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Abstract

This paper proposes a new framework for an efficient detection of template shapes within a target 3D model,
or scene. The proposed approach distinguishes from the previous literature because the part-in-whole matching
between the template and the target is obtained by extracting off-line only the shape descriptor of the template,
while the description of the target is dynamically and adaptively extracted during the matching process. This novel
framework, called the Fast Reject schema, exploits the incremental nature of a class of local shape descriptors
to significantly reduce the part-in-whole matching time, without any expensive processing of the models for the
extraction of the shape descriptors. The schema have been tested on three different descriptors and results are
discussed in details. Experiments show that the gain in computational performances does not compromise the

accuracy of the matching results.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Additional keywords: 3D shape, Fast partial matching, Semantic annotation.

1. Introduction

Today, 3D acquisition technologies as well as advanced 3D
design tools, make it possible to digitize our environment at
several scales, starting from small objects up to large scale
spaces. This enables 3D digital models to become active ac-
tors in several contexts such as industrial manufacturing, am-
bient surveillance and security, biology, serious gaming and
simulation and many other applications. Most of the afore-
mentioned applications need to detect relevant shape parts
to perform several tasks, including the semantic annotation
of large model collections: once the matching has been es-
tablished between a template model and the target, the corre-
sponding sub-parts can be annotated with the information as-
sociated to the template, hence enabling powerful semantics-
based retrieval paradigms [ARSF09, GKF09].

In the literature, the location of relevant parts in a 3D tar-
get model (e.g. a 3D complex scene) is often approached
through part-in-whole shape matching, where various re-
gions of the rarget model are compared with a given
template model: the parts which are sufficiently similar to
the template are tagged as relevant. Typically, local descrip-
tors of various regions in the target shape are computed of-
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fline, so that at query time it is sufficient to compare them
with the template’s descriptor. Although this approach is ef-
ficient for retrieval purposes, it might become inappropriate
in some other contexts such as, for example, when the target
model changes dynamically.

In this paper, we tackle the problem of detecting rele-
vant objects in the target model or scene using an inno-
vative framework that combines the advantages of part-in-
whole matching with very promising time and quality per-
formances. As a reference scenario, we consider a set of 3D
models stored in a library of objects (femplate models) con-
sidered relevant for a specific application context. The goal
is to detect the occurrences of the template models in the
target model (e.g. a 3D scene). The proposed part-in-whole
method combines the use of a particular class of local shape
descriptors with an original matching schema that we call
the Fast Reject. Differently from existing part-in-whole ap-
proaches, the Fast Reject schema requires only the shape de-
scriptor of the template model to be extracted off-line, while
the descriptor of the target is computed through an adap-
tive procedure during the matching process. The approach
adopted is inspired by search strategies used in computer vi-
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sion and pattern recognition, such as the cascade detector
[VIO1] or the coarse-to-fine strategy [FGO1]. To our knowl-
edge extent, similar strategies were not applied in a system-
atic manner to the context of 3D object matching, while the
gain in performance they achieve prompts for a wider use in
computer graphics.

The gain in computational performance obtained with
the proposed approach is due to its capability to exploit
the layered structure of a class of local shape descriptors.
Roughly speaking, the Fast Reject schema is based an itera-
tive algorithm that initially analyzes a large number of small
surface regions. At each iteration the number of regions de-
creases, by discarding portions of the target model that do
not resemble the template model. At the same time, the re-
maining regions grow in order to add new information to the
matching process.

The paper is organized as follows. In section 3, the Fast
Reject schema is described; in section 4, the implementation
of the Fast Reject schema is described with three different lo-
cal descriptors, the spherical harmonics, a coarse volumetric
descriptor and a third descriptors based on curvature analy-
sis; section 5 describes our experiments and results; conclu-
sions and suggestions for future work end the paper.

