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Abstract

We introduce a new framework for the automatic selection of the best views of 3D models. The approach is
based on the assumption that models belonging to the same class of shapes share the same salient features that
discriminate them from the models of other classes. The main issue is learning these features. \\e propose a data-
driven approach where the best view selection problem is formulated as a classification and feature selection
problem; First a 3D model is described with a set of view-based descriptors, each one computed from a different
viewpoint. Then a classifier istrained, in a supervised manner, on a collection of 3D models belonging to several
shape categories. The classifier learnsthe set of 2D views that maximize the similarity between shapes of the same
class and also the views that discriminate shapes of different classes. Our experiments using the LightField (LFD)
descriptors and the Princeton Shape Benchmark demonstrate the performance of the approach and its suitability
for classification and online visual browsing of 3D data collections.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling —

1. Introduction

Recent technological advances made 3D acquisition, mod-
eling, and visualization technologies widely accessible to
several domains including Computer-Aided Design (CAD),
molecular biology, medicine, digital archiving, and enter-
tainment. This has resulted in large-scale collections of 3D
models that are available from different sources. Efficient
extraction and reuse of this data requires efficient tools for
browsing the large collections. While 3D retrieval tools can
be used for this purpose, they are rather well suited for situ-
ations where the user is able to formulate a query. In many
cases, however, the user would want to browse visually the
content of a database or the results of a search query in or-
der to get a broad overview of the available 3D models. In
such situations, the 3D models should be displayed in the
form of few representative views, called also best or salient
2D views. Each one should carry the information that allow
understanding the structure of the shape and distinguishing
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it from other shape classes. Manual selection of salient 2D
views of 3D models is particularly not feasible for large col-
lections.

The saliency of a 2D view of a 3D object can be de-
fined as a function of some view-dependent shape prop-
erties. The best view is then the one that maximizes
this function [PPB*05]. Previous work, such as view en-
tropy [VFSHO03] and mesh saliency [LVJ05], assume that
the best view of an object is the one that carries the largest
amount of information about that object independently of
the context in which it is defined. In this paper, we define
the best views of a 3D object as the views that allow to dis-
criminate the object from the other objects in the database.
The solution we propose is based on the assumption that 3D
models belonging to the same class of shapes share the same
salient features that discriminate them from other classes of
shapes. Finding the best views of a 3D model can then be
formulated as a feature selection problem.

The major difference of our approach compared to pre-
vious work is that we consider a 3D model within a con-
text. The context, as defined in this paper, is the data collec-
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tion to which the 3D model belongs to. Previous works on
best view selection ignore this context; the best views are
selected as the ones that maximize the visible information
and minimize redundancy. This definition is suitable, as a
preprocessing step, for retrieval by reducing the number of
features to speedup the matching, and for visualizing a sin-
gle object. Our formulation is data-dependent, and therefore
the best views vary according to the database content and its
classification. This definition is particularly suited for visual
browsing of 3D data collections where the user would like
to distinguish quickly the differences between the models in
the database. Other applications include automatic summa-
rization of the contents of a large collection and automatic
thumbnail generation.

1.1. Related work

There have been extensive work on pose normalization of 3D
models. This includes shape alignment with Principal Com-
ponent Analysis (PCA), principal symmetry axis [PSG*06],
and upright orientation estimation [FCODS08]. Although
these approaches do not estimate the best view of a 3D
shape, they can be used as a preprocessing step to reduce
the search space.

Best view selection approaches can be classified into two
main categories [FCODSO08]; (1) approaches that minimize
visible redundant information such as symmetry [PSG*06]
or similarity [YSY*06], and (2) approaches that maxi-
mize the visibility of interesting contents using metrics like
viewpoint entropy [VFSHO03], view saliency [LVJO05], or
shape distinction [SFO7]. In the first category, Yamauchi et
al. [YSY*06] and Denton et al. [DDA*04] studied the sim-
ilarity and stability relationship between different 2D views
of a 3D model; similar views are clustered together and cen-
ters of different clusters form a subset of representative 2D
views that minimize redundant visible information. These
approaches are based on k-means clustering where the num-
ber of salient views is manually set by the user. Ansari et
al. [ADVO07] proposed an adaptation of the X-mean algo-
rithm where the number of characteristic views is automat-
ically adapted to the complexity of the 3D object. Podolak
et al. [PSG*06] automatically selects good viewpoints that
minimize the symmetry seen from the viewpoint.

