAPELS K., DRIGGERS R. G., TEANEY B.: Target-
acquisition performance in undersampled infrared imagers: static
imagery to motion video. Applied Optics 44, 33 (2005), 7055–
7061. 23

[Kel97] KELLER A.: Instant radiosity. In Proceedings of SIG-
GRAPH 97 (Aug. 1997), Computer Graphics Proceedings, Annual
Conference Series, pp. 49–56. 16

[KTM∗10] KNECHT M., TRAXLER C., MATTAUSCH O., PUR-
GATHOFER W., WIMMER M.: Differential instant radiosity for
mixed reality. In Proc. Ninth IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality (ISMAR’10) (Seoul, Korea,
October 2010). 16

[KV04] KLOMPENHOUWER M. A., VELTHOVEN L. J.: Motion
blur reduction for liquid crystal displays: Motion-compensated
inverse filtering. In Proc. SPIE, Vol. 5308, 690 (2004). 17

[Lan02] LANDIS H.: Production-ready global illumination. In
Proceedings of the conference on SIGGRAPH 2002 course notes
16 (2002). 14

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W., HODGES
L. F., FAUST N., TURNER G. A.: Real-time, continuous level of
detail rendering of height fields. In SIGGRAPH (1996), pp. 109–
118. 20

[LRP∗06] LAIRD J., ROSEN M., PELZ J., MONTAG E., DALY
S.: Spatio-velocity CSF as a function of retinal velocity using
unstabilized stimuli. In Human Vision and Electronic Imaging XI
(2006), vol. 6057 of SPIE Proceedings Series, pp. 32–43. 23

[LS97] LENGYEL J., SNYDER J.: Rendering with coherent layers.
In SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques (New York,
NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co.,
pp. 233–242. 3

[LSF10] LU J., SANDER P. V., FINKELSTEIN A.: Interactive
painterly stylization of images, videos and 3d animations. In
Proc. Symposium on Interactive 3D Graphics and Games (2010),
pp. 127–134. 18

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTI-
NEN J., AILA T.: Incremental instant radiosity for real-time indi-
rect illumination. In Proceedings of Eurographics Symposium on
Rendering 2007 (2007), Eurographics Association, pp. 277–286.
16

[MB95] MCMILLAN L., BISHOP G.: Head-tracked stereoscopic
display using image warping. In Proceedings SPIE, volume 2409
(1995), pp. 21–30. 10

[MBW08] MATTAUSCH O., BITTNER J., WIMMER M.: Chc++:
Coherent hierarchical culling revisited. Computer Graphics Forum
(Proceedings of Eurographics 2008) 27, 3 (Apr. 2008), 221–230.
22

[Mit07] MITTRING M.: Finding next gen - cryengine 2. In Pro-
ceedings of the conference on SIGGRAPH 2007 course notes,
course 28, Advanced Real-Time Rendering in 3D Graphics and
Games (2007), ACM Press, pp. 97–121. 14

[MKC07] MARROQUIM R., KRAUS M., CAVALCANTI P. R.:
Efficient point-based rendering using image reconstruction. In
Proc. Eurographics Symposium on Point-Based Graphics (2007),
pp. 101–108. 5

[MSW10] MATTAUSCH O., SCHERZER D., WIMMER M.: High-
quality screen-space ambient occlusion using temporal coherence.
Computer Graphics Forum 29(8) (2010), 2492–2503. 14

[NDS∗08] NAVE I., DAVID H., SHANI A., LAIKARI A., EISERT
P., FECHTELER P.: Games@Large graphics streaming architec-
ture. In Symp. on Consumer Electronics (ISCE) (2008). 20

[NSL∗07] NEHAB D., SANDER P. V., LAWRENCE J.,
TATARCHUK N., ISIDORO J. R.: Accelerating real-time
shading with reverse reprojection caching. In Graphics Hardware
(2007), pp. 25–35. 4, 5, 6, 7, 9, 10

[PFD05] PAN H., FENG X.-F., DALY S.: LCD motion blur mod-
eling and analysis. In Proc. ICIP (2005), pp. 21–24. 17