2. Related Work

In the last decade several specific approaches to partial
matching have been proposed. Methods for part-in-whole
matching frequently exploit structural decompositions of the
object shape. Graph-matching techniques for instance build
first a graph representation of relevant object’s parts and
their adjacency relationships, then, by matching the graphs,
the correspondence between nodes, that is, object parts, is
derived. The information associated to the structural de-
scriptor makes it easier to estimate also the global similar-
ity based of the objects. Relevant examples are [BSRS03,
CDS*05, BMSF06, TVD09]. In [SYYSO05, SYSO05] the 3D
model is initially decomposed into sub-components and then
shape descriptors for these shapes are computed using a rota-
tion invariant shape descriptors encoded as histograms. Part-
in-whole detection is performed by comparing histograms
among sub-components. In [FMA™09], the authors avoid to
use an arbitrary shape decomposition by using a collection-
aware decomposition approach combined with a shape the-
saurus, where inverted indexes are used to describe and re-
trieve 3D models. Similarly, in [BBCKO09], the authors de-
fine the significance of a part of a shape by its discrimina-
tive power with respect do a given shape database and use
the term frequency-inverse document frequency for partial
matching.

Another category of approaches uses local shape descrip-
tors. One of the most important methods, which inspired
many others, uses the spin-images to provide a set of local
shape descriptors [JH97]. This method samples the object

surface into a set of oriented points (3D points with surface
normals) and associates to each sampled point a 2D descrip-
tion of the surface around it: the spin-image. A similarity
measure between 2D images is used to evaluate the simi-
larity between two spin-images and thus between two ori-
ented points of the compared objects. In this way a point-to-
point correspondence between the two objects is provided.
In [RCSMO3] the similarity measure defined among spin-
images is used to group oriented points into patches. This
latter approach allows the correspondence between patches
instead of points.

More recently, partial matching is solved by comparing
the so-called salient features of two objects [GCOO06]. First,
a set of local descriptors on the object surface is defined,
each associated to a surface point and defined using a quadric
patch approximating the surface around the point. Salient
features are identified by grouping the local descriptors ac-
cording to curvature variance and intensity. Finally, each
salient features is associated to an indexing vector and in-
serted into a geometric hash table, as an access point to ob-
ject parts. Also in [SFO7] important regions of the object sur-
face are used to perform partial matching. A region of an
object is considered important, or distinctive, if it is useful
to discriminate the object with respect to other objects of a
given data-set. Distinctive regions are identified by randomly
sampling the points on the object surface and by associat-
ing to each sampled point the spherical harmonics descrip-
tor [Kaz04] computed at four different scales. Each descrip-
tor is compared with all the others descriptors at the same
scale in a data-set of objects grouped into object classes,
and the distinctiveness of each point is obtained from the
discounted cumulative gain of the ranked list obtained from
the comparison by measuring how often objects of the same
class appear near the front of the list. These approaches are
particularly appropriate for reatrieval purposes because, af-
ter an offline preprocessing, the search space at query time
is significantly reduced.

To summarize, the extraction of structural descriptors is
generally demanding in computational terms and as such is
considered to be run off-line with respect to the matching
phase. For this reason, they are not suited to applications
where the generation of the shape description and the match-
ing process have to be performed rapidly, such as for ex-
ample in realtime contexts. In [GCO06, SYYSO05, SYS05],
object sub-parts relevant for the matching are selected de-
pending on geometric properties of the given object. On the
contrary, the method proposed in [SFO7,FMA*09,BBCK09,
BBBKO09] can be used for partial matching purposes by ex-
ploiting the semantics-oriented selection of distinctive fea-
tures. Unfortunately the comparison schema proposed by the
authors requires a significant amount of temporal resources.
Finally, the spin-image methodology is not based on the
multi-scale local description of the shape, thus the compu-
tational cost for the extraction of the local descriptors and
the expensive matching schema do not satisfy possible high-
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performance requirements. Compared to the discussed pre-
vious work, the Fast Reject schema presented in this paper
fully exploits the performance of a class of local descriptors,
formalized in the paper as layered or onion descriptors, and
achieves for this class of methods a significant gain in com-
putational performance without compromising the accuracy
of the matching results.