Approaches in the second category aim at maximizing the
amount of geometric features visible from the good view-
points. The main stream is as follows;

e A set of features are extracted from the 3D model,

e An importance value is assigned to each feature,

e The goodness of each view is defined as a function of the
importance of the features that are visible from a given
viewpoint, and

e The set of views that maximize this quantity are selected
as the good views of the 3D model.

Lee et al. [LVJ05] define the best view of a 3D object as the

one that maximizes the visible saliency from the correspond-
ing viewpoint. The saliency measure is strictly related to the
mean curvature. Polonsky et al. [PPB*05] describe a num-
ber of metrics for measuring the goodness of a view. This
includes surface area entropy, visibility ratio, curvature en-
tropy, silhouette length, silhouette entropy, topological com-
plexity, and surface entropy of semantic parts. These mea-
sures are computed for a set of candidate views. The view
with the highest score is considered to be the most infor-
mative. Takahashi et al. [TFTNO5] focus on solid objects
such as volumes. In this work, the global optimal viewpoint
is estimated by finding a compromise between locally op-
timal viewpoints for the feature components obtained after
decomposing the entire volume. To take into account the
high-level semantics in the best view selection, Mortara and
Spagnuolo [MS09] uses semantic oriented segmentation to
automatically extract meaningful features of a 3D shape.
These methods find views that carry maximum information
about the shape, they do not find ones that allow to visually
discriminate the shape from others of different class. Since
shapes exhibit high inter-class variation, these methods do
not guarantee that shapes of the same class will have the
same best views. Hence, these approaches are suitable for
visualizing single objects out of context, rather than visually
exploring the contents of a 3D data collection.

In order to capture the high-level semantic concepts of the
3D shapes, which are very important for visualization and
exploration, we consider the problem in the context of 3D
shape repositories where the data are clustered into semantic
classes. The models within each class share common seman-
tic concepts. Best-view selection can then be formulated as a
problem of learning these features by the mean of feature se-
lection and feature importance measurement. In this line of
research, Shilane and Funkhouser [SF06, SFO7] proposed an
approach for automatically selecting the distinctive regions
of 3D shapes. 3D models are represented with a large set of
features computed at different locations on the shape. The
retrieval performance of each feature is automatically pre-
dicted, and the most effective ones are selected to be used
during the retrieval. Given that the descriptors are computed
locally, the approach allows to select the most important re-
gions of the surface of the 3D shape. As reported by the au-
thors, by using view-based descriptors, instead of region de-
scriptors, this approach can be extended in a straightforward
manner for best view selection.

The main issue in this approach is that when a feature is
not distinctive (i.e., present in all objects) then the distance
of this feature to all objects in the database will be zero. If
the returned ranked list is ordered in such a way that objects
belonging to the same class of this shape are in the top then
the feature will be assigned the highest distinction value and
therefore it will be selected as highly salient. Hence, this ap-
proach finds common features of a class of shapes. In our
case, we are interested in finding the features that discrimi-
nate the class of shapes from the other classes.
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Figure 1: Overview of the framework.

Laga and Nakajima [LNO8] use boosting to learn, in a
supervised manner, the subset of views that discriminate a
class of shapes from other classes. The approach requires
prior pose normalization of all 3D models, converges to lo-
cal optima, and performs poorly on classes with few training
data. Furthermore, adding new objects to the database re-
quires training again the classifiers.

The approach we propose is this paper can be seen
also as a new measure of distinction. The main deviation
from [SF06, SFO7] is that distinction measure is based on
the classification performance of each view of the 3D model.
The algorithm we propose describes each shape with a set of
view-dependent features. For each feature, we train a classi-
fier that learns to discriminate the shape from other classes
of shapes if it is described with that feature. The measured
classification error is then considered as a measure of dis-
tinction of this feature. Specifically, we make the following
contributions:

e An algorithm for learning the discriminative 2D views of
a class of shapes from a training set.

e A measure for the discrimination ability of 2D views with
respect to the semantic classes defined by the database
classification. The measure is based on the classification
performance of the feature.

The selected views are database-dependent which is an im-
portant feature for efficient visual browsing of 3D data col-
lections.

