Universidad
de Navarra

Computer Vision and Deep Learning
based road monitoring towards a
Connected, Cooperative and Automated
Mobility

to obtain the degree of
Doctor of Philosophy in Applied Engineering by

Olatz Iparraguirre Gil

under the supervision of
Dr. Diego Borro Yagiiez
Dr. Alfonso Brazélez Guerra

Donostia — San Sebastian, November 2022






This thesis has been carried out at the Ceit Technology Center. Part of this research
was funded by Basque Government (HAZITEK program) in the frame of project
“TRAFIK DATA: On-board module for monitoring road signs and weather
conditions with co-operative services communications” under the grant number ZL-
2019/00753 and (ELKARTEK program) throught the project “AUTOEV@AL:
Technological Evolution For Multivehicle Automation And Evaluation Of Highly
Automated Driving Functions “ under the grant number KK-2021/00123.






For the women who persist,
let’s break the bias.






Abstract

The future of mobility will be connected, cooperative and autonomous. All
vehicles on the road will be connected to each other as well as to the
infrastructure. Traffic will be mixed and human-driven vehicles will coexist

alongside self-driving vehicles of different levels of automation. This
mobility model will bring greater safety and efficiency in driving, as well as
more sustainable and inclusive transport.

For this future to be possible, vehicular communications, as well as
perception systems, become indispensable. Perception systems are capable
of understanding the environment and adapting driving behaviour to it
(following the trajectory, adjusting speed, overtaking manoeuvres, lane
changes, etc.). However, these autonomous systems have limitations that
make their operation not possible in certain circumstances (low visibility,
dense traffic, poor infrastructure conditions, etc.). This unexpected event
would trigger the system to transfer control to the driver, which could
become an important safety weakness. At this point, communication
between different elements of the road network becomes important since the
impact of these unexpected events can be mitigated or even avoided as long
as the vehicle has access to dynamic road information. This information
would make it possible to anticipate the disengagement of the automated
system and to adapt the driving task or prepare the control transfer less
abruptly.

In this thesis, we propose to develop a road monitoring system that, installed
in vehicles travelling on the road network, performs automatic auscultation
of the status of the infrastructure and can detect critical events for driving.
In the context of this research work, the aim is to develop three independent
modules: 1) a system for detecting fog and classifying the degree of visibility;
2) a system for recognising traffic signs; 3) a system for detecting defects in
road lines. This solution will make it possible to generate cooperative
services for the communication of critical road events to other road users. It
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will also allow the inventory of assets to facilitate the management of
maintenance and investment tasks for infrastructure managers. In addition,
it also opens the way for autonomous driving by being able to better manage
transitions of control in critical situations and by preparing the infrastructure
for the reception of self-driving vehicles with high levels of automation.
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Resumen

El futuro de la movilidad sera conectada, cooperativa y autbnoma. Todos los
vehiculos de la carretera estaran conectados entre si, asi como con la
infraestructura. El trafico sera mixto y vehiculos tripulados por humanos
convivirdn junto con vehiculos de diferentes niveles de automatizacion. Este
modelo de movilidad traera consigo una mayor seguridad y eficiencia en la

conduccidn, asi como un transporte mas sostenible e inclusivo.

Para que este futuro sea posible, las comunicaciones vehiculares, asi como
los sistemas de percepcion, se vuelven imprescindibles. Los sistemas de
percepcion son capaces de entender el entorno y adaptar la conduccién al
mismo (seguir la trayectoria, adecuar la velocidad, maniobras de
adelantamiento, cambio de carril etc.). Sin embargo, estos sistemas
auténomos tienen limitaciones que hacen que en ciertas circunstancias su
funcionamiento no sea posible (baja visibilidad, trafico denso,
infraestructura en malas condiciones etc.). Este imprevisto haria que el
sistema transfiera el control al conductor, lo que puede convertirse en un
problema de seguridad vial. En este punto, la comunicacién entre los
distintos elementos de la red de carreteras cobra especial importancia, ya que
el impacto de estos imprevistos puede mitigarse o incluso evitarse si el
vehiculo tiene acceso a informacion dinamica de la carretera. Esta
informacion permitiria anticipar la desconexion del sistema automatizado y
adaptar la tarea de conducciéon o preparar la transferencia de control de
forma menos brusca.

