
EUROGRAPHICS 2011/ R. Laramee and I. S. Lim Poster

Procedural Generation of Infinite Cities

Jiri Danihelka† and Jiri Zara

Czech Technical University in Prague
Faculty of Electrical Engineering

Abstract

We present a novel technique for generation of pseudo-random infinite cities in a real-time. The generated cities
can have arbitrarily oriented streets and building blocks can be arbitrarily shaped. The shapes of city buildings
are determined using a pseudo-random generator that uses building coordinates as the initial generator seed.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism —Virtual reality, Hidden line/surface removal

1. Introduction and related work

City environments are generally complex, because they are
both detailed and huge. To save storage space or Internet
bandwidth procedural generation can be used. Buildings can
be generated from their lots on-line when the buildings are
in the view frustum using a grammar. Currently the most
advanced approach for procedural building generation was
published by Müller et al. [MWH∗06] in 2006. The lot and
street geometry can be also generated procedurally. First
such algorithm for finite cities was published by Parish and
Müller [PM01].

In 2003 Geuter at al. [GPSL03a,GPSL03b] presented an
algorithm for generating infinite cities in regular rectangular
grid. In their approach the street network has to be aligned
with main axis and all building lots must have the same
square shape and size (see figure4). According to the view-
ing frustum the visible buildings are determined and proce-
durally generated. Each building lot gets an integer number
according to its coordinates using a hash function. This num-
ber is used as a seed for the pseudo-random building gener-
ation of that building lot. The generated buildings are saved
into cache to save system resources.

In this paper we present a novel algorithm for generation
city street network for infinite cities. Our approach is the first
that can have the streets arbitrarily oriented and the street
network is not periodical.

† danihjir@fel.cvut.cz

2. Algorithm

Our algorithm follows the standard city-generation work-
flow proposed by Parish and Müller [PM01] that was ini-
tially specified for finite cities. The workflow starts with
the city streets network and the buildings are generated af-
terwards. (Workflow phases: 1. street network, 2. building
blocks/lots, 3. building geometry) We primarily describe our
approach in generation of the city street network, because
the other phases remains almost the same as in the case of fi-
nite cities. When working with infinite structures we assume
computing only those values that are needed due to intersec-
tion with the view frustum.

Input:
view frustum, optional generator parameters
Output:
all parts of infinite street network that intersects with the
frustum; The street geometry has to remain consistent in case
of multiple overlapping queries.

2.1. Construction of the infinite network

Step 1:Suppose we have a plane dedicated for the city gen-
eration. Create a regular infinite square grid on the plane.
(The segment length of the grid should be configurable gen-
erator parameter. Let’s denote the length asd.) The grid will
divide the infinite plane space into squares. Each of these
squares has X and Y coordinate (positive or negative). Now
we can use a hash function to assign a generator seed from
the coordinates for each square.

c© The Eurographics Association 2011.

31

http://www.eg.org
http://diglib.eg.org


Jiri Danihelka & Jiri Zara / Procedural Generation of Infinite Cities

Step 2: Using the seed create a pseudo-random generator.
Generate a pseudo-random position inside the square with
uniform distribution and place a street network node on
that position. Those nodes represent crossings of the future
streets. (see figure1)
Step 3: Now it is necessary to create connection between
the nodes using streets. We have to carefully choose such
method that need only local surrounding of the nodes that
are processed, because all nodes cannot fit into the mem-
ory. Delaunay triangulation has such properties. A triangle
belongs to the Delaunay triangulation if and only if there
are no other nodes inside its circumcircle. Delaunay trian-
gulation also maximizes minimal angles which is a pleasant
feature.

The described street network has the following properties:
Lemma 1: Any circle with radius bigger than

√

2d has a
node inside it.Proof: Such big circle has at least one whole
grid square inside. Therefore it contains also the node corre-
sponding to that square.
Lemma 2: No triangulation edge may be longer than 2

√

2d.
Proof: Every edge has to be a part of a triangle with circum-
circle radius smalled than

√

2d.

