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Abstract
RGB-D cameras allow to capture digital representations of objects in an easy and inexpensive way. Such technology enables
ordinary users to capture everyday object into digital 3D representations. In this context, we present a track for the Shape Re-
trieval Contest, which focus on objects digitized using the latest version of Microsoft Kinect, namely, Kinect One. The proposed,
track encompasses a dataset of two hundred objects and respective classification.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Relevance feedback I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric
algorithms, languages, and systems

1. Introduction

Due to the growing popularity of low-cost scanners, several RGB-
D object datasets have been emerging in the research commu-
nity [MFP∗13, PPG∗15]. So far, objects captured by these datasets
have proven that such low quality 3D representations, are of little
use. Nevertheless, such captures are much faster than other tech-
nologies, which enable the usage in scenarios, such as, real-time
recognition. For this, it is essential to first identify which 3D shape
descriptors provide better performance, when used to retrieve such
digitalized objects.

In this context, we present a dataset that provide the research
community with a benchmark for the training and evaluation of
techniques for digitalized objects. This work is an extension of a
previous track done by Pascoal et al. [PPG∗15]. In the scope of

† Organizer of the SHREC track.

this track we will use the same automated process for point-cloud
capture and registration.

2. Pipeline overview

Our approach presents an easy to build solution, which can be
spread not only to the scientific community, but also, to the com-
mon users. The whole Capture pipeline can broadly be divided into
Capture and Toolkit (Figure 1).

The Capture (Online process), encloses the saving of color and
depth frames. We capture partial point-clouds from multiple view-
points and repeat this process for three sessions for each object, in
order to cover different elevation angles (30◦, 45◦and 60◦) as de-
picted in Figure. In each session we capture 90 pairs of RGB and
Depth, which in total make 270 RGB-D pairs.

The Toolkit (Offline process), uses the captured raw data, and
provides post-processing actions. Using the segmented images, we
then perform two independent processes: image segmentation for
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Figure 1: Capture pipeline.

object extraction, and pose calculation using the turntable mark-
ers. Finally, using all segmented local point clouds from the object
and pose information, we generate the registered point-cloud. Ad-
ditionally, we apply a filter to smooth the surface of the global point
cloud, in order to remove untreated noise.

3. Database

This work is an extension of the work presented by Pascoal et al.
[PPG∗15]. For this track, we’ve selected a subset of two hundred
objects, from the RGB-D ISCTE-IUL Dataset [PPGD15]. Each
capture was selected manually in order to offer better captures than
those of previous tracks [MFP∗13, PPG∗15]. Furthermore, instead
of the generic office objects, we provide a wider range of classes, in
an attempt to provide digitalized matches for models presented in
other datasets, such as the Princeton Shape Benchmark [SMKF04]
and the Sketch-Based 3D presented by Li et al. [LLL∗14].

The dataset is organized according to the type of object. Each
object belongs to a specific class, whereas the "class" annotation is
a very low-level description, such as the "name of the object". For
example, a toy car, belongs to the class "Car". Furthermore, each
object of the class, must have but a very small variation from the
others. This variation cannot be too great, for instance, a formula-
one car needs to have its own unique class, since, although it can
be considered a car, its shape is very different from the standard car
used by consumers. The complete list of classes and their number
of objects is presented in Table 1. The dataset provides for each ob-
ject, 90 frame pairs of RGB and Depth images, the segmented and
registered point clouds and the polygon mesh. All data, from raw
data to triangular meshes, was made available to all participants, so
that each could use the most appropriate for his algorithm.

Figure 2: Capture pipeline.

Airplane 3
Animal 10
Bird 1
Book 4
Bowl 10
Car 4
Car Convertible 4
Car Formula1 3
Car Sport 8
Castle 2
Cell phone 5
Coffee cup 10
Dinosaur 6
Game Controller 8
Game Handheld 6
Glasses VR 3
Guitar 10
Headphones 4
Headset 5
Keyboard 4
Motorbike 7
Mug 10
Puncher 5
Remote 5
Shoes lady 10
Soda can 10
Sofa 4
Toy Human 11
Wooden mannequin 10
Wooden puzzle 10
Wooden spoon 8

Table 1: Dataset classes and their number of objects.