En esta tesis, se propone desarrollar un sistema de monitorizacién de la
carretera que, instalado en vehiculos que recorran la red viaria, realice una
auscultacion automatica del estado de la infraestructura y pueda detectar a
su vez eventos criticos para la conduccion. En el contexto de este trabajo de
investigacion se pretende desarrollar tres modulos independientes: 1) un
sistema de deteccidon de niebla y clasificacion del grado de visibilidad; 2) un
sistema de reconocimiento de sefales de trafico; 3) un sistema de deteccion
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de defectos en las lineas de la carretera. Esta solucion permitird generar
servicios cooperativos para la comunicacion de eventos criticos de la
carretera al resto de usuarios. Del mismo modo permitird realizar el
inventariado de activos para facilitar la gestion de tareas de mantenimiento
e inversiones a los gestores de la infraestructura. Ademads, abre camino
también a la conduccion auténoma pudiendo gestionar mejor las
transiciones de control en situaciones criticas y poniendo a punto la
infraestructura para la acogida de vehiculos con niveles de automatizacion
elevados.




Laburpena

Etorkizuneko mugikortasuna konektatua, kooperatiboa eta autonomoa
izango da. Errepideko ibilgailu guztiak elkarren artean konektatuta egongo
dira, baita azpiegiturarekin ere. Trafikoa mistoa izango da, eta gizakiek
gidatutako ibilgailuak hainbat automatizazio-mailatako ibilgailuekin batera
biziko dira. Mugikortasun-eredu horrek segurtasun eta eraginkortasun
handiagoa ekarriko du gidatzean, bai eta garraio jasangarriagoa eta
inklusiboagoa ere.

Etorkizun hori posible izan dadin, ibilgailu-komunikazioak eta pertzepzio-
sistemak ezinbestekoak dira. Pertzepzio-sistemak gai dira ingurunea
ulertzeko eta gidatzeko modua horretara egokitzeko (ibilbideari jarraitzea,
abiadura egokitzea, aurreratzeko maniobrak, errei-aldaketa, etab.). Hala ere,
sistema autonomo horiek mugak dituzte, eta, horren ondorioz, zenbait
egoeratan ezin dute funtzionatu (ikuspen urria, trafiko handia, baldintza
txarreko azpiegitura, etab.). Ezusteko horren ondorioz, sistemak kontrola
gidariari transferituko lioke, eta hori bide-segurtasuneko arazo bihur
daiteke. Puntu horretan, errepide-sareko elementuen arteko komunikazioa
bereziki garrantzitsua da, ezusteko horien eragina arindu edo saihestu egin
baitaiteke ibilgailuak errepideari buruzko informazio dinamikoa eskura
badu. Informazio horri esker, sistema automatizatuaren deskonexioa
aurreikusi ahal izango litzateke, eta gidatze-lana egokitu edo kontrol-
transferentzia hain zakarra izan gabe prestatu.

Tesi honetan, errepidea monitorizatzeko sistema bat garatzea proposatzen
da. Sistema horrek, ibilgailuetan instalatuta, bide-sarea zeharkatzen du,
azpiegituraren egoeraren auskultazio automatikoa eginez, eta, aldi berean,
gidatzeko kritikoak diren gertaerak hautemanez. Ikerketa-lan honen
kontextuan, hiru modulu ezberdin garatu nahi dira: 1) lainoa detektatzeko
eta ikuspen-maila sailkatzeko sistema bat; 2) trafiko-seinaleak ezagutzeko
sistema bat; 3) errepide-lerroetan akatsak detektatzeko sistema bat.
Konponbide horri esker, zerbitzu kooperatiboak sortu ahal izango dira
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errepideko gertaera kritikoak gainerako erabiltzaileei jakinarazteko. Era
berean, aktiboen inbentarioa egiteko aukera emango du, azpiegituraren
kudeatzaileei mantentze-lanen eta inbertsioen kudeaketa errazteko.
Gainera, bide ematen dio gidatze autonomoari, egoera kritikoetan kontrol-
trantsizioak hobeto kudea ditzan eta automatizazio-maila altuak dituzten
ibilgailuak hartzeko azpiegitura prest jar dezan.
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Chapter 1 Introduction

