

Randomized Sub-Volume Partitioning for
Part-Based 3D Model Retrieval

T. Furuya, S. Kurabe, and R. Ohbuchi

University of Yamanashi, Japan

Abstract

Given a query that specifies partial shape, a Part-based 3D Model Retrieval (P3DMR) system would retrieve 3D
models whose part(s) matches the query. Computationally, this is quite challenging; the query must be compared
against parts of 3D models having unknown position, orientation, and scale. To our knowledge, no algorithm can
perform P3DMR on a database having significant size (e.g., 100K 3D models) that includes polygon soup and other
not-so-well-defined shape representations. In this paper, we propose a scalable P3DMR algorithm called Part-based
3D model retrieval by Randomized Sub-Volume Partitioning, or P3D-RSVP. To match a partial query with a set of
(whole) 3D models in the database, P3D-RSVP iteratively partitions a 3D model into a set of sub-volumes by using
3D grids having randomized intervals and orientations. To quickly compare the query with all the sub-volumes of all
the models in the database, P3D-RSVP hashes high dimensional features into compact binary codes. Quantitative
evaluation using several benchmarks shows that the P3D-RSVP is able to query a 50K model database in 2 seconds.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models.

1. Introduction

Majority of shape-based 3D model retrieval (3DMR) al-
gorithms focuses on Whole-based 3D model retrieval
(W3DMR) where a whole, or entire shape is given as a query
to the retrieval system. For certain applications and data-
bases, some W3DMR algorithms succeed in producing suf-
ficient retrieval accuracies. Contrary to W3DMR, Part-
based 3D model retrieval (P3DMR), in which a system
would retrieve 3D models whose part(s) matches a query,
has not been studied well in the literature. P3DMR is im-
portant for a number of applications, e.g., design and devel-
opment process for industrial products.

We think that a challenge central to P3DMR is computa-
tional efficiency. Out of a very large number of possibilities,
we need to find part(s) in 3D models which matches a part-
based query. We don’t know which model(s) in a database
contains a shape specified by the part-based query. In addi-
tion, we don’t know, a priori, position, scale, and orientation
of the desired partial shape of the query in a 3D model.

A straightforward approach to P3DMR is sliding sub-vol-
ume search [KHK10][SX14], which is a 3D extension of the
sliding-window algorithm used for object detection in 2D
images [RBK96][DT05]. In the sliding sub-volume search
algorithm, the query is compared against numerous sub-vol-
umes extracted at every position, with diverse scales and ori-
entations, of a 3D model or a 3D scene. However, this ap-
proach would become impractical for a database having a

large number (e.g., 100K) of 3D models. Assume that loca-
tions of sub-volumes are sampled at every intersection of a
3D grid having Ng intervals, and, at each location, sub-vol-
umes are sampled at Ns scales and No orientations. The total
number of sub-volumes for a database having Nm 3D models
is Nm×Ng×Ng×Ng×Ns×No. If we sample sub-volumes using
Ng=10, Ns=10, and No=10, and if we have Nm=100K 3D
models in the database, 10G sub-volumes must be compared
against a query. Then, in terms of both storage for features
of sub-volumes and time for comparing the sub-volumes
with the query, the sliding sub-volume approach would be
impractical, at least for an “interactive” retrieval.

To reduce the cost for P3DMR, [FMA*10] and [SYY*05]
proposed P3DMR algorithms that employ segmentation of
retrieval target 3D models. [FMA*10] and [SYY*05] seg-
ment a 3D model in a database into a set of sub-parts. Each
sub-part is described by a feature and is compared against a
feature of the part-based query. To accelerate retrieval,
[FMA*10] employed inverted index. However, this ap-
proach requires a large amount of memory for indexing fea-
tures of a large number of 3D models. Furthermore, im-
proper segmentation of 3D models could lead to low re-
trieval accuracy.

In this paper, we propose Part-based 3D model retrieval
by Randomized Sub-Volume Partitioning (P3D-RSVP) algo-
rithm for P3DMR applicable to a 3D model database of

Eurographics Workshop on 3D Object Retrieval (2015)
I. Pratikakis, M. Spagnuolo, T. Theoharis, L. Van Gool, and R. Veltkamp (Editors)

c© The Eurographics Association 2015.

DOI: 10.2312/3dor.20151050

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3dor.20151050

© The Eurographics Association 2015.

significant size. P3D-RSVP (see Figure 1) randomly and it-
eratively partitions a retrieval target 3D model into a set of
sub-volumes by using 3D grids having random intervals and
orientations. By randomizing parameters for the sub-vol-
umes, i.e., their positions, scales, and orientations, the P3D-
RSVP generates much smaller number of sub-volumes (e.g.,
~1K per model) than the sliding sub-volume approach (e.g.,
~100K per model). However, the number of sub-volumes
that need to be compared is still quite large if the size of the
database is very significant.

To reduce the cost for retrieval, we use compact binary
codes to represent features for the queries and the sub-vol-
umes of 3D models. For each sub-volume, 3D geometric
features are extracted, encoded, and aggregated. Then, the
aggregated high-dimensional feature is dimension-reduced
and hashed into a compact binary code by Iterative Quanti-
zation (ITQ) [GL11]. Comparison among binary codes can
be performed very efficiently in Hamming space.

To quantitatively evaluate efficiency and accuracy of the
P3D-RSVP algorithm, we create three new benchmark data-
bases for P3DMR. Experimental results using these bench-
mark databases show that the P3D-RSVP algorithm pro-
duces higher retrieval accuracy than algorithms we have
compared against. In addition, it is efficient; it takes less than
2 seconds to query a database having 50K 3D models.