Additionally, for each capture we collected a matching "high-
quality" 3D model, acquired from the 3D dataset, SketchUp 3D
Warehouse [cTNL16]. This was used in the evaluation process, us-
ing the captured model as query, to retrieve "high-quality" models
of the same class.

4. Evaluation

In the proposed track we adopted the most commonly used meth-
ods, precision and recall, to measure and evaluate the submitted
algorithms. The relevance assessments where done using only the
categorization.

Using each captured object as the query, participants should re-
turn a ranked list of the remaining test data according to the simi-
larity score.

For the query there where two distinct retrieval ranked lists
requested. One using a capture for the retrieval of captured objects,
and another using the same captured object as query but to retrieve
"high-quality" similar models from the internet. Each rank list had
the length of the whole dataset.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

70



Pedro B. Pascoal et al. / SHREC’16 Track: Shape Retrieval of Low-Cost RGB-D Captures

!"#$%&'()"*+,-./"! l&$%+012314(512.4+4.6"*+

7".$(*"+-.#8!

013.*,.20"+-.$*,9+

17+7".$(*"+-.#8+

w
!

d!

h!

:::!

α&01-#4"9+-1!"4!'.8,0+$*,.2/(4.512+-1!"4! 7".$(*"+-.#8+

013.*,.20"+!"80*,#$1*!

:::!

Figure 3: The overview of A. Tatsuma and M. Aono procedures.

5. Submissions

For this contest, four different groups participated with their re-
spective methods.

• Atsushi Tatsuma and Masaki Aono, participated with a method
for 3D shape retrieval using pre-trained Convolutional Neural
Networks (CNN) [LBD∗89];
• K. Berker Logoglu, Sinan Kalkan, Alptekin Temizel, used a local

3D descriptor that leverages the synchronized RGB and depth
data provided by RGB-D sensors;

• Bo Li, Henry Johan, Yijuan Lu, used a hybrid shape descriptor
ZFDR proposed in [LJ13], which is composed of visual and ge-
ometrical features of a 3D model;

• Finally, Viktor Seib, Norman Link and Dietrich Paulus present a
discrete Hough-space for continuous voting space in order not to
lose the feature’s descriptiveness.

5.1. 3D Shape Retrieval using Feature Maps Covariance
Descriptor, by Atsushi Tatsuma and Masaki Aono

A. Tatsuma and M. Aono proposed a method for 3D
shape retrieval using pre-trained Convolutional Neural Networks
(CNN) [LBD∗89]. The overview of their approach is illustrated in
Figure 3. Their method extract the Feature Maps Covariance De-
scriptor (FMCD) [TA16] from each depth-buffer image of a 3D
model.

For this track, they selected the basic triangulation dataset. As
a preprocessing of 3D model, by using MeshLab [CCR08], they
reduced the number of vertices to about 10,000 points, and recon-
structed the 3D model with α-complex algorithm. In addition, they
normalized the scale, position and rotation of the 3D model with
Point SVD [TA09].

After the preprocessing, they rendered depth-buffer images with
224×224 resolution from each vertex of the unit geodesic sphere.
As a results, 38 depth-buffer images were obtained.

To obtain the feature vector of the 3D model, they extracted the
FMCD from each depth-buffer image. FMCD comprises covari-
ances of convolutional layer feature maps on the CNN.

Let F = [f1, . . . , fn] ∈ Rd×n denote the d feature maps of size
n = w× h outputted from the l-th convolutional layer. To obtain a

representation of a depth-buffer image, they calculated the covari-
ance matrix of the feature maps

C =
1

n−1

n

∑
i=1

(fi−m)(fi−m)>,

where m is the mean of the feature maps. The covariance matrix C
is a symmetric matrix.