2.2. Construction of a finite part of the network

Step 1:Take the view frustum and enlarge it by 2
√

2d in all
directions.
Step 2:Take all squares that intersect with the frustum and
generate their corresponding nodes. Filter out the nodes that
are not inside the extended frustum.
Step 3: Create Delaunay triangulation on those nodes.
Lemma 2 guarantees that we do not miss any edge that in-
tersects with the original frustum. Filter out edges that are
outside the original frustum and nodes with no edges.

Now we have acquired the part of the infinite street network
that is visible in the view frustum.

3. Implementation

To verify our approach we have implemented a Silverlight
application (.Net equivalent of a Java applet) that interac-
tively generates infinite street networks according to gen-
erator parameters. The generated street network can be
imported with other tools used for city modeling like
CityEngine [Pro] (see figure2) and converted to polygo-
nal model (see figure3). The buildings block are pseudo-
randomly subdivided according to Paris and Müller [PM01].
For generation of building geometry we used pseudo-
random procedural approach based on grammars that was
described by Müller et al. [MWH∗06].

We currently do not have an implementation for on-line
generating of infinite cities, however we do not expect any
principal problems there. The main issue would be on-line
generation of buildings, because current tools for procedural
modeling of buildings do not support extensions or building

generation on demand from other programs. Such features
should appear in future versions of CityEngine [Pro].

4. Conclusion

We have created an algorithm for generation of infinite
pseudo-random non-periodical arbitrary-oriented street net-
work that can run on-line in real-time. Our appearance of an
infinite city looks more realistic than in previous approach
made by Geuter et al. [GPSL03a,GPSL03b] (compare fig-
ures3 and4).

5. Future work

Currently we work only with cities on a flat terrain. We be-
lieve that our approach can be combined with existing tech-
niques for procedural terrain generation to create more real-
istic infinite cities.

Our generator allows only limited customization and it is
hard to achieve a look similar to a particular real city. Aliaga
et al. [AVB08] have presented an algorithm for synthesiz-
ing urban layouts by example. We will try to combine their
approach with ours to automatically generate infinite cities
with structure that matches to maps of existing cities.

On-line real-time generated cities have to deal also with a
lot of other issues like occlusion detection or level-of-detail
of procedurally generated models. The main problem is in
the missing model post-processing that is almost impossi-
ble to do for infinite models. These issues have not yet been
adequately addressed so far.

6. Acknowledgement

This work was supported by the MSMT under the re-
search program LC-06008 (Center for Computer Graphics)
and by the Grant Agency of the CTU Prague, grant No.
SGS10/291/OHK3/3T/13.

References

[AVB08] A LIAGA D. G., VANEGAS C. A., BENES B.: Interac-
tive example-based urban layout synthesis. InACM SIGGRAPH
Asia 2008 papers(Singapore, 2008), ACM, pp. 1–10.2

[GPSL03a] GREUTERS., PARKER J., STEWART N., LEACH G.:
Real-time procedural generation of ‘pseudo infinite’ cities. In
Proceedings of the 1st international conference on Computer
graphics and interactive techniques in Australasia and South
East Asia(2003), GRAPHITE ’03, ACM.1, 2, 3

[GPSL03b] GREUTERS., PARKER J., STEWART N., LEACH G.:
Undiscovered worlds–towards a framework for real-time proce-
dural world generation. InFifth International Digital Arts and
Culture Conference, Melbourne, Australia(2003).1, 2, 3

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings.ACM Trans-
actions on Graphics (TOG) 25, 3 (2006), 614–623.1, 2

[PM01] PARISH Y., MÜLLER P.: Procedural modeling of cities.
In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques(2001), ACM, pp. 301–308.
1, 2, 3

[Pro] PROCEDURAL: CityEngine. http://www.procedural.com.2

c© The Eurographics Association 2011.

32



Jiri Danihelka & Jiri Zara / Procedural Generation of Infinite Cities

Figure 1: Left: Randomly generated points in an infinite grid; Right: Delaunay triangulation that forms the streets

Figure 2: Left: Building blocks/lots generated according Parish and Müller [PM01]; Right: Generated city - view from above

Figure 3: Our approach displayed from the street level – real-time rendering without scene post-processing, generated offline

Figure 4: Previous approach in infinite-city rendering published by Greuter et al. [GPSL03a,GPSL03b] displayed from the
street level – real-time rendering, generated online; Note the regular rectangular shape of the street network.

c© The Eurographics Association 2011.

33