Contribution of this paper can be summarized as follows;

 Proposal of the P3D-RSVP algorithm. It combines ran-
domized sub-volume partitioning of 3D model and com-
pact binary codes to describe the sub-volumes for effi-
cient comparison among the query and 3D models.

 Quantitative evaluation of efficiency and accuracy of the
P3D-RSVP algorithm using newly created P3DMR
benchmark databases.

The rest of the paper is organized as follows. The next
section reviews related work. The P3D-RSVP algorithm is

described in Section 3. Experiments and results are pre-
sented in Section 4, followed by conclusion and future work
in Section 5.

2. Related work

P3DMR algorithms search 3D models whose part(s)
matches a part-based query [FMA*10, IG07, AMS*11,
SYY*05, SSS*08, LBZ*13]. It is a more difficult problem
than W3DMR, primarily due to high computational cost to
compare the query against numerous parts of 3D models.

[SPK*13], [SPS14], and [LZQ06] applied W3DMR
algorithms using Bag-of-Features (BF) approach [CDF*04]
to the task of P3DMR. An algorithm in this class extracts a
set of local features from each of the part-based query model
and the (whole) 3D model in a database. Then, these sets of
features are aggregated by using BF approach and compared
against each other. This process works reasonably well for
P3DMR if the part-based query is “large enough”, e.g., more
than 50% of the whole model. However, if the query is
“small” relative to the whole model, feature comparison
would fail since BF-aggregated vectors for the query and
retrieval targets would become significantly different.
Therefore, this class of P3DMR algorithms using W3DMR
approaches showed limited success.

[FMA*10], [IG07], [SYY*05], and [SSS*08] proposed
P3DMR algorithms based on segmentation of retrieval
target 3D models. [FMA*10] and [SYY*05] segment the
3D model in the database into a set of sub-parts. Each sub-
part is described by a 3D geometric feature and compared
against a 3D geometric feature of the query. To accelerate
retrieval, [FMA*10] exploited an inverted index. The
inverted index works quite well, that is, it took about a
second to query the database containing about 800 3D
mechanical CAD models. [SSS*08] hierarchically segments
a 3D manifold mesh and constructs a graph whose node
corresponds to a sub-volume. Then, a bipartite graph
matching is performed to compare the query and the

Figure 1: For pre-processing, each 3D model in a database is partitioned into a set of Nv sub-volumes having diverse positions,
scales, and orientations by using 3D grids with random intervals and orientations. Each sub-volume is described by a compact
binary code. Retrieval rank is efficiently computed by comparing binary codes of the sub-volumes against a binary code of the
part-based query.

convert to
oriented point set

generate sub-volumes
by RSVP

extract and hash
features

oriented
point set

a set of Nv (~1k)
sub-volumes

retrieval target
3D model

retrieval

oriented
point set

part-based
query

extract and hash
a feature

a set of Nv (~1k)
binary codes
(e.g., 512 bit)

convert to
oriented point set

(0110)2

(1011)2

(1010)2
a binary code
(e.g., 512 bit)

compute
distances

sets of Nm×Nv
binary codes

(e.g., Nm×Nv =50M)

a database of
Nm 3D models
(e.g., Nm=50K)

(0110)2

(1011)2

retrieval
results

pre-processing

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 16

© The Eurographics Association 2015.

retrieval target 3D model. This class of algorithms using
segmentation can perform P3DMR within several seconds if
size of a database is small (~1K 3D models). However, they
don’t scale to a database having significant size (~100K) due
to high computational cost for similarity matching among
the query and the 3D models. Furthermore, segmentation
algorithms often can’t handle 3D shapes having
topologically not-so-well-defined representations, e.g.,
polygon soup or point set captured by 3D range scanners.

[MBO10], [KHK10], and [SX14] proposed algorithms to
detect object(s) similar to the query from a 3D scene.
[KHK10] and [SX14] perform sliding sub-volume search for
object detection from a 3D scene. Sub-volumes having
diverse scales are generated at every position in the 3D scene,
and features extracted from these sub-volumes are compared
against a feature of the query. These algorithms effectively
identify parts similar in shape to the query from a single 3D
scene. However, due to their high computational costs, these
algorithms are not practical in finding a desired partial shape
from a large collection of 3D models or 3D scenes.

Recently, [JMY12] proposed Randomized Sub-Window
Partitioning (RSWP) approach for efficient part-based 2D
image retrieval. By randomizing position and scale of sub-
windows, the algorithm requires smaller number of sub-
windows than the sliding window approach. According to
[JMY12], the RSWP is faster than the branch-and-bound
methods [Lam09] for part-based 2D image retrieval. Our
proposed algorithm is an extension of the RSWP to P3DMR.

3. Proposed algorithm

3.1 Overview of the algorithm

We propose Part-based 3D model retrieval by Random-
ized Sub-Volume Partitioning (P3D-RSVP) algorithm for
efficient P3DMR on a large-scale 3D model database. P3D-
RSVP (Figure 1) randomly and iteratively partitions a re-
trieval target 3D model into a set of sub-volumes by using
3D grids with random intervals and orientations. Since total
number of sub-volumes per database having significant size
becomes very large, comparison between features of the
part-based query and features of the sub-volumes must be
very efficient. In addition, each sub-volume feature must be
compact so that all the features for all the sub-volumes of all
the 3D models in the database could be stored on memory.