In this introduction, the first section presents a vision of what the mobility of
the future could look like and what its impact will be. It then looks at the
current main challenges and enablers. This analysis is supported by the
“Connected, Cooperative and Automated Mobility Roadmap” recently
defined by the European Road Transport Research Advisory Council
(ERTRAC) working group [1] and by the “Strategic Research and Innovation
Agenda (SRIA)” established by the Connected, Cooperative and Automated
Mobility (CCAM) European Partnership [2].

Since the thesis is especially focused on the perception of the environment
employing computer vision techniques, the second section presents the
justification of these techniques and selected sensors as well as a summary
of the current trends.

Finally, the motivation and objectives of the thesis are presented.




Section 1.1 Future mobility roadmap

1.1. Future mobility roadmap

Mobility is crossing a new - digital — frontier, allowing vehicles to
communicate with each other, with the road infrastructure and with other
road users. This will enable the coordination and cooperation between road
users, and the management of traffic and mobility at an entirely new level
(e.g. warning messages not limited by line-of-sight or congestion
management using real-time information).

Current road vehicles already provide Advanced Driving Assistance
Systems (ADAS) that can help the driver and take control of some functions
in specific situations. Future systems will have a 360° vision of the
surrounding environment, significantly reduced reaction times and will be
able to control the vehicle for extended periods and, at some point in the
future, will no longer rely on human intervention.

CCAM is expected to reshape the way we travel and move, not only in
Europe but around the world.

1.1.1. Vision 2050

The community of researchers who are members of ERTRAC propose a long-
term goal for CCAM [1] and have drawn a hypothetical scenario where in
2050:

Users and usage are at the centre of development where technology needs
are derived from societal goals.

Automation domain costs decrease and mature technology allows working
on complex scenarios such as inner city use cases allowing a more efficient
last mile transport of people and goods.

Transport modes, road, rail, maritime or air have their role and cooperate to
complement their high capacity, to decrease the overall environmental
footprint of transportation.

Vehicles have 100% real-time connectivity and all newly registered vehicles
will have automation at different levels depending on their nature.

e A vast majority of shuttles, buses and delivery vehicles in cities
operate autonomously
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e Nearly all vehicles on highways can operate without immediate
driver intervention

e All cars and trucks on all roads have sophisticated supporting
systems installed such as reaction on traffic lights etc. which
contribute significantly to road safety

In 2050, mixed traffic exist in some areas where autonomous vehicles
coexist with human-driven vehicles.

1.1.2. CCAM impact

The transformational change in mobility will have a huge impact on all road,
traffic and driving situations.

The development of the CCAM should benefit all citizens. With the full
integration of the CCAM into the transport system, the Partnership expected
the following positive impacts on society:

e Safety: reducing road fatalities and accidents caused by human error;

e Environment: reducing transport emissions and congestion by
optimising capacity, smoothing traffic flow and avoiding
unnecessary journeys;

¢ Inclusion: ensuring inclusive mobility and access to goods for all.

This impact expected to be generated by the implementation of the CCAM
is compromised by the current mobility challenges.

1.1.3. Main challenges

The next decades confront society with the need for fundamental mobility
changes, with ambitious goals to meet climate and vision zero objectives.

Although the EU has made enormous progress in improving road safety and
halved the number of fatalities on European roads since 2000, progress has
stagnated and still 25000 people die on road every year and more than
135000 are seriously injured. EU’s Road Safety Policy Framework 2021-2030
aims to reduce road fatalities and serious injuries by 50% by 2030 and make
them disappear by 2050 (Vision Zero) [3]. In addition, today, road transport
emissions represent around 25% of the EU’s total greenhouse gas emissions,
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and these have increased over recent years. The European Green Deal
established the goal of being climate-neutral by 2050 and achieving a 90%
reduction in transport-related greenhouse gas emissions by 2050 [4].