Best view selection has many applications in Computer
Graphics and online browsing of digital media contents. We
are particularly motivated by the automatic generation of
thumbnails of 3D models, automatic summarization of the
database contents, and 2D-based 3D model search.

(© The Eurographics Association 2010.

1.2. Overview

Figure 1 gives an overview of the proposed best-view se-
lection approach. It performs as follows; First, every model
in the database is described with a set of features describ-
ing the shape when viewed from a specific viewpoint. In
our implementation we used 100 Light Field Descriptors
(LFD) [CTSO03]. During the training stage, for each view
X} of a 3D model S, we train a classifier using Gentle Ad-
aBoost which returns the likelihood that the model S be-
longs to a class of shapes C when described with the feature
X}. This likelihood measure formulated as the classification
error is then the distinction measure of the feature XJ!. The
best views are then selected as the ones that maximize this
measure.

At run-time, given the user-specified 3D model Q, a
ranked list of k—best views is produced in a two-stage pro-
cess. First, a large set of features are computed from the
query model Q, in the same manner as for the database mod-
els. Then a retrieval list of the highly relevant objects to Q is
found. The best views of Q are selected as the ones that are
most similar to the best views of the object on the top of the
retrieval list.

The key step is the way we predict the saliency of each
feature with respect to a class of shapes in the training set.
More formally, the saliency of a feature X with respect to a
class of shapes C is the ability of this feature to discriminate
the shapes of class C from the shapes of other classes in the
database. Mathematically, the saliency can be is directly re-
lated to the overall classification error of the feature. We use
k-fold cross validation in order to estimate the classification
error using training data. In the following sections, we detail
each step of the proposed framework.

2. Approach

In this paper we use the following notation:
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e \We are given a collection S of m polygon soup models,
S§={S,i=1,...,m}.

e A partition C of S, where C = {C;,i=1,....m},GinN
Cj=0and UC; = S. C is referred in the remaining parts
of the paper as a classification.

o X, refers to the descriptor of the k—th view of the model
S.

2.1. View descriptors

The first step of the process is to represent a 3D object with
a set of features describing its properties when viewed from
different viewpoints.

Formally, we sample a set of N points from the surface of
the unit sphere bounding the shape S§. These points will be
used as camera’s viewpoints from which N two-dimensional
views of the object are rendered. There are several sampling
approaches including random sampling following the uni-
form distribution, or using the vertices of a spherical graph
constructed by successive loop subdivisions of an initial
icosahedron. We adopt the second approach in order to keep
the adjacency structure between the viewpoints.

In a second step, each view is described with a Light-
Field descriptor which is a combination of 35 Zernike mo-
ments and 10 Fourier coefficients [CTSOO03]. These descrip-
tors will be used in an initial step to cluster together adja-
cent views that are very similar reducing the set of 2D views
into a small subset of views that are dissimilar. To do so we
follow the same idea as in Yamauchi et al. [YSY*06]. The
set of viewpoints forms a spherical graph; the weight of an
edge connecting two viewpoints is set as the dissimilarity be-
tween the 2D views. We use k-means clustering to segment
the spherical graph into n clusters, instead of graph partition-
ing using MeTis [Kar10] as in [YSY *06] since the balancing
property is not required. The centroid of the clusters are used
as candidates for representing the shape S.

This procedure is applied to every shape § in the
database. At the end, S will be represented with a set of
n views, n < N, each of which is represented with a fea-
ture vector X, k=1,...,n, of dimension 45 (35 Zernike mo-
ments and 10 Fourier coefficients). We write § = {X},k =
1,...,n}

2.2. Learning best views

In this paper we assume that a 2D view X, of a 3D model
S is good if it is able to discriminate the shape S from the
shapes of other classes in the database. Based on this as-
sumption, we define a measure of importance of a view as
its classification performance.

First, we define the dissimilarity between a view Xl'< of a
mesh § to every other mesh S; in the database as

dist (X, Sj) = min X~ X . @

where || - || is the Euclidean norm. We then compute the
importance of the view by evaluating its classification per-
formance. Shilane et al. [SFO7] defines the distinction of
a feature as its retrieval performance. They used the Dis-
counted Cumulative Gain (DCG) as a performance met-
ric which requires the full retrieval list. While other mea-
sures, such as the nearest neighbor and precision for fixed-
length retrieval list, can be used, their performance depends
in many situations on the ordering of the retrieval list when
many features have the same dissimilarity value. Classifica-
tion performance-based metrics have the advantage that they
do not require the entire retrieval list; for each model, we use
the entire positive examples and only a subset of the nega-
tive examples randomly sampled from the database. It can be
efficiently evaluated on the training set using k—fold cross
validation.