To reduce the cost of retrieval, high-dimensional real-val-
ued vectors extracted from sub-volumes are hashed into
compact (e.g., 512 bit) binary codes. A binary code for a
part-based query is efficiently compared against the binary
codes for the sub-volumes of 3D models in the database by
using Hamming distance. In addition to being fast to com-
pare, binary code is compact enough so that features for all
the sub-volumes of all the (e.g., 100K) 3D models in a data-
base could be held on memory for quick retrieval.

3.2 Randomized Sub-Volume Partitioning (RSVP)

3.2.1 Generating oriented point set

The P3D-RSVP algorithm expects 3D model defined ei-
ther as polygonal mesh or as oriented point set. For a 3D
model defined as polygonal mesh, we first convert it into

oriented point set by sampling its surfaces. We use the algo-
rithm by Osada et al. [OFC*02] for converting a polygonal
model into an oriented point set. The algorithm randomly
and uniformly samples points on the surfaces of the 3D po-
lygonal model by using quasi-random number sequence.
Each point is associated with the normal vector of the trian-
gle on which the point is sampled. In this paper, we sample
Np=4,000 oriented points on a part-based query model and
Np=16,000 oriented points on a retrieval target 3D model.
Oriented point representation of the 3D model is scaled to fit
a sphere having diameter 1.

3.2.2 Generating sub-volumes

Given an oriented point set of the retrieval target 3D
model, we partition the bounding box of the point set into
Ng×Ng×Ng (e.g., Ng=3) non-overlapping cuboid sub-volumes
by using 3D grid having random intervals. We iterate this
partitioning Ni times (e.g., Ni=50). To make the algorithm
robust against orientation in 3D space, we randomly rotate
the point set prior to each partitioning. We set the lower
bound for the 3D grid interval to be 0.05 since a sub-volume
that is too small would be useless for comparison between
the query and the sub-volumes of 3D models.

As a result of the partitioning, Nv=Ng×Ng×Ng×Ni sub-
volumes having diverse positions, sizes and aspect ratios,
and orientations are generated per 3D model. By increasing
Ng, sub-volumes with smaller scale tend to be generated.
Small sub-volumes are necessary if a part-based query is
small relative to the target whole 3D model (e.g., querying
by a 3D model of a hand to retrieve whole-body human 3D
models). By increasing Ni, positions, scales, and orientations
for sub-volumes get more diverse. This increases probability
to match sub-volumes to the part-based query. We obtain
Nv_total= Nv×Nm subvolumes per database where Nm is the
number of 3D models in the database.

3.3 Features for sub-volumes

3.3.1 Extracting sub-volume features

Each sub-volume generated by random grid partitioning
is described by a feature vector and is compared against a
feature vector of the part-based query. In this paper, we use
a feature called Super Vector of Simplified Point Feature
Histograms, or SV-SPFH, to describe the sub-volumes.

A simplistic approach to computing SV-SPFH is as
follows. First, a set of oriented points in a sub-volume is first
normalized for scales so that it is tightly enclosed by a sphere
having diameter 1. For each oriented point, we define a
Sphere-Of-Interest (SOI) whose radius is R within which
local 3D geometric feature is computed (R is a parameter).
For example, with R=0.5, the SOI is large enough to enclose
the sub-volume. SPFH [RBB09], which is rotationally
invariant 125-dimensional 3D geometric feature, are densely
extracted from each of the oriented points enclosed in the
SOI. We then aggregate the set of SPFH features into a
feature vector per sub-volume by using Super Vector (SV)
encoding [ZYZ*10] to generate a SV-SPFH for the sub-
volume. Similarly, we compute a SV-SPFH feature vector
for the query.

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 17

© The Eurographics Association 2015.

Using this simplistic approach, temporal cost of
computing SV-SPFH for a large number of sub-volumes is
quite high. To accelerate extraction of SV-SPFH features
from sub-volumes, we actually use an accelerated version of
that algorithm that employs a “late-binding” approach. We
move the process of extracting and encoding sets of SPFH
features to the stage before sub-volume partitioning. After
the sub-volume partitioning is done, a SV-SPFH feature for
a sub-volume is efficiently computed by simply pooling, or
summing, already encoded features that lie inside the sub-
volume. Using this late-binding approach, whose detail will
be described below, SV-SPFH feature extraction from
thousands of sub-volumes of a 3D model became 3 to 4
times faster than the simplistic approach.

Extracting SPFH: Given an oriented point set of a 3D
model, which has not been partitioned yet, a set of SPFH is
densely extracted with respect to both spatial position and
scale. Each SPFH feature is computed at the 3D coordinates
of one of Np oriented points, where Np=16,000 is used
throughout the paper. We don’t know the scale of each sub-
volume prior to random grid partitioning. Thus, we extract a
set of SPFH that covers all the Ns scales at each SPFH center.
In this paper, we used number of scales Ns=20. For each
oriented point p of the 3D model, we define Ns SOIs. Radius
Rs for s-th (s=1,…,Ns) scale is computed as /s sR sR N . A
SPFH is extracted from each of Ns SOI having radius Rs. As
we use Np=16,000 and Ns=20, Np ×Ns=320,000 SPFH
features are extracted from a retrieval target 3D model.