To this end, multiple complex challenges need to be addressed and solved at
a societal, human, technical, regulatory, economic and operational level (see
Table 1-1).

Table 1-1.Summary of the main future mobility challenges in

different fields.
A society Provide shared, on- Provide safe and
ready to demand and reliable CCAM

accept, adopt personalised solutions with few
Societal and demand transportation Transition of
challenges CCAM available to all. Control (ToC)
solutions. events.
Mature CCAM  Handle all driving Cooperation
solutions for a scenarios. Extend between vehicles'
wide market Operational Design stakeholders,
Infrastructure take-up Domaiﬁs (ODDs) by infrastrt.lc.ture and
extending connectivity
challenges
Infrastructure sectors for the pre-
Support for deployment
Automated Driving developments.
(ISAD).
Innovation- Update the Reflectthe The complexity of
friendly verification and connectivity emerging
frameworks validation systems context in which technologies and
Validation with effective to gather realistic CCAM systems their safety
and efficient and relevant test will operate as it criticality requires
challenges . .
ways to cases that will be influences safety- a huge amount of
validate constantly evolving.  critical functions. data for validation
CCAM testing!.
solutions.

1 It has been estimated by RAND corporation [157] that CAVs need to be driven 450 million
failure-free kilometers (11,000 times around the world) to assure a similar rate of reliability
(ie. 95% confidence) as existing human-driven cars. To gather this data with a fleet of 100
autonomous vehicles driving 24 hours a day, 365 days a year, at an average speed of 40km/h
will take 12.5 years. And to demonstrate that their failure rate is 20% better than the human
driver failure rate, 18 billion kilometers and 500 years will be necessary.
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Right legal
framework at

Collaborate on the
compatibility of

international, safety requirements,
Policy EU and liability issues,
challenges national level communication

to prevent systems and

patchwork services.

regulations.

Al-based Design of advanced

predictive levels of Al with

system state reduced energy use
Al awareness. and computational
challenges efforts.

Ajoint and Improve the quality

acknowledged  of the datasets in

data exchange order to represent
Data framework all possible
challenges scenarios.

The main challenges facing the mobility of the future are the acceptance of
CCAM solutions by society, which requires solving another important
question: ensuring that these solutions are mature enough to be safe and
reliable in any situation. This also implies other essential points such as the
constant evolution and updating of validation systems and databases for all
possible scenarios and new ones as they arise. In the same way, this will also
require increasingly complex algorithms, but controlling the energy use and
computational effort. And last but not least, the regulation and
standardisation of these systems, data and communications so that CCAM
solutions are global.

The technological challenges of automated driving are reliable sensing of the
vehicle's environment using different sensors, localisation solutions so that
the self-driving car knows exactly where it is, the development of a safe and
secure driving strategy, safe driving strategy, data safety and security,
including secure and resilient approaches for over-the-air updates,
validation and verification of systems.
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1.1.4. Main enablers

In order to address all these challenges, there are some essential enablers to
take into account. To achieve global and implementable CCAM solutions
that can change the mobility paradigm, there is a clear need to leverage the
cooperation models of different types of data feeds in a suitable
environment. In the same way, effective, profitable and transparent
cooperation among local and regional public authorities and the private
sector involving a multitude of highly diverse stakeholders is mandatory. A
harmonised European framework is a key enabler for this cooperation,
sharing and expanding knowledge on connected and automated driving. So
is standardisation to address the many common and safety-critical use cases
for Connected and Automated Vehicles (CAVs) and relevant infrastructure,
communications, data management and privacy, cybersecurity and vehicle
technology. In addition, a new hardware concept for sensors and computing
units is key to provide sufficient computing power with low energy
consumption, reduced size and affordable integration costs.

However, while all are critical, this thesis focuses on the enablers detailed
below.