In our implementation, we compute offline for every view
of every object the distances given by Equation 2. Then for
every view X, of the object §, we learn a binary classifier
®@j defined as:

i e 1if§ issimilarto §j,
(X §j) = { -1, otherwise @
Two shapes are assumed similar if they belong to the same
class of shapes. The classification error is then given by:

Ei71m4q)i i )2 3
k*EZ(t]_ k(% Sj))"- (€))
j=1
where m is the number of samples used for training, and t;
is the desired output for @} (X, S;), that is, t; = 1 if Sj is i
the same class as §, and tj = —1 otherwise.

To select the best view of a 3D model S, we sort its views
in ascending order according to their classification errors.
The view with minimum error, i.e., the top of the list, is se-
lected as the best one. Note that the classification error as
defined in Equation 3 is a training error and therefore is not
informative on the behavior of the feature at the test phase.
For this reason we use the k—fold cross validation algorithm,
with k=5, to estimate efficiently the classification error. The
algorithm performs as follows:

e The training set is randomly split into k subsets of same
size.

e One subset is left out and the classifier is trained on the
remaining data.

e The left-out subset is used as test data to measure the clas-
sification error.

e Repeat the above procedure k—times, every time leaving
out a different subset.

e The classification error is the average classification error
from the k errors obtained in the previous steps.

This algorithm requires setting the free parameter k of the
k—fold cross validation. In all our experiments we set it man-
ually to 5. Although there is no theoretical justification for
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Algorithm 1: Learning the best views - training phase
I nput:
- A collection S of 3D models.
- A classification C of S.
Output: A ranked list of best views for every model
Ses.
for every object § € S do
Compute n view-based descriptors (LFD in our case).
end for
for every object§ € Sdo
for every view descriptor X;,k=1,....nof § do
- Compute the dissimilarity vector:
Dy = {disi(x,'(,sj),j =1,...,m} and record the
closest feature X, to Xy
- Train with Gentle AdaBoost a binary classifier C|>‘

for the feature Xg.
- Record the classification error computed using
k—fold cross validation.
end for )
- Sort the views {X } in ascending order according to
their estimated classification error.
- Top views in the sorted list are the best views of the
model S.
end for

this choice, we found experimentally, that this value pro-
vides a good compromise between computation time and
generalization performance of the trained classifiers.

The last component to define is the type of classifier to use
for measuring the classification error. In our early implemen-
tation we explored Boosting-like learning with dissimilarity
functions. By doing so, the data samples are represented not
by feature vectors but in terms of their pairwise dissimilari-
ties computed using Equation 2. Learning with dissimilarity
functions has the computational advantage of operating on a
1D space rather than a high-dimensional feature space. How-
ever, the classification error on the training data is very high.
We justify this low performance by the fact that classes are
not well separated in the product space, which is a neces-
sary condition for efficient training with dissimilarity mea-
sures [WSY *09]. Consequently, we choose to train the clas-
sifiers in the feature space. We use Gentle AdaBoost pro-
vided in the GML AdaBoost Matlab Toolbox [Vez10].

An important point to be considered is the choice of train-
ing data. In our implementation, we divide the data set S into
k parts, we do it in such a way that the number of positive
examples in each subset is the same. We do that by selecting
in each subset 120% of positive examples and X% of neg-
ative examples. By doing so, we avoid the case where some
of the subsets will contain no positive examples, since the
number of positive examples is often much smaller than the
number of negative examples, as it is the case for our data.

(© The Eurographics Association 2010.

The training algorithm is summarized in Algorithm 1.
Figure 2 shows examples of the selected best views 3D mod-
els from the Princeton Shape Benchmark [SMKF04].

3. Results

We implemented the proposed framework and tested it with
the Princeton Shape Benchmark (PSB) [SMKF04]. The PSB
comes with four levels of classification. The coarsest classi-
fication contains two classes: man-made objects and natural
objects. Each of these classes exhibit very high-intra class
variability and finding common features is very hard even
for human. The finest classification however suffers from the
lack of training data on some classes and therefore is not
reliable for supervised learning. We choose to use coarsel
classification.