Encoding SPFH by SV: The set of densely extracted
SPFH from the oriented point set of the 3D model is then
encoded by using SV. SV encodes each of the SPFH features
by using posterior probabilities and displacements from
cluster centers computed in the 125-dimensional SPFH
feature space. A codebook is learned by Gaussian Mixture
Model clustering on 250,000 SPFH features randomly
selected from all the SPFH of 3D models in the database.
We use soft-assignment variant of SV coding [FO14], in
which a SPFH feature is assigned, with weights, to several
neighboring cluster centers. The weights are posterior
probabilities of the SPFH feature belonging to the assigned
centers. If we use the number of cluster centers, or the
number of codewords, Nc=64, then the SV-encoding of a set
of SPFH features would result in a set of encoded SPFH
features having dimensionality (125+1)×Nc=8,064.

Aggregating encoded SPFH: After sub-volume
partitioning, a SV-SPFH feature for the sub-volume is
formed by aggregating, or pooling, the SV-encoded SPFH
features for the set of oriented points within the sub-volume.
A scale index s of the sub-volume is computed as

 2ss round N l  where l is a diagonal length of the sub-
volume. The set of encoded SPFH feautures for scale s
within the sub-volume is accumulated into a feature vector
and is normalized by power normalization followed by L2
normalization as with [PSM10].

Note that other descriptors for oriented point set which
have rotation invariance in 3D space can be used to describe
sub-volumes of 3D models. In the preliminary experiments,
we compared SPFH against other commonly-used local 3D
geometric features, i.e., Spin Image [JH99] and RoPS
[GSB*13]. We also compared SV against other feature

aggregation methods, i.e., BF, VLAD [JDS*10], Fisher
Vector [PSM10], and LLC [WYY*10]. We found that the
combination of SPFH and SV, i.e., SV-SPFH, performed the
best among the combinations we tried.

3.3.2 Hashing sub-volume features

The SV-SPFH feature extracted from the sub-volume is a
high dimensional (e.g., 8,064 dim.), real-valued vector. To
reduce temporal cost and storage cost for retrieval, we hash
SV-SPFH features into a set of compact binary codes. To do
so, we first project the SV-SPFH features onto low-
dimensional (e.g., 512 dim.), real-valued subspace by using
Kernel PCA (KPCA) with dot kernel. In the low-
dimensional space, we learn a hash function by using ITQ
algorithm [GL11]. ITQ learns a rotation matrix so that error
due to binarization that maps from the original real-valued
space to the Hamming space becomes small. We perform 20
iterations to learn the rotation. Then, the SV-SPFH feature x
for the sub-volume is hashed into a binary code b by using
the following equation;

  p rsign  b x M M (1)

where sign() is an element-wise thresholding function by
sign, that is, it produces 1 if the element of the vector is > 0
and 0 otherwise. Mp is a KPCA projection matrix, and Mr is
a rotation matrix for ITQ. Mp and Mr are learned by using a
set of 5,000 SV-SPFH features randomly selected from all
the SV-SPFH features of the sub-volumes in the database.

If we use binary codes having Nb bit each, and if there are
Nv sub-volumes per 3D model, SV-SPFH features for a
database having Nm 3D models occupies Nb×Nv×Nm bit. For
example, if Nb=512, Nv=1K, and Nm=100K, footprint of the
features is about 6 GByte. Using a modern PC, all the
features would fit in its main memory for fast retrieval.

3.4 Ranking 3D models

Ranking of 3D models in the database against a given
query is performed efficiently by comparing their binarized
SV-SPFH features. The SV-SPFH feature xq for the query q
is hashed into a binary code bq by using equation 1. The
distance D between the query q and the 3D model t in the
database is computed as;

    
1

, argmin q ti
i Nv

D d ,
 

q t b b (2)

where Nv is the number of sub-volumes for the model t, bti
is a binary code for a sub-volume i of the model t. We use
Hamming distance as a distance function d between a pair of
binary codes. Hamming distance between a pair of binary
code can be computed very efficiently by using a
combination of (SIMD) XOR instruction and bit count
instruction. Finally, 3D models in the database are ranked
based on their Hamming distances to the part-based query.

4. Experiments and results

4.1 Experimental setup

To evaluate accuracy and efficiency of the P3D-RSVP
algorithm, we created three P3DMR benchmark databases,
i.e., P-PSB, P-SH11NR, and P-PSBX. Retrieval target

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 18

© The Eurographics Association 2015.

(whole) 3D models for these benchmark databases are
adopted from existing benchmark databases for W3DMR.
We created part-based queries from these 3D models by
interactively segmenting a part (or parts) from each 3D
model. Figure 2 shows examples of part-based queries and
retrieval target 3D models as well as their ground-truth
categories for the P-PSB and the P-SH11NR. P-PSB and P-
PSBX contain polygon soup, open mesh, and other “not-so-
well-defined” 3D models. P-SH11NR, on the other hand,
contains only closed meshes defining solid 3D models.

The P-PSB contains 304 rigid retrieval target 3D models
and 67 part-based queries classified manually into 51
semantic categories. The set of target 3D models for the P-
PSB is a subset of the Princeton Shape Benchmark (PSB)
[SMK*04]. The P-SH11NR contains 600 non-rigid retrieval
target 3D models adopted from SHREC 2011 Non-rigid 3D
watertight meshes dataset [LGB*11] and 180 part-based
queries classified into 30 semantic categories. For both
benchmarks, the sets of part-based query were created by
cutting off parts of the retrieval target 3D models.

