EG 3DOR 2015
Eurographics 2015 Workshop on 3D Object Retrieval

Zurich, Switzerland
May 2-3, 2015

Workshop Chairs
Ioannis Pratikakis, Democritus University of Thrace, Greece
Theoharis Theoharis, NTNU, Norway

Programme Chairs
Michela Spagnuolo, IMATI - CNR, Italy
Luc Van Gool, ETH Zürich, Switzerland
Remco Veltkamp, Utrecht University, Netherlands

SHREC Contest Chairs
Afzal Godil, National Institute of the Standards and Technology, USA
Remco Veltkamp, Utrecht University, Netherlands

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)
Sponsored by EUROGRAPHICS Association

DOI: 10.2312/3dor.20152006
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Preface</td>
<td>vi</td>
</tr>
<tr>
<td>Sponsors</td>
<td>vii</td>
</tr>
<tr>
<td>International Programme Committee</td>
<td>viii</td>
</tr>
<tr>
<td>Author Index</td>
<td>ix</td>
</tr>
<tr>
<td>Keynotes</td>
<td>xi</td>
</tr>
<tr>
<td>3D Preprocessing Techniques</td>
<td></td>
</tr>
<tr>
<td>3D GrabCut: Interactive Foreground Extraction for Reconstructed 3D Scenes</td>
<td>1</td>
</tr>
<tr>
<td>Gregory P. Meyer and Minh N. Do</td>
<td></td>
</tr>
<tr>
<td>3D Partial Shape Matching and Retrieval</td>
<td></td>
</tr>
<tr>
<td>Automatic 3D Object Fracturing for Evaluation of Partial Retrieval and Object Restoration</td>
<td>7</td>
</tr>
<tr>
<td>Robert Gregor, Danny Bauer, Ivan Sipiran, Panagiotis Perakis, and Tobias Schreck</td>
<td></td>
</tr>
<tr>
<td>Randomized Sub-Volume Partitioning for Part-Based 3D Model Retrieval</td>
<td>15</td>
</tr>
<tr>
<td>Takahiko Furuya, Seiya Kurabe, and Ryutarou Ohbuchi</td>
<td></td>
</tr>
<tr>
<td>Partial 3D Object Retrieval combining Local Shape Descriptors with Global Fisher Vectors</td>
<td>23</td>
</tr>
<tr>
<td>Michalis A. Savelonas, Ioannis Pratikakis, and Konstantinos Sfikas</td>
<td></td>
</tr>
<tr>
<td>Indoor Location Retrieval using Shape Matching of KinectFusion Scans to Large-Scale Indoor Point Clouds</td>
<td>31</td>
</tr>
<tr>
<td>Anas Al-Nuaimi, Martin Piccolrovazzi, Suat Gedikli, Eckehard Steinbach, and Georg Schroth</td>
<td></td>
</tr>
<tr>
<td>Cross-modality 3D Object Retrieval</td>
<td></td>
</tr>
<tr>
<td>Sketch-based 3D Object Retrieval Using Two Views and a Visual Part Alignment</td>
<td>39</td>
</tr>
<tr>
<td>Zahraa Yasseen, Anne Verroust-Blondet, and Ahmad Nasri</td>
<td></td>
</tr>
<tr>
<td>Knowledge-based 3D Object Retrieval</td>
<td></td>
</tr>
<tr>
<td>3D Object Retrieval with Parametric Templates</td>
<td>47</td>
</tr>
<tr>
<td>Roman Getto and Dieter W. Fellner</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

3D Facial Analysis and Retrieval

Morphological Analysis of 3D Faces for Weight Gain Assessment 55
D Daniela Giorgi, Maria Antonietta Pascali, Giovanni Raccichini, Sara Colantonio, and Ovidio Salvetti

A Spatio-Temporal Descriptor for Dynamic 3D Facial Expression Retrieval and Recognition 63
Antonios Danelakis, Theoharis Theoharis, and Ioannis Pratikakis

Non-rigid Object Matching

Accelerating the Computation ofCanonical Forms for 3D Nonrigid Objects using Multi-dimensional Scaling .. 71
Gil Shamai, Michael Zibulevsky, and Ron Kimmel