Our algorithm requires setting manually two parameters:
the number of viewpoints N to sample on the bounding
sphere and the number of clusters n. In our implementation,
we choose N = 252 uniformly distributed viewpoints which
is sufficient compared to previous work in best-view selec-
tion [YSY*06] and object recognition [MAOQ0]. We set the
number of clusters to n = 10 which we found to be a good
compromise between computation time during training and
performance. Automatically adapting the number of charac-
teristic views n to the complexity of the shape is an important
issue that we plan to explore in the future.

Figure 2 shows the top-four best views selected for
winged aircraft models. Other examples like human mod-
els and quadruped animals are shown in Figures 3 and 4.
These examples show that the selected views exhibit the im-
portant features of their corresponding 3D models. It shows
that several 3D models belonging to the same class have the
same best-views (such as row 1 and 3 of Figure 2).

One of the major challenges in best view selection is find-
ing automatically the proper orientation of the model in the
image plane once the view point is found. To the the best of
our knowledge this is an open problem for any type of mod-
els, although some solutions have been previously proposed
for man-made models [FCODSO08]. Since the desriptors we
use for view description are rotation invariant in the image
plane we implemented an additional processing step which
aligns the models to their principal axis in the image plane.
This simple procedure is particularly efficient for elongated
shapes such as human body models. Figure 5 shows the same
example as in Figure 3 after orientation alignment. Various
other examples are shown in Figure 6.

Effect of the database. As our approach is fully data-
driven the selected best views depend on the classification
of the models in the training data set. In this experiment we
consider the coarse2 classification and show in Figure 7 the
selected best views for two winged aircraft models which be-
long to the vehicle class. We can see that the selected views
are different from the example in Figure 2 where we used the
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Figure 2: Examples of the selected best views using the
coarsel classification of the Princeton Shape Benchmark
(class aircraft_winged vehicle). Each row corresponds to
one 3D model. The saliency is decreasing from left to right.

coarsel classification for training. This example shows that
our framework is very sensitive to the degree of intra-class
variability in the training data. As one may expect, objects
belonging to the same class of shapes should naturally have
the same salient features. Our framework is robust on data
with low intra-class variability. One way to improve the per-
formance on high intra-class variability classifications such
as the coarse2, and coarse3 of the PSB is to use different
types of view descriptors, such as depth maps, that capture
the surface properties.

4. Conclusion

We proposed in this paper a new approach for the automatic
selection of the best views of 3D models. Our definition of
the goodness of a view is motivated by the need for efficient
visual exploration of collections of 3D data. We proposed
a framework for learning these views in a supervised man-
ner. The approach is data-driven and therefore captures the
semantics of the collection.

There are several improvements that can be made to our

Figure 3: Examples of the selected best views using the
coarsel classification of the Princeton Shape Benchmark
(class animal_human). Each row correspond to one 3D
model. The saliency is decreasing from left to right.

implementation. Our framework is robust on data with low
intra-class variability and the performance decreases when
the intra-class variability is high. This is the case for exam-
ple with the coarse3 classification of the PSB. Finding dis-
tinctive features that are robust to high intra-class variability
is a challenging problem to investigate in the future.

The Light Fields descriptors (LFD) we used for describ-
ing 2D views of 3D models capture only the silhouette of
the shape when viewed from different viewpoints. By do-
ing so, it cannot for example distinguish between the front
and back views of a 3D model. We plan to experiment in
the future with depth-based descriptors that can capture the
surface properties of the shape.

A 3D model may have multiple classifications which can
be hierarchical, such as the Princeton Shape Benchmark, as
well as fuzzy. Exploiting such structures at the training stage
may reveal interesting features of 3D models. Finally, best-
view selection can be seen as a particular case of the gen-
eral problem of 3D shape normalization which includes find-
ing the upright and frontal orientations which are particu-
larly challenging in the presence of symmetries. Combining
our framework with recent results in upright orientation of
shapes [FCODSO08] is a promising direction to explore.
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Figure 4: Examples of the selected best views using the
coarsel classification of the Princeton Shape Benchmark
(class animal_quadruped). Each row correspond to one 3D
model. The saliency is decreasing from left to right.
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