The covariance matrix lies on the Riemannian manifold of sym-
metric positive semi-define matrices. To project the covariance ma-
trix onto a point in the Euclidean space, they used the mapping
method proposed by Pennec et al. [PFA06]. The mapping method
first projects the covariance matrix onto the Euclidean space that is
tangent to the Riemannian manifold at the tangency point P. The
projected vector y of the covariance matrix C is given by

y = logP(C) = P
1
2 log(P−

1
2 CP−

1
2 )P

1
2 ,

where log(·) is the matrix logarithm operators. The mapping
method extracts the orthonormal coordinates of the projected vec-
tor that are given by the following vector operator

vecP(y) = vecI(P
− 1

2 yP−
1
2 ),

where I is the identity matrix, and the vector operator at identity is
defined as

vecI(y) =
[
y1,1
√

2y1,2
√

2y1,3 . . .y2,2
√

2y2,3 . . .yd,d

]>
.

From the observation in some studies [TSCM13, SGMC14], they
choose the identity matrix for P. Consequently, the vectorized co-
variance matrix is given by

c = vecI(log(C)).

Finally, they obtained the depth-buffer image representation to
normalize the vector c with the signed square rooting normaliza-
tion [JC12] and `2 normalization.

For the pre-trained CNN, they used the VGG-M net-
works [CSVZ14]. The final feature vector is obtain by concate-
nating the fully connected layer activations and FMCD extracted
from the first convolutional layer. The Euclidean distance is used
for the dissimilarity between two feature vectors. To compare two
3D models, they apply the Hungarian method [Kuh55] to all pair
dissimilarities between their feature vectors.
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Run Number Support Radius (cm) # of CoSPAIR Levels Keypoint Extraction Method
1 18 10 Sub-sampling at 1cm
2 18 7 Sub-sampling at 1cm
3 15 7 Sub-sampling at 1cm
4 20 10 ISS
5 18 7 ISS

Table 2: Parameters for different runs.

For the high-quality model dataset, they extract 3D shape feature
vector with the same procedures excluding the mesh simplification
and reconstruction processing.

5.2. Colored Histograms of Spatial Concentric Surflet-Pairs,
by K. Berker Logoglu, Sinan Kalkan, Alptekin
Temizel [LKT16]

Logoglu et al. [LKT16] recently introduced a local 3D descriptor,
Colored Histograms of Spatial Concentric Surflet-Pairs (CoSPAIR)
descriptor, that leverages the synchronized RGB and depth data
provided by RGB-D sensors. They showed that the CoSPAIR is
among the best performing methods for RGB-D object recognition.
Thus, chosen CoSPAIR as the basis of their method. The extraction
of the CoSPAIR descriptor is shown in Figure 4.

For the tests, all the provided (segmented) scans were used. For
each scan of a query object, the descriptors were extracted from
the detected keypoints using either sub-sampling or Intrinsic Shape
Signatures (ISS) and matched to the test object’s scans one by one.
The Euclidean distances between the best matching descriptors are
averaged. Thus, eventually, for each test object, 200 distances are
obtained. The distances are then converted to similarity scores. The
test procedure is depicted in Figure 5. Finally, the same algorithm
was run 5 times with different support radii, number of levels and
keypoint extraction methods (Table 2) to produce 5 different ranked
lists.

5.3. Hybrid Shape Descriptor ZFDR, by Bo Li, Henry Johan,
Yijuan Lu [LJ13]

Considering the fact that there are many inaccuracies in the low-
cost captures, such as normals, curvatures, connectivity, and topol-
ogy, B. Li et al. employed a more robust hybrid-based approach
rather than a purely geometry-based algorithm, whose performance

Figure 4: CoSPAIR extraction flow.

is more likely to be affected by the inaccuracies. Their hybrid ap-
proach extracts both visual features (Zernike moments and Fourier
descriptors) and geometrical features (Depth and Radius length) to
characterize a 3D object.