 The P-SPBX was created to evaluate scalability of the
proposed algorithm on a benchmark much larger in size than
the P-PSB or the P-SH11NR. We artificially created 49,696
“imposter” retrieval target 3D models by randomly scaling
and rotating the target 3D models in the P-PSB. The P-PSBX
has a total of 50K 3D models. The part-based queries for P-
PSBX are the same as in the P-PSB. In computing retrieval
accuracy for the P-PSBX, all the imposters are excluded
from the retrieval result, and only the 3D models existed in
the P-PSB are used.

We wanted to compare retrieval accuracy among of the
P3D-RSVP with other P3DMR algorithms. However, to our
knowledge, there isn’t any P3DMR algorithm for a large-
scale database. In the experiments, we thus compare the
P3D-RSVP against the following; one “off-the-cuff”
P3DMR algorithm and two W3DMR algorithms.

RSWP-SV-DSIFT: This is a naïve extension of RSWP
algorithm by Jiang et al. [JMY12]. In a pre-processing step,
a retrieval target 3D model is rendered from 20 viewpoints
into a set of 20 depth images of size 512×512 pixels. Each
rendered image is partitioned into 3×3 non-overlapping 2D
rectangular sub-windows by using grids having random
intervals. This partitioning is iterated 50 times. For each 3D
model, 20×3×3×50 = 9,000 sub-windows (2D images) are
generated. As with the P3D-RSVP, the RSWP-SV-DSIFT
uses “late-binding” approach for feature aggregation, a set
of 4,000 SIFT [Low04] features is densely and randomly
extracted per view prior to sub-window partitioning. Each
sub-window is described by a SV-DSIFT feature produced
by aggregating SV-encoded SIFT features inside the sub-
window. By using KPCA, the SV-DSIFT feature is
dimension reduced to 512 dimensions.

In the retrieval step, a partial query is also rendered from
20 viewpoints and a set of 1,000 SIFT features is densely
extracted per view. The set of SIFT features are aggregated
into a feature vector per view and compressed into 512-
dimensional vector by using KPCA. Distance between a
partial query q and a retrieval target model t is computed by
the following equation where xqi is a feature vector of i-th
view of q and xtj is a feature vector of j-th sub-window of t.

Distance d is “Cosine distance” in the range [0, 1] computed
by subtracting Cosine similarity from 1.0.

    
20

1 90001

, argmin ,qi tj
ji

D d
 

q t x x (3)

Per query cost of retrieval for the RSWP-SV-DSIFT is
rather high as a large number (i.e., 9,000×20=180,000) of
distances among SV encoded floating point feature vector
pairs must be computed.

SV-SPFH, SV-DSIFT: These algorithms are essentially
for W3DMR in which whole 3D models are compared
against each other. Recall that [SPK*13], [SPS14], and
[LZQ06] applied this approach to the task of P3DMR. In this
approach, both a query model and a retrieval target model
are represented by a feature vector per 3D model. That is,
the retrieval target model is not partitioned into sub-volumes.
For SV-SPFH, a set of SPFH features [RBB09] is densely
extracted from the 3D model. The set of SPFH is aggregated
by using SV encoding for a feature vector per 3D model. The
SV-SPFH feature vectors are compared by using Cosine
distance. For SV-DSIFT [FO14], a set of SIFT is densely
extracted from depth images rendered from 42 viewpoints
uniformly spaced in solid angle around the 3D model. The
set of about 13,000 densely sampled SIFT features (about
300 SIFT features per view) is aggregated by SV encoding
for a feature vector per 3D model. Distance among SV-
DSIFT feature vectors are computed by using Cosine
distance. For a W3DMR, SV-DSIFT is one of the most
accurate retrieval algorithms [FO14].

As accuracy measures, we use Nearest Neighbor (NN)
[%] and Mean Average Precision (MAP) [%]. Since the
P3D-RSVP is a randomized algorithm, every experiment is
run 5 times and an average value of 5 runs is reported. We
do not plot deviation of accuracies in the graphs as deviation
of 5 runs was small (within 1 %) for most cases.

Table 1 summarizes combination of parameters for the
RSVP determined through preliminary experiments.
Parameters for the P-PSBX are the same as those for the P-
PSB. Table 2 summarizes the number of sub-volumes
generated by the RSVP when parameters in Table 1 are used.

“commercial
airplane”
category

“electrical
guitar”

category

 part-based queries retrieval targets

(a) P-PSB

“bird”
category

“cat”
category

 part-based queries retrieval targets

(b) P-SH11NR

Figure 2: Examples of part-based queries and retrieval
target 3D models for the P3DMR benchmark databases.

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 19

© The Eurographics Association 2015.

We used a PC having two Intel Xeon E5-2650V2 (8 cores,
16 threads each) CPUs and 256 GByte DRAM. All the
programs are parallelized by using OpenMP [OMP].
However, computation time is measured without
parallelization for evaluation of efficiency.

Table 1: Parameters for P3D-RSVP algorithm.

Parameters P-PSB P-SH11NR
of grid intervals Ng 3 3

of iterations of partitioning Ni 50 50
radius R of Sphere-Of-Interest 0.30 0.15
of codewords for codebook 64 64
of bits for binary code Nb 512 512

Table 2: Number of sub-volumes generated by RSVP.

 P-PSB P-SH11NR P-PSBX
of target 3D models Nt 304 600 50,000
of sub-volumes / model

Nv= Ng×Ng×Ng×Ni
1,350 1,350 1,350

of total sub-volumes
Nv_total = Nt×Nv

410,400 810,000 67,500,000

4.2 Experimental results

4.2.1 Parameters for RSVP

We evaluate influences of parameters for RSVP with
regard to retrieval accuracy. For this set of experiments, each
SV-SPFH feature is projected onto 512-dimensional real-
valued space by KPCA, and resulting real-valued vector is
used to find a best performing subset of parameters. Cosine
distance is used to compute distance between a pair of SV-
SPFH features of a query and a sub-volume of a 3D model.