[PHE∗11] PAJAK D., HERZOG R., EISEMANN E., MYSZKOWSKI
K., SEIDEL H.-P.: Scalable remote rendering with depth and
motion-flow augmented streaming. Computer Graphics Forum
30, 2 (2011). Proc. of Eurographics. 20

[PSA∗04] PETSCHNIGG G., SZELISKI R., AGRAWALA M., CO-
HEN M., HOPPE H., TOYAMA K.: Digital photography with
flash and no-flash image pairs. ACM Transactions on Graphics
(Proceedings of Siggraph Conference) 23, 3 (2004), 664–672. 17

[QWQK00] QU H., WAN M., QIN J., KAUFMAN A.: Image
based rendering with stable frame rates. In VISUALIZATION ’00:
Proceedings of the 11th IEEE Visualization 2000 Conference (VIS
2000) (Washington, DC, USA, 2000), IEEE Computer Society. 3

c© The Eurographics Association 2011.

125

D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence STAR

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. ACM Transactions
on Graphics (Proc. SIGGRAPH ASIA 2008) 27, 5 (2008), 129. 16

[RP94] REGAN M., POSE R.: Priority rendering with a virtual
reality address recalculation pipeline. In SIGGRAPH ’94: Pro-
ceedings of the 21st annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1994), ACM,
pp. 155–162. 3

[SaLY∗08a] SITTHI-AMORN P., LAWRENCE J., YANG L.,
SANDER P. V., NEHAB D.: An improved shading cache for
modern GPUs. In Proc. of Graphics Hardware (6 2008), pp. 95–
101. 6, 9

[SaLY∗08b] SITTHI-AMORN P., LAWRENCE J., YANG L.,
SANDER P. V., NEHAB D., XI J.: Automated reprojection-based
pixel shader optimization. ACM Trans. Graph. 27, 5 (12 2008),
127. 7, 9

[SB95] SMITH S. M., BRADY J. M.: SUSAN – A new approach
to low level image processing. Tech. Rep. TR95SMS1c, Chertsey,
Surrey, UK, 1995. 17

[Sch96] SCHAUFLER G.: Exploiting frame to frame coherence
in a virtual reality system. In VRAIS ’96: Proceedings of the
1996 Virtual Reality Annual International Symposium (VRAIS 96)
(Washington, DC, USA, 1996), IEEE Computer Society, p. 95. 3

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample-
based visibility for soft shadows using alias-free shadow maps.
Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering 2008) 27, 4 (June 2008), 1285–1292.
13

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Lay-
ered depth images. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1998), ACM, pp. 231–242. 3

[Shi95] SHINYA M.: Improvements on the Pixel-tracing Filter: Re-
flection/Refraction, Shadows, and Jittering. In Graphics Interface

’95 (1995), pp. 92–102. 17

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-
correct shadow maps with temporal reprojection and shadow test
confidence. In Eurographics Symposium on Rendering (2007),
pp. 45–50. 4, 6, 12

[SKUT∗10] SZIRMAY-KALOS L., UMENHOFFER T., TOTH B.,
SZECSI L., SBERT M.: Volumetric ambient occlusion for real-
time rendering and games. IEEE Computer Graphics and Appli-
cations 30 (2010), 70–79. 14

[SLS∗96] SHADE J., LISCHINSKI D., SALESIN D. H., DEROSE
T., SNYDER J.: Hierarchical image caching for accelerated walk-
throughs of complex environments. In SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1996), ACM,
pp. 75–82. 3

[SS00] SIMMONS M., SEQUIN C. H.: Tapestry: A dynamic mesh-
based display representation for interactive rendering. In Proceed-
ings of the 11th Eurographics Workshop on Rendering (2000),
pp. 329–340. 3

[SSMW09] SCHERZER D., SCHWÄRZLER M., MATTAUSCH O.,
WIMMER M.: Real-time soft shadows using temporal coherence.
Lecture Notes in Computer Science (LNCS) (Nov. 2009). 13

[SSS74] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER
R. A.: A characterization of ten hidden-surface algorithms. ACM
Comput. Surv. 6, 1 (1974), 1–55. 2