Posters

ThOR: Three-dimensional Object Retrieval Library .. 79
Pedro B. Pascoal and Alfredo Ferreira

Towards Scientific Benchmarks: On Increasing the Credibility of Benchmarks 83
Odd Erik Gundersen

Bag of Compact HKS-based Feature Descriptors .. 87
Hanan ElNaghy and Safwat Hamad

Computing Local Binary Patterns on Mesh Manifolds for 3D Texture Retrieval 91
Naoufel Werghi, Claudio Tortorici, Stefano Berretti, and Alberto Del Bimbo

RETRIEVAL3D: An On-line Content-Based Retrieval Performance Evaluation Tool 95
Anestis Koutsoudis, George Ioannakis, Ioannis Pratikakis, and Christos Chamzas

SHREC’15 Tracks

Canonical Forms for Non-Rigid 3D Shape Retrieval ... 99
David Pickup, Xianfang Sun, Paul L. Rosin, Ralph R. Martin, Zhiquan Cheng, Sipin Nie, and Longcun Jin

Non-rigid 3D Shape Retrieval ... 107
Table of Contents

Scalability of Non-Rigid 3D Shape Retrieval ... 121

3D Object Retrieval with Multimodal Views ... 129
Yue Gao, Anan Liu, Weizhi Nie, Yuting Su, Qionghai Dai, Fuhai Chen, Yingying Chen, Yanhua Cheng, Shuilong Dong, Xingyue Duan, Jianlong Fu, Zan Gao, Haiyun Guo, Xin Guo, Kaiqi Huang, Rongrong Ji, Yingfeng Jiang, Haisheng Li, Hanqing Lu, Jianming Song, Jing Sun, Tieniu Tan, Jinqiao Wang, Huanpu Yin, Chaoli Zhang, Guotai Zhang, Yan Zhang, Yan Zhang, Chaoyang Zhao, Xin Zhao, and Guibo Zhu

Retrieval of Non-rigid (textured) Shapes Using Low Quality 3D Models 137
Andrea Giachetti, Francesco Farina, Francesco Fornasa, Atsushi Tatsuma, Chika Sanada, Masaki Aono, Silvia Biasotti, Andrea Cerri, and Sungbin Choi

Retrieval of Objects Captured with Kinect One Camera 145
Pedro B. Pascoal, Pedro Proença, Filipe Gaspar, Miguel Sales Dias, Filipe Teixeira, Alfredo Ferreira, Viktor Seib, Norman Link, Dietrich Paulus, Atsushi Tatsuma, and Masaki Aono

Range Scans based 3D Shape Retrieval .. 153
Preface

Seven years from its inception, the 3DOR workshop was organized for 2015 with the objective of providing a broader forum of discussion for researchers working in this area. As a result of this effort, 3DOR was extended to a 2-day event in order to include a comprehensive program consisting of research paper presentations, poster presentations, 2 keynote speeches, relevant EU project presentations and networking as well as a round table discussion with industrial partners.

In response to the call-for-papers, 19 research papers were submitted and reviewed by members of the IPC. Most papers received at least 3 reviews, based on which, 10 papers were selected for oral presentation at the workshop and 5 were accepted as posters. The papers comprise innovative results in many aspects of 3D Object Retrieval, including partial 3DOR, cross-modality 3DOR and facial analysis for 3DOR.

3DOR 2015 also hosts the 10th Shape Retrieval Contest (SHREC’15). The goal of the contest is to evaluate the effectiveness of 3D shape retrieval algorithms and to create public evaluation benchmarks, thus playing an important role in the evolution of practical 3D Object Retrieval research. SHREC’15 contributes to the proceedings with an impressive 7 track-report papers (out of 9 submissions) that detail the results of the contests. All track-report papers have been reviewed by the program chairs for quality and contribution.

As usual, it is planned to create a special issue in a respectable journal with extended versions of selected orally presented papers from the workshop.