3. The Fast Reject Schema

The requirements we want to satisfy within the proposed
matching schema, are both the efficient processing of the
input 3D scene and the effective part-in-whole association.
The capability of the Fast Reject schema to fulfil these re-
quirements relies on the original use of a specific category
of local shape descriptors that we call onion descriptors.

3.1. Overview

With the aim to quickly match a template shape with one or
more parts of a scene, the Fast Reject schema works as fol-
lows. At the beginning of the process, only a small region
of the template is searched within the scene by looking for
matching portions of its descriptor; due to the reduced size
of the query, such a search is extremely fast. Afterwards, a
slightly bigger piece of the template is searched. This time,
however, the search space is not the whole scene, but only a
subset for which the first run produced a good match. Then,
an even bigger region of the template is searched among the
good matches of the second run, and so on, until the whole
template is considered and possibly matched. The clear as-
sumption behind this approach is the following: if a region
of the template cannot be found in a part of the scene, then
we can exclude the possibility to find the whole template in
the same part. Notice that though this assumption is obvious
for exact matches, it is worth discussing the case of approx-
imate matches involving threshold distances. To do this, it is
necessary to introduce some terminology.

3.2. Terminology

Let K be the space of all the instances of a given shape de-
scriptor. We refer to a multi-fielded local shape descriptor
Sp(e,r) = (shy,...,sh) as to a vector of KV encoding the
surface M of an object around a specific point ¢ up to a dis-
tance r expressed using a specific metric (not necessarily Eu-
clidean, e.g. geodesic). Each descriptor sﬁ,, is called a field,
and can be a real number, a vector, or even a more structured
descriptor such as a graph, depending on the nature of /.

A onion descriptor is a vector of multi-fielded descrip-
tors of non-decreasing dimension defined as in Equation 1.

OM(c,rh...,rk) = (SM(c,r]),...,SM(qu)),
i<j = dim(SM(C,ri)) < dim(SM(c,rj)), (€))]
i<j=rn< rj
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Figure 1: An example of incrementally-defined onion de-
scriptor of a nose. From left to right: the first circle encloses
a small region around the nosetip; this region defines the first
layer S,?,, The second circle encloses a slightly larger region
defining both s24 and S 111/1 The whole nose is enclosed by the
largest circle on the right, which defines the complete onion
descriptor of the shape.

Each multi-fielded descriptor constituting a onion is
called a layer. Note that the various layers of the sequence
are all referred to the same center point ¢, but consider a
varying size of the neighborhood. Specifically, while to com-
pute Sy (¢, i), with k > 1, it is necessary to analyze M up to
a distance ry, to compute Sys(c,ry) it is sufficient to deal
with a smaller neighborhood of c. If Sy(e,r;) — Sy(c,7;)
for each j > i the onion descriptor is said to be incremen-
tally defined (see Figure 1); herewith we use the notation
v, > vy to indicate that a vector v; € K" is made of the first
n coordinates of another vector v, € K™, with n < m.

Let Oy = (Siy,...,SY) and Op = (S,....8Y) be two
onion descriptors of the same dimension, and let their lay-
ers be pairwise comparable using a proper distance func-
tiond : K' x K' — R* U{0}. If d(S};, S} ) grows monoton-
ically as i grows, then we say that the onion descriptor is
monotonic with respect to d.

3.3. Description of the framework

The Fast Reject schema is based on the computation of
monotonic onion descriptors for the part-in-whole match-
ing. To start with, a onion descriptor Or = {Sr(cr,r;),i =
1,...,k} is computed for the template model, and the input
3D scene is discretized into a set Dy of scene points.