1.1.4.1. ODD and ISAD

According to the SAE definition ODD are “Operating conditions under which a
given driving automation system or feature thereof is specifically designed to
function, including, but not limited to, environmental , geographical, and time-of-
day restrictions, and/or the requisite presence or absence of certain traffic or roadway
characteristics”[5]. These ODDs are very important for the automation levels
since the limitations of the ODD decrease as the automation level increase
reaching level 5 for unlimited ODD functioning. The environmental
perception of automated vehicles is limited by the range and capability of
onboard sensors, however, the impact of some factors potentially exceeding
the ODD can be mitigated and even prevented by infrastructure-related
actions.

For this aim, the ISAD classification has been proposed. Assigning ISAD
levels to network sections provides the automated vehicles with information
about the infrastructure support that can be expected.
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ODDs will evolve along with the evolution of the onboard sensors, software
and Al technologies. However the roadside infrastructure investment are
very costly and hence, ISAD level evolution will likely focus on the digital
infrastructure aspects and the physical infrastructure investments in “no-
regret” measures.

1.1.4.2. Functional safety

Functional safety aims to protect the correct operating of the autonomous
driving system in response to its inputs or failure in a fail-safe manner. For
this aim, sensor fusion on the edge and Cooperative Intelligent Transport
System (C-ITS) technologies are key.

Road infrastructure can provide and disseminate safety-relevant
information about perceived objects, allowing vehicles to manage difficult
scenarios without exceeding their ODDs. This would be of particular
importance when weather, light or road surface conditions are adverse.
External sensors communicate with the CAV, which in turn can process this
information and fuse it with its perception thus gaining a better
understanding to plan and act accordingly.

1.1.4.3. Data and Al
Data

The ability to generate new knowledge from large amounts of data is a key
competence of future automated driving. A sovereign, open data
infrastructure that observes security standards will thus become a key
enabler for the successful development and deployment of CCAM.

Another key aspect is the collection of data from untypical or critical driving
scenarios or corner cases. This requires several types of information like
sensors and HD map data that will allow software improvements and
updates. For this aim — learning during fleet operations - it is important to
gather statistically representative driving data (field data) that will allow to
validate, verify and improve driving behaviour.

In addition, the development of basic standards is also a key enabler to
guarantee safe and reliable software in vehicles on roads. These basic
standards should be developed in three main areas: for the access for
stakeholders to collected driving data when critical driving behaviour; for
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the definition of minimal implementation and update of safety-relevant
software; and for the definition of a data exchange format.

Al

Autonomous driving is based on robust and reliable algorithms for
environment recognition using different sensors. Due to its ability to
recognise patterns and establish correlations in large amounts of data and
learn them, Machine Learning (ML) is indispensable in the area of
environmental recognition and driving assistance today.

However, the introduction of Deep Learning (DL) algorithms (a subsection
of ML) is a key enabler to enable the vehicle to function correctly and make
confident decisions even in the most difficult situations.

Accordingly, accepted metrics for the evaluation of Al algorithms are
required. For this aim having relevant sets of real and synthetic scenarios are
key to serve the metrics for safety proof and validate its robustness.

Finally, the importance of the Al training data specification, collection,
processing and labelling should be stressed: the quality of the training
dataset determines the robustness and thus operational reliability of the Al
function.

Therefore, this thesis focuses on investigating different perception
algorithms for road monitoring to collect safety-critical information to
extend ISAD and ODD levels and influence functional safety. In addition,
this information can also be used to classify the road and guide automated
vehicles to the extent to which they can use their systems.
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1.2. Smart Road Classification

There are several road classification systems in the literature each of them
supported by different attributes, however, none of them establishes clear
thresholds or KPIs of these attributes. In addition, non of the existing systems
integrate dynamic conditions of the road — e.g. traffic volume or weather
conditions — to determine the capability that a road has to enable automated
driving.