Figure 3 plots retrieval accuracy against the number of
grid intervals Ng. For both the P-PSB and the P-SH11NR,
Ng=2 or Ng=3 produces higher retrieval accuracy than other
Ng. A special case Ng=1 means no random grid partition is
performed on retrieval target 3D models, that is, the P3D-
RSVP behaves as an algorithm for W3DMR. We can say
that the RSVP helps P3DMR, as the retrieval accuracies for
Ng2 are higher than that for Ng=1. For Ng>3, accuracy
gradually decreases with Ng for both benchmarks.
Presumably, the RSVP with Ng=2 or Ng=3 would tend to
produce sub-volumes whose scale is similar to part-based
query for the P-PSB and the P-SH11NR.

Figure 4 plots retrieval accuracy against the number of
iterations Ni for random grid partitioning. We can observe
that, for both the P-PSB and the P-SH11NR, accuracy
saturates at Ni =50 and nearly unchanged up to Ni =300.

4.2.2 Compression of sub-volume feature

In this section, we evaluate the impact the feature
compression algorithm, i.e., KPCA dimension reduction and
ITQ hashing, on retrieval accuracy. Efficiency of this step
will be discussed in the next section.

Figure 5 compares retrieval accuracies of three feature
compression algorithms. In Figure 5, “no reduction” plots
accuracy of raw 8,064-dimensional, real-valued, SV-SPFH
feature. “KPCA” plots accuracy of SV-SPFH projected onto
a lower-dimensional real-valued space by using KPCA.
“KPCA+Hashing without ITQ” plots accuracy for hashed
SV-SPFH where each element of KPCA-reduced feature
vector is binarized by its sign without using ITQ.
“KPCA+Hashing with ITQ” is accuracy for hashed SV-
SPFH binarized by using ITQ algorithm. For distance metric,
Cosine distance described before is used for real-valued
features (“no reduction” and “KPCA”) and Hamming
distance is used for binary features (“KPCA+Hashing
without ITQ” and “KPCA+Hashing with ITQ”).

Figure 5 shows ITQ is effective for generating comact and
accurate binary codes. In Figure 5, binary code having more
than 512 bit produced by using ITQ is about as accurate as
the real-valued SV-SPFH without dimension reduction (i.e.,
“no reduction”). Binary codes produced without using ITQ
(“KPCA+Hashing without ITQ”) at 512 bit is about 5 % less
accurate than the raw SV-SPFH (i.e., “no reduction”).

4.2.3 Efficiency

Table 3 compares computation time per query for the
three benchmark databases, i.e., the P-PSB, the P-SH11NR,
and the P-PSBX. Column “feat.” indicates time for
extracting SV-SPFH from a part-based query. Column “dist.”
shows time for computing distances among the feature of the
query and the features of all the sub-volumes of all the 3D
models in the database. For the P-PSBX, we did not
experiment with “no reduction” option since uncompressed
SV-SPFH features for 68M sub-volumes could not be stored
on the HDD used for the experiment.

By using hashing, distance computation among the query
and the sub-volumes in the database is significantly
accelerated. For example, for P-PSBX, it took about 0.2s for
distance computation among a query and about 68M sub-
volumes of 50K 3D models. Even for the P-PSBX
containing 50K 3D models, total time required for retrieval
is less than 2s. Retrieval accuracies of RSVP employing ITQ
hashing are nearly identical for the P-PSBX (MAP=35.9%)

Figure 5: Reduced dimensionality
and retrieval accuracy (P-PSB).

Figure 4: Number of iterations for
RSVP and retrieval accuracy.

Figure 3: Number of grid intervals
and retrieval accuracy.

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6

M
A

P
 [

%
]

of grid intervals Ng

P-PSB
P-SH11NR

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300

M
A

P
 [

%
]

of iterations for partitioning Ni

P-PSB
P-SH11NR

0

10

20

30

40

0 200 400 600 800 1,000 1,200

M
A

P
 [

%
]

of dimensions

no reduction (8,064dim.)
KPCA
KPCA+Hashing without ITQ
KPCA+Hashing with ITQ

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 20

© The Eurographics Association 2015.

and P-PSB (MAP=37.0%). Proposed P3D-RSVP algorithm
seems to show good scalability both in terms of efficiency
and accuracy.

Table 4 shows time for pre-processing. Retrieval phase is
accelerated by hashing. However, pre-processing phase,
especially feature extraction from retrieval target 3D models
in the database, is time-consuming. As mentioned in Section
3, P3D-RSVP algorithm extracts and encodes a set of 3D
geometric features prior to random grid partitioning.
However, it is still time consuming to process a database
containing a large number of 3D models.

Table 5 summarizes spatial complexity for storing all the
features for all the sub-volumes of every 3D model in the
database. Dominant factor is the features for sub-volumes.
Sum of all the other data, which include a codebook for SV
encoding, a projection matrix for KPCA, and a rotation
matrix for ITQ, occupies meager 16MBytes.