Initially, all the points of the scene are candidate to be
good matches. In the first iteration, for each scene point only
the first layer of its onion descriptor is computed, and its
distance from the first layer of O7 is calculated. If such a
distance exceeds a given threshold, the scene point is ex-
cluded from the search space or, in other words, it is rejected
from the set of potential good matches. In the second iter-
ation, for each non-rejected point the second layer is com-
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Listing 1: The Fast Reject schema for the part-in-whole
matching

input:
Or = (Sr(er,r1),....Sr(er,rx))
€ = user threshold
I = input scene

initialization :
D]<—{V1,..-.,VM}

iteration :
for i from 0 to k{
for each veD;{
Si(v,ri) < computeLayer(1,v,i)
if d(ST(CT,r,'),SI(V,rl‘))ES
D1<—D1\{v}

}

result:
Matched « Dy

puted and compared with the second layer of Or. Also in
this case, an excessive distance causes the rejection of the
point from the search space. The process stops when the last
layer is computed for all the remaining non-rejected points.
Among these remaining points, the good matches are those
whose last layer has a distance from the last layer of Or
smaller than the threshold. This process is summarized by
the pseudo-code shown in the Listing 1.

Having assumed that the distance between successive
pairs of layers grows monotonically, we can avoid to per-
form further computations for the rejected points because we
are guaranteed that the eventual distance of their descriptors
from O7 exceeds the dissimilarity threshold. Note that, in
order to be efficient, the Fast Reject schema does not require
onion descriptors to be incrementally defined. Nevertheless,
in case of incrementally-defined descriptors the schema has
a further advantage because the computation of each layer
can exploit the previous layers as they are, without the need
to recompute them.

The parameters to be investigated in order to implement
the framework are a few, and include the specific onion de-
scriptor along with its order, the number of sample points
to discretize the scene (if not already part of the input, eg. a
point cloud), and the threshold distance to be used. To define
the center ¢7 and the radii r; of the template’s onion descrip-
tor, the only constraint is that the largest radius guarantees
the enclosure of the whole template. Provided this, ¢7 can
be any point of the template’s surface.

Several examples exist of multi-fielded descriptors that

can constitute onion descriptors, and further can be imple-
mented to take advantage of the Fast Reject schema. Among
existing descriptors, we cite the Shape Contexts [BMP02],
the Spherical Harmonic local representation [SFO7], the
Tailor characterization introduced in [MPS*03], the multi-
scale surface characteristics proposed in [HFG*06] and the
vectors of geometric moments used in [ETA02]. In the fol-
lowing sections, we provide two examples of implementa-
tion of the Fast Reject schema: one is based on the sequential
use of two different local descriptors, detailed in Sections 4.1
and 4.2; the other one is based on a novel curvature multi-
scale estimation (Section 4.3).

4. Implementation of the Fast Reject schema

In order to validate the performances and the accuracy of the
framework, we have implemented the Fast Reject schema
based on three different shape descriptors fulfilling the re-
quirements discussed in section 3: the Spherical Harmonics
(SHs), a coarse volumetric descriptor, and a novel surface
descriptor based on curvature analysis. While the Spherical
Harmonics provide a consolidated tool for the description of
rigid shapes, the volumetric and curvature analysis descrip-
tors allow for a suitable representation of non-rigid shapes.
It is worth noticing that, despite their simplicity with respect
to the SHs, the volumetric and curvature analysis descriptors
provide good performances and accurate matching results.

4.1. Implementation based on the SH representation

The Spherical Harmonics (SH, for short) provide a geomet-
rical description of a 3D object by characterising its surface
distribution around a given point [KFRO03, Kaz04]. If the
barycentre of the object is considered for the generation of
the SH description and the whole surface of the object is
analysed, the SH representation behaves as a global descrip-
tor and provides information about the overall shape of the
object, as proposed in [FMK*03]. The SH representation can
also be defined on an arbitrary point of the object surface and
only a small region surrounding this point can be analysed.
In this case the SH representation behaves as a local descrip-
tor as shown in [SFO7].