Their algorithms and the corresponding five runs for each task
are mainly based on the hybrid shape descriptor ZFDR proposed
in [LJ13], which is composed of the following four visual or ge-
ometrical features of a 3D model. (1) Thirteen sample silhou-
ette views’ Zernike moments and Fourier descriptor features; (2)
Six depth buffer views’ Depth information; and (3) A model’s
Ray-based features which are generated by measuring the lengths
of a set of rays shot from the center of the model to the ut-
most intersections on the surface of the model. Based on the four
component features in the ZFDR shape descriptor, they also test
ZFDR’s three variations: ZF, ZFD and ZFR to observe the im-
pacts when they completely or partially drop the geometrical com-
ponent features. DESIRE [Vra04] (also mentioned as DSR, that is
D+S+R) is a well-known hybrid shape descriptor, where S denotes
the one-dimensional Fourier transform features of three canonical
Silhouette views of a 3D model. Their two component features D
and R are based on DESIRE. To find out whether the performance
will be improved further, we combine our hybrid shape descriptor
ZFDR and DESIRE together to form a new hybrid shape descrip-
tor, that is ZFDSR. The pipeline to generate the above five shape
descriptors is shown in Figure 6. For more details about the feature
extraction and retrieval process, please refer to [LJ13].

5.4. Shape Retrieval with Hough-Voting in a Continuous
Voting Space, by Viktor Seib, Norman Link and Dietrich
Paulus [LJ13]

V. Seib et al. method is related to the Implicit Shape Model for-
mulation by Leibe et al. [LLS04]. Adaptations of this method to
3D data were proposed [KPW∗10, STDS10, WZS13]. In contrast
to the original formulation, the adaptations to 3D data all use a dis-
crete Hough-space for voting. V. Seib et al. use a continuous voting
space and omit the vector quantization of features in order not to
lose the feature’s descriptiveness. To be able to generalize from
learned shapes, they match each extracted feature with the k best
matches in the learned dictionary. Their algorithm works on point
cloud data. Thus, when using the mesh model, it is required to first
convert it back to point clouds by densely sampling the surface.

Figure 5: Shape retrieval flow.
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Figure 6: Flowchart of computing five hybrid shape descriptors: ZFDR, ZF, ZFD, ZFR and ZFDSR.

In training, key points are extracted from full 3D models using a
uniform voxel grid and a SHOT descriptor [TSDS10] is computed
for each key point. In the next step, spatial relations between de-
tected features on the training model are computed. For each fea-
ture, a vector pointing from the feature to the object’s centroid is
obtained, in the following referred to as center vector. The final
data pool after training contains all features that were computed on
all training models. Along with each feature, a center vector and
the class of the corresponding object is stored.

To classify objects, features are detected on the input data in the
same manner as in the training stage. Matching detected features
with the previously trained data pool yields a list of feature cor-
respondences. The distance between learned feature descriptor fl
and detected feature descriptor fd is determined by the distance
function d( fl , fd) = ‖ fl − fd‖2. Since it cannot be expected to en-
counter the same objects during classification as were used in train-
ing, each detected feature is associated with the k best matching
features from the learned data pool.

Figure 7: Data that was used for each run/evaluation.

The center vectors of the created correspondences are used to
create hypotheses on object center locations in a continuous voting
space. A separate voting space for each class is used.

Each voting space can be seen as a sparse representation of
a probability density function. Maxima in the probability density
function are detected using the Mean-shift algorithm. In a final step
the found maxima positions from all voting spaces of individual
classes are merged. In case multiple maxima are found at the same
position, i.e. if they are closer than half of the kernel bandwidth,
only the maximum with the highest probability is retained.

The presented algorithm returns a list of results ranked by the
common weight of the contributing votes. For the shape similari-
ties, they apply a simple transformation from weights to similarities
for each object i: s = ωi

ωmax
(where ωmax is the weight of the most

likely object hypothesis).

Finally, to evaluate their approach, they performed two individ-
ual runs.