We would specifically like to thank the members of the IPC for their valuable time which helped to ensure a high quality program. We are grateful to the Eurographics Association for their continued support for this event, to the University of Zurich for hosting us and, last but not least, to Stefanie Behnke!

Workshop Chairs:
Ioannis Pratikakis, Democritus University of Thrace, Greece
Theoharis Theoharis, NTNU, Norway

Programme Chairs:
Michela Spagnuolo, IMATI - CNR, Italy
Luc Van Gool, ETH Zürich, Switzerland
Remco Veltkamp, Utrecht University, Netherlands

SHREC Contest Chairs:
Afzal Godil, National Institute of the Standards and Technology, USA
Remco Veltkamp, Utrecht University, Netherlands
Sponsors

University of Zurich

Democritus University of Thrace

Norwegian University of Science and Technology
International Programme Committee

Ceyhun B. Akgul (Vistek-ISRA Vision, Turkey)
Yiannis Aloimonos (UMIACS, USA)
Andrea Giachetti (University of Verona, Italy)
Benjamin Bustos (University of Chile, Chile)
Halim Benhabiles (ESIGELEC Rouen, France)
Stefano Berretti (University of Florence, Italy)
Silvia Biasotti (IMATI - CNR Genoa, Italy)
Michael Bronstein (Universita’ della Svizzera Italiana, Switzerland)
Benjamin Bustos (University of Chile, Chile)
Umberto Castellani (University of Verona, Italy)
Mohamed Daoudi (Télécom Lille 1 / Institut Mines-Télécom, France)
Petros Daras (Informatics and Telematics Institute, Greece)
Alberto Del Bimbo (University of Florence, Italy)
Leo Dorst (University of Amsterdam, Netherlands)
Bianca Falcidieno (IMATI - CNR, Italy)
Dieter W. Fellner (Fraunhofer IGD, Germany)
Alfredo Ferreira (Technical University of Lisbon, Portugal)
Daniela Giorgi (ISTI-CNR, Italy)
Afzal Godil (National Institute of the Standards and Technology, USA)
Yossi Keller (Bar-Ilan University, Israel)
Ron Kimmel (Technion, Israel)
Hamid Laga (University of South Australia, Australia)
Guillaume Lavoue (INSA Lyon, France)
Niloy Mitra (University College of London, UK)
Georgios Papaioannou (AUEB, Greece)
David Picard (ETIS-ENSEA, France)
Herindrasana Ramampiaro (NTNU, Norway)
William Regli (Drexel University, USA)
Marcos Rodrigues (University of Sheffield, UK)
Raif M. Rustamov (Stanford University, USA)
Dietmar Saupe (University of Konstanz, Germany)
Nickolas S. Sapidis (University of Western Macedonia, Greece)
Ivan Sipiran (University of Konstanz, Germany)
Tobias Schreck (University of Konstanz, Germany)
Hedi Tabia (ETIS-ENSEA, France)
Oliver van Kaick (Simon Fraser University, Canada)
Jean-Philippe Vandeborre (Télécom Lille / Institut Mines-Télécom, LIFL, France)
Hazem Wannous (University Lille1 / LIFL, France)
Stefanie Wuhrer (Saarland University / Max Planck Institute, Germany)
Author Index