The idea behind the SH representation is to decompose
a 3D model into a collection of functions defined on con-
centric spheres, where for each function a spherical harmon-
ics decomposition is used to produce a 1D descriptor. Com-
bining the 1D descriptors, by analyzing spheres at different
radii, a 2D descriptor is obtained. Since the r-th 1D descrip-
tor can be computed independently of the previous r — 1
1D descriptors, this approach benefits of all the advantages
provided by the Fast Reject schema as it can constitute
an incrementally-defined onion descriptor. In particular, for
each point ¢ of the surface, a multi-fielded descriptor can be
defined by instantiating each field with the corresponding 1D
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descriptor shi;(c),1 < i < N associated to the ith radius:

Su(e,r) = (shi(c),....shh(c)), 2)

Thus, when implemented using the SH representation, the
first layer of the onion descriptor is made of one vec-
tor (shjs(c)), the second layer is made of two vectors
(shi;(c),shi;(c)), and so on, up to the N layer made of
N vectors (shis(c),...,shi(c)). Clearly, such an onion de-
scriptor is monotonic with respect to the usual L? metric.

As in [KFRO3], our implementation is based on a raster
representation of the object. If the input is not in raster form,
it must be converted to a binary 3D image through proper
voxelization algorithms. The efficiency and accuracy of the
local descriptor shown in Equation 2, depends on the num-
ber, N, of considered raddii. Moreover efficiency and accu-
racy of each component shfw(c) depends on two parameters:
the function sampling frequency, represented by a bandwidth
B, and the degree L selected for the computation of the 1D
descriptor (see [KFRO3] for details). The matching exper-
iments shown in section 5 have been obtained by setting
N=6,B=32and L =16.

4.2. Implementation based on volumetric similarity

The voxel-based raster representation of the object can be
exploited to define a coarse descriptor that improves both
efficiency and accuracy of the matching process done using
more sophisticated descriptors, such as the SH, by benefiting
again of the Fast Reject schema. In particular, the volume W
of the ball B centred in v with radius r, and the volume V of
the intersection of B with the solid bounded by M are com-
puted to provide a coarse description of the region surround-
ing v. The ratio between V and )V represents the percentage
of object mass surrounding the voxel v and is used to define a
multi-fielded descriptor for the coarse filter. Thus, each field
of such a descriptor is a scalar defined as in Equation 3:

1%

W’ 3)
In this case, by considering a sequence of non decreasing
radii < ry,...,ry >, we derive a onion descriptor whose first
layer is (CF}; (v)), the second layer is (CFy} (v),CFy} (v)),
and so on. After having filled the interior voxels starting
from the rasterized version of M in G, the volumes ¥ and V
can be easily computed by counting voxels. The Fast reject
schema rejects the voxel v if and only if:

CFy(v) =

N

Y [CFy(er) = CFE (v)| > €, )

i=1
where T is the template to be searched. Clearly, if a partial
sum of the first £ < N positive terms already exceeds the
threshold, then there is no need to further compute the re-
maining terms.

Such a pre-filtering task rejects a significant amount of
non-relevant voxels while requiring significantly less time
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with respect to the SH-based filter described in Section 4.1.
Thus, it can be used to sensibly reduce the search space prior
to initiating the Fast Reject using more complex descriptors.

4.3. Implementation based on curvature analysis

The SH representation provides a good tool to compare
shapes when they are assumed to be rigid. However, there
are cases where a certain degree of flexibility is allowed (eg.
articulated shapes or human faces with variable expression),
and thus a proper descriptor must be used. Herewith we pro-
pose a onion descriptor based on a stratified calculation of
the Gaussian curvature around a point. Namely, we compute
the Gaussian curvature using a neighborhood of the point
under analysis as described in [ACSD*03], where the curva-
ture tensor 7 is estimated as follows:

Y Ble)lenBlee” (5)

e:eNBA()

where v is an arbitrary vertex on the mesh, |B| is the sur-
face area around v over which the tensor is estimated, B(e)
is the signed angle between the normals to the two oriented
triangles incident to edge e (positive if convex, negative if
concave), |e N B| is the length of e N B (always between 0
and |e|), and @ is a unit vector in the same direction as e.