P3D-RSVP using ITQ hashing with 512 bit requires only
about 84KBytes per 3D model to store a set of features for
the 3D model having 1,350 sub-volumes. For P-PSBX, it
takes 4GBytes to store all the binary codes for 68M sub-
volumes for 50K 3D models. As shown in Table 3, part-
based retrieval can be done in an “interactive” speed (e.g.,
within a few seconds) since the 4GB footprint of the features
is small enough to easily fit in a main memory of
contemporary PC. With a larger main memory of 256 Gbyte,
for example, we could fit all the features for 3 million 3D
models on the main memory. In that case, we estimate that,
by exploiting multiple cores, a query into the 3 million
model database would take a few seconds.

Table 3: Computation time [s] per query.

algorithms feat. dist. total
P-PSB (304 retrieval target 3D models)

no reduction (8,064 dim.) 1.518 7.416 8.934
KPCA (512 dim.) 1.653 0.569 2.222

KPCA+ITQ (512 bit) 1.653 0.001 1.654
P-SH11NR (600 retrieval target 3D models)

no reduction (8,064 dim.) 0.700 15.216 15.916
KPCA (512 dim.) 0.839 1.027 1.866

KPCA+ITQ (512 bit) 0.839 0.002 0.841
P-PSBX (50,000 retrieval target 3D models)

no reduction (8,064 dim.)
KPCA (512 dim.) 1.653 90.442 92.095

KPCA+ITQ (512 bit) 1.653 0.199 1.852

Table 4: Computation time [s] to pre-process database.

processes P-PSB P-SH11NR
feature extraction 19664.5 32007.0

codebook learning for SV 130.1 120.3
KPCA learning 207.9 202.1

ITQ learning 288.8 270.2
Total 20291.3 32599.6

Table 5: Storage cost [GByte] for sub-volume features.

algorithms P-PSB P-SH11NR P-PSBX
no reduction (8,064 dim.) 12.33 24.33 2027.75

KPCA (512 dim.) 0.78 1.54 128.75
KPCA+ITQ (512 bit) 0.02 0.05 4.02

4.2.4 Comparison of accuracy among algorithms

We compare accuracy of the proposed P3D-RSVP against
one “off-the-cuff” P3DMR algorithm, i.e., RSWP-SV-
DSIFT and two W3DMR algorithms, i.e., SV-SPFH and
SV-DSIFT. Table 6 compares retrieval accuracies using the
two P3DMR benchmark databases. As shown in Table 6, for
both benchmarks, our proposed P3D-RSVP performs the
best among the algorithms we have compared. For example,
P3D-RSVP significantly outperforms RSWP-SV-DSIFT.
This result shows that randomized sub-volume partitioning
of 3D polygonal mesh or 3D point set is more suitable for
P3DMR than randomized sub-window partitioning of 2D
images. Interestingly, NN for P3D-RSVP is much higher
than other algorithms. This result indicates P3D-RSVP is
good at searching a 3D model which has a part (nearly)
identical to a part-based query. SV-SPFH and SV-DSIFT,
which are algorithms for W3DMR, did not perform well for
the P3DMR benchmarks. Figure 6 shows examples of
retrieval results due to P3D-RSVP and RSWP-SV-DSIFT.

Table 6: Retrieval accuracy [%].

algorithms
P-PSB P-SH11NR

NN MAP NN MAP
P3D-RSVP (proposed) 79.1 37.0 96.7 76.3

RSWP-SV-DSIFT 32.8 28.8 42.2 40.3
SV-SPFH 40.3 26.4 33.3 24.5
SV-DSIFT 28.4 26.5 28.3 28.5

5. Conclusion and future work

In this paper, we proposed a Part-based 3D model
retrieval by Randomized Sub-Volume Partitioning (P3D-
RSVP) algorithm for efficient part-based 3D model retrieval
(P3DMR) on a 3D model database having a significant size.
The P3D-RSVP randomly and iteratively partitions a
retrieval target 3D model into a set of sub-volumes by using
random 3D grids. The approach requires comparison with a
query and a large number (e.g., 68M for 50K 3D models) of
sub-volumes. To accelerate the comparison, a feature
describing a sub-volume is hashed into a compact (e.g., 512
bit) binary code. A pair of binary codes can be compared
very efficiently by using Hamming distance. Compactness
of the binary-coded features is also crucial in fitting all the
features for the large number of sub-volumes into a memory
for interactive retrieval.

To quantitatively evaluate accuracy and efficiency of the
P3D-RSVP algorithm, we created three new P3DMR
benchmarks. Experiments using these benchmarks showed
that the P3D-RSVP algorithm showed higher accuracy than
algorithms we have compared. In addition, it is efficient; it
took less than 2 seconds to process a query against a
database having 50K 3D models.

As a future work, we need to compare P3D-RSVP with
algorithms using sliding sub-volumes or segmentation of 3D
models. We also need to improve accuracy of P3DMR, e.g.,
via more discriminative yet efficient 3D geometric features.

References

[AMS*11] ATTENE M., MARINI S., SPAGNUOLO M. et al.:
Part-in-whole 3D shape matching and docking. The Visual
Computer 27(11), 991–1004, 2011.

T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 21

© The Eurographics Association 2015.

[CDF*04] CSURKA G., DANCE C. R., FAN L., WILLAMOWSKI
J., et al.: Visual Categorization with Bags of Keypoints.
ECCV 2004 workshop on Statistical Learning in Com-
puter Vision, 59–74, 2004.

[DT05] DALAL N., TRIGGS B.: Histograms of Oriented Gra-
dients for Human Detection. CVPR 2005, 886–893, 2005.

[FMA*10] FERREIRA A., MARINI S., ATTENE M., et al.: The-
saurus-based 3D Object Retrieval with Part-in-Whole
Matching. IJCV, 89(2-3), 327–347, 2010.