[SW08] SCHERZER D., WIMMER M.: Frame sequential interpo-
lation for discrete level-of-detail rendering. Computer Graphics

Forum (Proceedings EGSR 2008) 27, 4 (June 2008), 1175–1181.
19

[SW09] SMEDBERG N., WRIGHT D.: Rendering techniques in
gears of war 2, 2009. 14

[Tek95] TEKALP A. M.: Digital video Processing. Prentice Hall,
1995. 17

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In ICCV (1998), pp. 839–846. 17

[TV05] TAKEUCHI T., VALOIS K. D.: Sharpening image motion
based on the spatio-temporal characteristics of human vision. In
Proc. SPIE, Vol. 5666, 690 (2005), pp. 83–94. 18

[VALBW06] VELÁZQUEZ-ARMENDÁRIZ E., LEE E., BALA K.,
WALTER B.: Implementing the render cache and the edge-and-
point image on graphics hardware. In GI ’06: Proceedings of
Graphics Interface 2006 (Toronto, Ont., Canada, Canada, 2006),
Canadian Information Processing Society, pp. 211–217. 3

[WBB∗07] WAND M., BERNER A., BOKELOH M., FLECK
A., HOFFMANN M., JENKE P., MAIER B., STANEKER D.,
SCHILLING A.: Interactive editing of large point clouds. In
Symposium on Point-Based Graphics 2007 : Eurographics / IEEE
VGTC Symposium Proceedings (Prague, Czech Republik, 2007),
Chen B., Zwicker M., Botsch M., Pajarola R., (Eds.), Eurograph-
ics Association, pp. 37–46. 20

[WDG02] WALTER B., DRETTAKIS G., GREENBERG D. P.: En-
hancing and optimizing the render cache. In EGRW ’02: Proceed-
ings of the 13th Eurographics workshop on Rendering (Aire-la-
Ville, Switzerland, Switzerland, 2002), Eurographics Association,
pp. 37–42. 3

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using the render cache. In Rendering techniques ’99
(Proceedings of the 10th Eurographics Workshop on Rendering)
(New York, NY, Jun 1999), Lischinski D., Larson G., (Eds.),
vol. 10, Springer-Verlag/Wien, pp. 235–246. 3

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An Interactive
Out-of-Core Rendering Framework for Visualizing Massively
Complex Models. In Proceedings of the Eurographics Symposium
on Rendering (2004). (to appear). 20

[WGS99] WIMMER M., GIEGL M., SCHMALSTIEG D.: Fast
walkthroughs with image caches and ray casting. In Virtual En-
vironments ’99. Proceedings of the 5th Eurographics Workshop
on Virtual Environments (June 1999), Gervautz M., Schmalstieg
D., Hildebrand A., (Eds.), Eurographics, Springer-Verlag Wien,
pp. 73–84. ISBN 3-211-83347-1. 3

[WKC94] WALLACH D. S., KUNAPALLI S., COHEN M. F.: Ac-
celerated MPEG compression of dynamic polygonal scenes. In
Proceedings of SIGGRAPH (1994), pp. 193–197. 20

[YNS∗09] YANG L., NEHAB D., SANDER P. V., SITTHI-AMORN
P., LAWRENCE J., HOPPE H.: Amortized supersampling. ACM
Trans. Graph. 28, 5 (2009), 135. 8, 9, 10, 11

[YWY10] YU X., WANG R., YU J.: Real-time depth of field ren-
dering via dynamic light field generation and filtering. Computer
Graphics Forum (Proc. of Pacific Graphics) 29, 7 (2010). 4, 10

[ZMHI97] ZHANG H., MANOCHA D., HUDSON T., III K. E. H.:
Visibility culling using hierarchical occlusion maps. In SIG-
GRAPH (1997), pp. 77–88. 21

[ZWL05] ZHU T., WANG R., LUEBKE D.: A gpu-accelerated
render cache. Pacific Graphics, (Short Paper Session) (October
2005). 3

c© The Eurographics Association 2011.

126