Al-Nuaimi, Anas .. 31
Aono, Masaki ... 137, 145
Bauer, Danny ... 7
Berretti, Stefano .. 91
Biasotti, Silvia .. 137
Bronstein, A. M. .. 121
Bustos, B. .. 121, 153
Cerri, Andrea ... 137
Chamzas, Christos 95
Chen, Fuhai .. 129
Chen, Yingying .. 129
Cheng, Zhiquan ... 99
Cheng, Yanhua .. 129
Choi, S. .. 107, 121, 137, 153
Colanito, Sara ... 55
Dai, Qionghai .. 129
Danelakis, Antonios 63
Del Bimbo, Alberto 91
Do, Minh N. ... 1
Dong, Shuilong .. 129, 153
Duan, Xingyue ... 129
Dutagaci, H. .. 153
El-Naghy, Hanan 87, 107
El-Sana, J. .. 107
Farina, Francesco 137
Fellner, Dieter W. 47
Ferreira, Alfredo .. 79, 145
Fornasa, Francesco 137
Fu, Jianlong ... 129
Furuya, Takahiko 15, 107, 153
Gao, Yue .. 129
Gao, Zan .. 129
Gasper, Filipe ... 145
Gedikli, Suat ... 31
Getto, Roman .. 47
Giachetti, Andrea 107, 137
Giorgi, Daniela .. 55
Godil, A. ... 153
Gregor, Robert .. 7
Guler, R. A. ... 107
Gundersen, Odd Erik 83
Guo, Haiyun ... 129
Guo, Xin .. 129
Hamad, Safwat .. 87
Huang, Kaiqi ... 129
Ioannakis, George 95
Ji, Rongrong ... 129
Jiang, Yingfeng ... 129
Jin, Longcun .. 99
Kimmel, Ron ... 71
Koutsoudis, Anestis 95
Kurabe, Seiya ... 15
Li, L. ... 107, 121
Li, C. ... 107
Li, Haisheng .. 107, 121, 129, 153
Lian, Z. .. 107
Limberger, F. A. 107
Link, Norman ... 145, 153
Liu, Anan .. 129
Lu, Hanqing ... 129
Martin, Ralph R. 99, 107
Meruane, R. ... 153
Meyer, Gregory P. 1
Moriyama, A. ... 153
Nakanishi, R. U. 107
Nasri, Ahmad .. 39
Neto, A. P. ... 107
Nie, Sipin .. 99
Nie, Weizhi ... 129
Nonato, L. G. ... 107
Ohbuchi, Ryutarou 15, 107, 153
Pascale, Maria Antonietta 55
Pascoal, Pedro B. 79, 145
Paulus, Dietrich .. 145, 153
Perakis, Panagiotis 7
Pevzner, K. .. 107
Piccolrovazzi, Martin 31
Pickup, David ... 99, 107
Pratikakis, Ioannis 23, 63, 95
Proença, Pedro .. 145
Raccichini, Giovanni 55
Rosin, Paul L. .. 99, 107
Sales Dias, Miguel 145
Salvetti, Ovidio ... 55
Sanada, Chika .. 137
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savelonas, Michalis A.</td>
<td>23</td>
</tr>
<tr>
<td>Schreck, Tobias</td>
<td>7, 121, 153</td>
</tr>
<tr>
<td>Schroth, Georg</td>
<td>31</td>
</tr>
<tr>
<td>Seib, Viktor</td>
<td>145, 153</td>
</tr>
<tr>
<td>Sfikas, Konstantinos</td>
<td>23</td>
</tr>
<tr>
<td>Shamai, Gil</td>
<td>71</td>
</tr>
<tr>
<td>Sharf, A.</td>
<td>107</td>
</tr>
<tr>
<td>Sipiran, Ivan</td>
<td>7, 121, 153</td>
</tr>
<tr>
<td>Song, Jianming</td>
<td>129</td>
</tr>
<tr>
<td>Steinbach, Eckehard</td>
<td>31</td>
</tr>
<tr>
<td>Su, Yuting</td>
<td>129</td>
</tr>
<tr>
<td>Sun, Xianfang</td>
<td>99, 107</td>
</tr>
<tr>
<td>Sun, L.</td>
<td>107, 121</td>
</tr>
<tr>
<td>Sun, Jing</td>
<td>129</td>
</tr>
<tr>
<td>Tan, Tieniu</td>
<td>129</td>
</tr>
<tr>
<td>Tari, S.</td>
<td>107</td>
</tr>
<tr>
<td>Tatsuma, Atsushi</td>
<td>137, 145</td>
</tr>
<tr>
<td>Teixeira, Filipe</td>
<td>145</td>
</tr>
<tr>
<td>Theoharis, Theoharis</td>
<td>63</td>
</tr>
<tr>
<td>Tortorici, Claudio</td>
<td>91</td>
</tr>
<tr>
<td>Unal, G.</td>
<td>107</td>
</tr>
<tr>
<td>Verroust-Blondet, Anne</td>
<td>39</td>
</tr>
<tr>
<td>Wang, Jinqiao</td>
<td>129</td>
</tr>
<tr>
<td>Werghi, Naoufel</td>
<td>91</td>
</tr>
<tr>
<td>Wilson, R. C.</td>
<td>107</td>
</tr>
<tr>
<td>Yasseen, Zahraa</td>
<td>39</td>
</tr>
<tr>
<td>Yin, Huanpu</td>
<td>129, 153</td>
</tr>
<tr>
<td>Zhang, J.</td>
<td>107</td>
</tr>
<tr>
<td>Zhang, Chaoli</td>
<td>129, 153</td>
</tr>
<tr>
<td>Zhang, Guotai</td>
<td>129</td>
</tr>
<tr>
<td>Zhang, Yan</td>
<td>129</td>
</tr>
<tr>
<td>Zhao, Chaoyang</td>
<td>129</td>
</tr>
<tr>
<td>Zhao, Xin</td>
<td>129</td>
</tr>
<tr>
<td>Zhu, Guibo</td>
<td>129</td>
</tr>
<tr>
<td>Zibulevsky, Michael</td>
<td>71</td>
</tr>
</tbody>
</table>
Keynote