[FO14] FURUYA T., OHBUCHI R.: Fusing Multiple Features
for Shape-based 3D Model Retrieval. BMVC 2014, 2014.

[GL11] GONG Y., LAZEBNIK S.: Iterative quantization: A
procrustean approach to learning binary codes. CVPR
2011, 817–824, 2011.

[GSB*13] GUO Y., SOHEL F., BENNAMOUN, M., et al.: RoPS:
A local feature descriptor for 3D rigid objects based on
rotational projection statistics. ICCSPA 2013, 1–6, 2013.

[IG07] IP C. Y., GUPTA S. K.: Retrieving Matching CAD
Models by Using Partial 3D Point Clouds. Computer-
Aided Design and Applications, 4(5), 629–638, 2007.

[JDS*10] JEGOU H., DOUZE M., SCHMID C., et al.: Aggre-
gating local descriptors into a compact image representa-
tion, CVPR 2010, 3304–3311, 2010.

[JH99] JOHNSON A.E., HEBERT M.: Using spin images for
efficient object recognition in cluttered 3D scenes. PAMI,
21(5), 433–449, 1999.

[JMY12] JIANG Y., MENG J., YUAN J.: Randomized visual
phrases for object search. CVPR 2012, 3100–3107, 2012.

[KHK10] KANEZAKI A., HARADA T., KUNIYOSHI Y.: Partial
matching of real textured 3D objects using color cubic
higher-order local auto-correlation features. The Visual
Computer, 26(10), 1269–1281, 2010.

[Lam09] LAMPERT C. H.: Detecting objects in large image
collections and videos by efficient subimage retrieval.
ICCV 2009, 987–994, 2009.

[LBZ*13] LIU Z.-B., BU S.-H., ZHOU K., et al.: A Survey on
Partial Retrieval of 3D Shapes. Journal of Computer Sci-
ence and Technology, 28(5), 836–851, 2013.

[LGB*11] LIAN Z., GODIL A., BUSTOS B., et al.: SHREC'11
Track: Shape Retrieval on Non-rigid 3D Watertight
Meshes, EG 3DOR’11, 79–88, 2011.

[Low04] LOWE D. G.: Distinctive Image Features from
Scale-Invariant Keypoints. IJCV, 60(2), 91–110, 2004.

[LZQ06] LIU Y., ZHA H., QIN H.: Shape Topics: A Compact
Representation and New Algorithms for 3D Partial Shape
Retrieval. CVPR 2006, 2025–2032, 2006.

[MBO10] MIAN A., BENNAMOUN M., OWENS R.: On the Re-
peatability and Quality of Keypoints for Local Feature-
based 3D Object Retrieval from Cluttered Scenes. IJCV,
89(2–3), 348–361, 2010.

[OFC*02] OSADA R., FUNKHOUSER T., CHAZELLE B., et al.:
Shape Distributions. ACM Trans. on Graphics, 21(4),
807–832, 2002.

[OMP] OpenMP.org, http://openmp.org

[PSM10] PERRONNIN F., SÁNCHEZ J., MENSINK T.: Improv-
ing the fisher kernel for large-scale image classification.
ECCV 2010, pp.143–156, 2010.

[RBB09] RUSU R.B., BLODOW N., BEETZ M.: Fast Point
Feature Histograms for 3D registration. ICRA 2009, 3212–
3217, 2009.

[RBK96] ROWLEY H. A., BALUJA S., KANADE T.: Human
Face Detection in Visual Scenes. NIPS 8, 875–881, 1996.

[SMK*04] SHILANE P., MIN P., KAZHDAN M., et al.: The
Princeton Shape Benchmark, SMI 2004, 167–178, 2004.

[SPK*13] SFIKAS K., PRATIKAKIS I., KOUTSOUDIS A., et al.:
3D Object Partial Matching Using Panoramic Views.
ICIAP 2013, LNCS, 8158, 169–178, 2013.

[SPS14] SAVELONAS M. A., PRATIKAKIS I., SFIKAS K.:
Fisher encoding of adaptive fast persistent feature histo-
grams for partial retrieval of 3D pottery objects. EG
3DOR’14), 61–68, 2014.

[SSS*08] SHALOM S., SHAPIRA L., SHAMIR A., et al.: Part
analogies in sets of objects. EG 3DOR'08, 33–40, 2008.

[SX14] SONG S., XIAO J.: Sliding Shapes for 3D Object De-
tection in Depth Images. ECCV 2014, 634–651, 2014.

[SYY*05] SUZUKI M. T., YAGINUMA Y., YAMADA T., et al.:
A partial shape matching method for 3d model databases.
SEA2005, 389–394, 2005.

[WYY*10] WANG J., YANG J., YU K., et al.: Locality-con-
strained Linear Coding for Image Classification, CVPR
2010, 3360–3367, 2010.

[ZYZ*10] ZHOU X., YU K., ZHANG T., et al.: Image Classi-
fication using Super-Vector Coding of Local Image De-
scriptors, ECCV 2010, 141–154, 2010.

insect,
C=4

P3D-RSVP (proposed)

RSWP-SV-DSIFT

Figure 6: Examples of retrieval results. For P3D-RSVP, we visualized the part in (whole) 3D models that matched the given
part-based query. C is the number of 3D models in the database which belong to the same semantic category with the query.

  



T. Furuya et al. / Randomized Sub-Volume Partitioning for Part-Based 3D Model 22