Thus, the World Road Association PTARC made a Smart Road Classification
(SRC) proposal based on automation and connectivity level indicators [6],
this is, Level Of Service for Automated Driving (LOSAD) and Infrastructure
Support Levels for Automated Driving (ISAD). LOSAD describes how
vehicles” ODDs interact with the road infrastructure and ISAD indicates the
connectivity capabilities, and both establish a sound basis to foresee how
CAVs are likely to perform along a road network.

This SRC defines five different types of Smart Road segments that can be
distinguished with specific characteristics related to CAVs (see Appendix A).

(1) Humanway (HU): the road is not ready for CAVs. Level 2-3 vehicles
would experience many disengagements, prompting their drivers to
manually disconnect the system. And Level 4 vehicles may not find
clear ODDs and will generally perform in manual mode.

(2) Assistedway (AS): the road is adequate for Level 2+ vehicles. Level 2-
3 vehicles would not induce too many disengagements and will
allow drivers to enable their driving automation systems. However,
the road segment might be divided into many Operational Road
Sections (ORS)? and does not provide a comfortable automated
driving experience for Level 4 vehicles.

(3) Automatedway (AT): the road presents HD maps and can transmit
digital information to CAVs, so these can better identify ODD-related
factors and ODD terminals. Level 2 would experience fewer

2 The zones that are ODD compliant with all vehicles are called Operational Road Sections
(ORS).

10
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(4)

©)

disengagements than on AS segments and Level 3 vehicles would be
able to use the digital information to foresee oncoming
disengagements. Longer ORSs would allow longer performance of
Level 4 vehicles in automated mode.

Full Automatedway (FA): the road presents a continuous ORS, so all
Level 4 vehicles should be able to operate autonomously along the
entire segment. Level 2-3 vehicles experience a much lower number
of disengagements compared to AT.

Autonomousway (AU): the road presents similar physical conditions
to FA segments and incorporated exceptional connectivity features
that enable cooperative driving. In order to benefit from the best
performance and safety levels, only Level 4+ vehicles should operate
along these road facilities or dedicated lanes.

11
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1.3. Environmental perception

With recent advances in Al, ML and DL, these techniques have gained
prominence in numerous applications.

In anutshell, Alis a broad term used to describe any system that can perform
tasks that usually require human intelligence. This concept includes ML and
DL. The principle difference between ML and DL is in the techniques of
extracting the features on which the classifier works. ML classification relies
on hand-crafted features while DL classifiers, which are considered a subset
of ML, learn hidden patterns from data by themselves. Thus, these last ones
are known for their ability to build much more efficient decision rules (see
Figure 1-1).

input —— \1 .————.——. —_— output
i'\_.| o o e
Feature extraction Classification

input — —_— output

Feature extraction + Classification

Figure 1-1. Machine Learning vs. Deep Learning feature
extraction approach.

In particular, contemporary developments in communication networks and
wireless connectivity, the arrival of accurate and robust sensors that
continuously miniaturize in size and cost, coupled with AI have been the
cornerstone for ADS. The availability of big data related to self-driving
vehicles emphasizes the roles of ML and DL as it is infeasible to craft all

12
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possible if-then-else rules that learn all possible situations a self-driving
vehicle might encounter in the drive-terrain. These AI systems aim to
implement sensory input and intelligent interaction with the environment.
These Al capabilities may be divided into the areas of sensing, processing
and understanding, decision-making and communication or acting (see
Figure 1-2).

Data journey

SENSE PERCEIVE DECIDE ACTUATE

RADAR

. environment obstacle avoidance, braking, accelerating,
LiDAR . . .
understanding, parking maneuverer, lane changing etc. or
Camera . . R ",
object detection, overtaking, Transition of Control
GPS . .
etc tracking etc. path planning, etc. (ToC)

Figure 1-2. Artificial intelligence (AI) data journey or capabilities
applied for the self-driving use case.

Sensing is the capability of observing the environment, this will give the
capability to perceive an object that will be processed to understand the
surroundings of the vehicles. With this data, the AI will be able to make
decisions and actuate in consequence for a specific objective.

This thesis will be focused on the first two steps, to sense (using a single RGB
camera) and perceive the road based on computer vision techniques.