In our framework, the curvature tensor is estimeted by us-
ing information collected at different distance ranges. With
reference to equation 5, for each range i, B is the set of
points of the surface whose distance from v is less than a
given r;. Note that this definition may lead to disconnected
surface areas; in this case we consider only the connected
component containing v. Within each range, the Gaussian
curvature is estimated as the product of the two eigenval-
ues of 7 having maximum magnitude, and the sequence
of so-computed Gaussian curvatures corresponding to the
ranges ry,72,...,7, With r; < riy1 for each 7, forms an in-
crementally defined onion descriptor. In essence, this de-
scriptor represents the shape around a point as a sequence
of Gaussian curvature estimates taking into account differ-
ent neighborhood sizes. Being incrementally defined, the
whole onion descriptor can be compactly encoded through
its highest-order multi-fielded descriptor, which is a real-
valued vector Sy (v,rn) =< g1,...,&n >. The distance be-
tween two such descriptors is defined as the sum of squared
distances between pairwise corresponding values. Namely,
d(< 81semngn >, < hyyoshn >) = Y(gi — hi)%.

Such a descriptor is suitable for our Fast Reject frame-
work, it works directly on polygon meshes without conver-
sion, and experiments (see Section5) show its effectiveness
for nearly-isometry-invariant part-in-whole matching.

5. Experiments and results

We have experimented our framework using (1) the Spheri-
cal Harmonics descriptor (SHD) preceeded by a pre-filtering
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Figure 2: An example showing an interactive application of
the Fast Reject. After having selected one of the features (the
head of the middle horse), the system automatically extends
the selection to all the features which are sufficiently similar
to the initial selected region.

based on the volumetric similarity discussed in Section 4.2,
and (2) the Gaussian-curvature descriptor (GCD) introduced
in Section 4.3. For the sake of experimentation, we have syn-
thesized some scenes by composing several polygon meshes
(see Figure 3), and for the SHD have converted them to
voxel-based representations using a variant of [DCB*04].
After having computed the descriptor for each (voxelized)
template model to be searched within the scene, we have
run the Fast Reject schema and measured both the running
time and the success rate; the latter has been assessed in
terms of number of good matches without false positives.
In a subset of the experiments, the template shape has been
provided as a separate model, whereas in another subset it
has been defined by selecting a piece of the scene through
a semi-trasparent sphere (see Figure 2) using the ReMESH
software [AF06]. In all of our experiments of the SHD the
following parameters have been used to tune the algorithms.
The polygon mesh scene is converted into a volumetric grid
made of 5123 voxels; the difference between the volumetric
portion of the template and the one of the point considered is
bounded by £’ = 0.12 (see Equation 4); the overall distance
between the spherical harmonics descriptors is bounded by
0.5. The threshold distance € used for experiments of the
GCD was set as a function of the template size r, specifically
e=0.5/ 7r*. When the template 7 was provided as a sepa-
rate model, both for the SHD and for the GCD, the center cr
was chosen as the point of the surface of 7" which is closest
to the center of its bounding sphere, and the maxiumum ra-
dius was set as the distance of the point of 7' which is farthest
from ¢r. When the template was provided through interac-
tive selection, the parameters of the semi-transparent sphere
defining the selection were used. The number of radii used
to sample the descriptor was 6. The SHD and the GCD were
tested on the same set of models and produced analogous
results, with the exception of the Buddah example shown in

Figure 3: Two different templates have been matched with
corresponding portions of the scene using the pre-filtered
SHD. The template face model is courtesy of Volker Blanz.