XML3D: Declarative and Semantic 3D Scenes Descriptions as Part of HTML5 and Within a Web-based Service Infrastructure

Philipp Slusallek

Abstract

The Web has become the dominating rich-media application platform offering a declarative description of dynamic and interactive arrangements of formatted texts, images, and videos – but so far no interactive 3D graphics. With XML3D we set out to identify the minimum set of extensions to HTML5 to declaratively add interactive 3D. By XML3D includes the core XML3D scene description; semantic 3D scene annotations via RDFa; flexible 3D asset storage, retrieval, and delivery via the BLAST streaming format; Xflow for declaratively describing flexible animation, image, and AR processing; shade.js for portable material descriptions, generating optimized output for forward and deferred glsl as well as ray tracing rendering; real-time synchronization between 3D scenes for shared experiences; and several other features. XML3D has been adopted as a enabler/standard within the EU Future Internet program and a number of commercial and non-commercial services have been build on top of XML3D by now. In this talk, I will briefly describe the need for and the challenges of designing a rich, declarative 3D scene description within the context of HTML5 and the Web while focusing on how XML3D can be used in the context of 3D object retrieval and related contexts.

Short Biography

Philipp Slusallek is Scientific Director at the German Research Center for Artificial Intelligence (DFKI), where he heads the research area “Agents and Simulated Reality” since 2008. He is also Director for Research at the “Intel Visual Computing Institute”, a central research institute at Saarland University founded in 2009 in collaboration with Intel, DFKI, and the two local Max-Planck-Institutes. At Saarland University he has been a professor for Computer Graphics since 1999 and a Principle Investigator at the German Excellence-Cluster on “Multimodal Computing and Interaction” since 2007. Before coming to Saarland University, he was a Visiting Assistant Professor at Stanford University, USA. He studied physics in Frankfurt and Tübingen (Diploma/M.Sc.) and got his PhD in Computer Science from Erlangen University. His research interests are focused on novel service-oriented architectures for 3D-Internet technology, integrating research in areas such as real-time realistic graphics, artificial intelligence, high-performance computing as well as security by design for creating distributed, immersive, collaborative environments for simulation, analysis, visualization, and training.
Keynote

Linking Image and Shape Collections

Niloy J. Mitra

Abstract

As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. In this talk I will discuss the latest efforts in group towards linking such collections with existing image collections. This not only better organizes input image and shape collections, but establishes tight links across them even under large shape and pose variations by exploiting the power embedded in collections. For further details, please visit: http://geometry.cs.ucl.ac.uk/

Short Biography

Niloy J. Mitra leads the Smart Geometry Processing group at the Department of Computer Science at University College London (UCL). He received his PhD degree and Masters in Electrical Engineering from Stanford University. His research interests include shape understanding, fabrication-aware design, geometric modeling, and more generally in computer graphics. He received the ACM Siggraph Significant New Researcher Award in 2013 and the BCS Roger Needham Award in 2015.