1.3.1. Why computer vision?

What technology is needed to develop autonomous driving? There is a lot of
controversy about this, pure vision-based systems, the fusion of different
advanced sensors, etc. However, the renowned Tesla company stated that
autonomous driving based solely on cameras is possible [7].

Currently, a manual driving control system is based on two main elements:
the brain and the eyes of the driver, this is a biological neural network and
vision system, and they are sufficient to understand the design of road
networks. Thus, the big challenge for computer-guided autonomous driving

13
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according to Tesla’s CEO is to solve real-world Al and vision, this is, silicon
neural networks and cameras 3.

This artificial intelligence is the basis for autonomous driving for road
analysis, lane following, and detection of signs, pedestrians, cars or other
objects. These Al systems require big data and the main sources of raw data
in self-driving cars are the automotive sensors. Whereas Laser Imaging
Detection and Ranging (LiDAR) is the most powerful camera, it is expensive
and, in certain conditions, images captured using RGB cameras should be
sufficient for self-driving applications.

1.3.1.1. LiDAR vs. RGB Camera

Cameras are optical sensors that offer functionality analogous to the human
eye. The main purpose of CAVs is to mimic the human eye’s ability to
visually sense the environment. A single camera operating along is called a
mono-vision system, which results in a 2D image. This system can
satisfactorily fulfil some CAV sensing requirements such as traffic sign
detection. Nevertheless, when information about the distance to an object is
necessary, a 3D stereo-vision system is used which is composed of two or
more cameras to achieve depth perception. On the other hand, LiDAR is an
active sensor that can generate high-resolution 3D maps of the vehicle's
surroundings by emitting laser beams in all directions.

One of the main strengths of RGB cameras over LiDAR sensors is their
relatively low cost. In the context of CAV hardware the camera’s price range
from multiple hundreds of euros (e.g. Blackfly) to even less than one
hundred (e.g. Logitech webcam). However, research is underway to
manufacture low-cost LIDAR but currently, their price is about thousand
euros, and the cheapest one is between five hundred to one thousand euros

(8]
Another characteristic of RGB cameras is that they can also sense colour

information which is important for some road elements such as traffic lights.
If the camera has a good resolution and the lens are kept in good condition,

3Testimony made by Elon Musk in TED | Tesla Texas Gigafactory interview.

14
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cameras with colour detection capabilities can outperform LiDAR sensors in
visual recognition since the last one needs much more data processing to
create images and identify objects.

In terms of installability, the camera is generally easier and more versatile to
embed in a vehicle while LiDAR requires more space and makes installation
bulkier.

Although cameras have many strengths they have also limitations. They
present some issues when dealing with environmental light variations such
as shadows, sharp glare from the sun or dark views at nigh time. Even
though some of these problems could be solved by the vehicle's headlights,
other environmental phenomena such as bad weather conditions - rain,
snow or fog - are difficulties that cameras have to deal with in this field of
application. In these cases, LIDAR can fill the gaps of camera-based systems
since they have been hailed for being able to see objects even in bad weather
conditions. However, it is also affected by wavelength stability and detector
sensitivity and the laser can suffer some variations. In addition, to control
the environment through which the vehicle circulates it is necessary to create
amap previously with LIDAR, to insert in it all the characteristics of the road,
lanes, intersections, signs, traffic lights etc. Generating and maintaining these
high-definition maps with a precise location is a very complex task and
doing it at a global level is really difficult (see Figure 1-3).

Thus, in summary, for public safety critical cases currently the sensor fusion
of these two sensors together with others can offer many benefits. However,
if only one of the two mentioned above could be chosen, for its versatility,
ease of installation, lower computational complexity and price, the one
chosen for the development of this thesis is the RGB camera. Moreover,
cameras still present a gap for further research to achieve more reliable and
robust systems that can perform well in any circumstances. And this will be
one of the points to be addressed in this thesis.
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Figure 1-3. Camera view and LiDAR view of the KITTI
validation dataset. Image extracted from [9].