Figure 4 for which the GCD was not discriminative enough.
In contrast, the GCD was able to correctly match all the five
faces of Figure 5 without false positives, while in this case
the SHD was not discriminative enough.

The experiments have been run on a consumer PC
equipped with an Intel Core 2 processor, 2Gb RAM and
running Microsoft Windows Vista. The results confirmed
that the Fast Reject framework can be used to find tem-
plate shapes with an accuracy comparable with state-of-the-
art approaches, but substantially faster. Such an assessment
is based on both quantitative and qualitative measurements,
summarized respectively in Table 1 and Figures 5 and 3. In
Table 1 we did not include the time taken by [DCB*04] to
perform the scan conversion because it is negligible when
compared to the other processes. For the sake of comparison
with one of the most significant approaches recently pub-
lished, we provide an example of self-similarity search on
the Stanford Buddah model (see Figure 4); in [GCO06] the
localization of the four flowers needed 36 seconds, plus 19
minutes to pre-process the model; in contrast, our Fast Re-
ject approach using the pre-filtered SHD needed less than
3 seconds to perform all the operations, including the vox-
elization, the construction of the template’s descriptor and
the actual matching.

6. Conclusions and future work

In this paper we have introduced a novel framework which
exploits the layered nature of some shape descriptors to
quickly locate template objects within a scene. Though the
framework is generic, we have implemented it using the
Spherical Harmonics descriptors on a voxelized version of
the scene, and using a novel descriptor based on Gaus-
sian curvature multi-scale estimates. Our experiments have
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Table 1: For each model, this table reports the number of mesh vertices, the initial candidate voxels constituting the skin of the
solid, the time consumed by the prefilter and by the subsequent SH filter, and the time taken by the GCD computed around the
mesh vertices (the latter including both the tensor estimation and the eigenvalue computation). The SH filter could correctly
match all the instances of the template in all the scenes but faces(1). In faces(1) the SH filter was run with the default parameters,
and the face of the middle doll was not matched. Conversely, in faces(2) the threshold for the SH filter was increased up to 0.8
in order to capture the doll’s face as well, but in this case its breasts were captured too. While capturing all the instances with
its default parameters, the GCD detected only one false positive on the Buddah model.

Model Fig. Num. Skin Prefilter | SH filter | GCD
Name Vertices | Voxels Secs. Secs. Secs.
suitcase | 3 93618 266501 0.73 2.02 7.92
face 3 93618 266501 0.69 1.99 6.01
hands 5 42682 104576 0.23 1.42 2.83
horses 2 2999 640910 0.98 2.34 0.32
buddah | 4 50789 318631 0.94 1.82 3.11
faces(1) | 5 42682 104576 0.31 1.47 2.87
faces(2) | 5 42682 104576 0.31 1.98 2.87

Figure 4: An example showing our approach running on
a complex model. A flower was selected on the voxelized
Stanford Buddah (left), and our algorithm was able to au-
tomatically select all the other flowers (middle-left) using
the pre-filtered SHD. The self-similarity result of Gal and
Cohen-Or’s algorithm [GCOO06] is shown for comparison
(middle-right). By replacing the SHD with the GCD filter,
our algorithm captures a false positive (right).

shown that the algorithm proposed is significantly faster than
state-of-the-art approaches, while maintaining a comparable
quality of the results. Differently from existing algorithms,
the Fast Reject schema does not require any costly prepro-
cessing of the scene, which makes it suitable for use in ap-
plications where the scene changes dynamically.

Although we have not run experiments in this sense, we
argue that the Fast Reject schema on voxel-based input can
be easily parallelized in order to obtain better performances.
In our future research, we plan to investigate these aspects
and will evaluate the impact of a parallel implementation on
a prototypal realtime system. A further challenging direction

(© The Eurographics Association 2010.

for future investigation is the extension of the approach to the
case of scale-invariant template matching.
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