For the first run (run ID 1), the provided mesh data was con-
verted into point clouds (pcds). The point clouds were converted
to meters (the provided data was in millimeters) and downsampled
with a uniform grid so that the resulting files contained 4 points
per centimeter. Further, a statistical outlier removal was applied to
each object. For the first run they used these objects from converted
mesh data as query and for retrieval. For the second run (run ID 2)
they used the provided point cloud data, which was also converted
to meters and downsampled. Again, outliers were removed before
using the data. For the second run they used these objects from pre-
processed point clouds as query and for retrieval.

Finally, for the look alike data provided, these meshes were con-
verted to point clouds and were scaled to the same size as the cor-
responding object from the first run. Further, these data was down-
sampled so that the resulting files contained 10 points per centime-
ter. For this evaluation, the objects from the converted meshes were
used as query where the converted look alike objects were retrieved.
A comparison of some of the objects used in these runs is given in
Figure 7.

All runs were performed with SHOT features using the radii
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(a) B. Logoglu et al. (b) B. Li et al. (c) V. Seib et al.

Figure 8: Precision-Recall curves of different runs of each participant.

0.1 m and a k of 5 for nearest neighbor matching. The bandwidth
was set to 0.1 m for all runs.

6. Results

All SHREC participants submitted, at least one rank list for the
evaluations, with the exception of Logoglu et al., since their algo-
rithm uses synchronized RGB and depth data provided by RGB-
D sensors to compare objects. As such, the scenario of retrieving
"high-quality" similar models from the internet was impractical for
technique. Each rank list has the whole collection of 200 objects or-
dered by their dissimilarities. In Figure 8, we present the Precision-
Recall curves, of each run, for the participants that provided more
than one. As we can clearly perceive, the curves of the runs of each
method, all follow a similar path, but B. Li et al. run 1 and V. Seib
et al. run 2 are clearly superior than their other runs.

Using the best run of each method, we compiled the Precision-
Recall curves presented in Figure 9. Based on these results, A. Tat-
suma et al. method provided the best precision of all. Similar to
previous tracks [MFP∗13, PPG∗15], we can conclude that view-
based methods generally work better for such objects, since such
methods are proven to be more robust to topology errors, surface
deformations and noise, which are frequent in such models.

However, by scoping Precision-Recall curves for each class (Fig-
ure 10), we’re able to better extract each method’s strengths. For
instance, B. Logoglu et al. outperforms all for Game Controller,
Wooden puzzle, and the non-rigid Wooden mannequin. All these
captures share holes, and empty spaces. Although, some other cap-
tures also share such feature, they’re too small. For bigger objects
in general the results are clearly better, but not as good as for the
previously named classes.

B. Li et al. technique similar to A. Tatsuma et al. method, per-
formed better with classes that had very distinct shapes from the
others, such as Bowl, Guitar, and Soda can. Both their perfor-
mances are similar, where each outperforms the other in different
classes.

V. Seib et al. method performed best the bigger the objects were,
such as Airplane and Keyboard, and worst against smaller objects
with littler details and limbs, such as Animal, Dinosaur and Toy-
Human.

Finally, for the look alike evaluation (Figure 9 (b)), the results
were considerably low when compared to the typical evaluation re-
sults. The major rationale to this fact are that low-cost captures are
unable to provide a degree of accuracy of designer made models,
which makes them far too different to be considered identical or
similar.

7. Conclusions

In this work, we presented a comparison of 3D object retrieval tech-
niques from four research groups. Each participant was presented
with a collection of 200 objects, captured using a Microsoft Kinect
One.

Each participant submitted two different evaluations, with at
least one ranked list of results. One using the capture objects as
query to retrieve other captured objects, and another using the same
captured object as query but to retrieve "high-quality" similar mod-
els from the internet.

Analyzing the results we could surmise that some of the tech-
niques used by view based methods are the ones that best per-
formed. However, each algorithm has shown better results for spe-
cific classes of objects, and further study on this topic could high-
light their specific strengths.
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(a) Low-cost (b) Look alike

Figure 9: Precision-Recall curves of all participants.
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Figure 10: Precision-Recall graph of each category (Low-cost).
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Figure 11: The 200 objects that were captured.

Figure 12: The 200 captures, registered using basic triangulation.
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