1.3.2. Computer vision techniques

Classification, localization, detection, segmentation, tracking and
identification are frequently used terms when talking about computer vision
and intelligent applications.

e (lassification: Assigning a category to a whole image or bounding
box. This classification can be a single-class classification, where the
output determines whether there is a car or not in the image or, a
multi-class classification, where the output predicts the class between
a sort of categories e.g. bicycle, truck, airplain, boat or a car (see
Figure 1-4).

e Localization and detection: Identifying the location of a specific
object in the image. Object detection finds all the objects and draws a
rectangle around them (see Figure 1-4).

16
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class: car

Figure 1-4. Object detection and multi-class classification
example.

Segmentation: Partitioning an image into a set of pixels that share
certain characteristics and assigning them a label. In this case, object
detection creates a pixel-wise mask and adds shape information of
the object. This segmentation can treat multiple objects within a
single category as one entity which is called semantic segmentation
(Figure 1-5 a). Whereas instance segmentation, on the other hand,
identifies individual objects within these categories (Figure 1-5 b).

(a) Semantic segmentation (b) Instance segmentation

Figure 1-5. Object segmentation example. Both semantic
segmentation and instance segmentation are shown. In the
second example, each car is differentiated.

17
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e Identification: Recognising an individual instance of an object.
Examples include the identification of a specific person due to its face
characteristics, identification of handwritten digits or the
identification of a specific vehicle (see Figure 1-6 a).

e Tracking: taking an object or a set of object detections in an initial
frame and re-identify them in the next frame (see Figure 1-6 b).

(a) Vehicle identification (b) Object tracking

Figure 1-6. Car identification and object tracking examples.

1.3.3. CCAM trends

Recent trends and developments in environment perception of CAVs
revealed that convolutional neural networks (CNN) are the most applied
technique for object detection due to their remarkable ability to function as
feature extractors. With GPU and cloud-based fast computation, DL could
process captured information in real-time and communicate it to the nearby
cloud and other vehicles in the meaningful vicinity. In order to improve the
performance of these CNN-based models, transfer learning is frequently
used by researchers.

However, in the context of self-driving cars, CNN-dependent strategies still
need to be fine-tuned to achieve the precision level of the human eye and
there is a huge scope for additional advancements in object detection and
scene understanding. It is yet to be investigated when and under what
conditions CNNSs cease to perform well and can pose a threat to human life
in self-driving scenarios. Much of the earlier tests were conducted on open
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roads and in good weather, but more recent tests include adverse weather
conditions such as fog.

On the other hand, artificial driving intelligence is still incapable to annotate
and categorize the driving environment automatically without human
assistance.

Last publications on the CAV topic conclude that self-driving cars are no
longer a question of if but more of when and how[10]. The penetration rate
of these self-driving cars into human society depends on their ability to drive
safely. This puts forth a critical need for reliable computer vision techniques,
mathematical models and simulations to mimic reality and arrive at the best
parameters and configurations that can adapt to changes in surroundings.

Tools such as big-data, DL and CNNs give the possibility to achieve high
levels of accuracy to solve perception problems of CAVs. These tools provide
researchers with the ability to break complex problems into easier ones and
previously impossible problems into solvable but slightly expensive ones
such as capturing and annotating data to create the necessary ground truth.

19
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1.4. Motivation

This section will introduce first the general impact of a road monitoring
system on the road network as a CCAM solution. Next, some specific CCAM
limitations will be highlighted which will be addressed during the thesis.

1.4.1. CCAM impact

This CCAM reality is still years away and it is not clear when it will come.
Despite the great effort of the automotive industry during the last decade,
the most advanced systems nowadays are SAE level 2 (3 at the most).
Existing autonomous vehicles consist of diverse ADAS that allow an
automated driving experience under specific circumstances. Therefore, how
the human and the vehicle share the driving becomes very important.

To enable and promote a quick and reliable take-up of automated vehicles,
user confidence in self-driving capabilities is key. A driver should not
voluntarily decide whether to connect the assistance, but rather by having
objective information about its operation along the segment to be travelled.
This information must be provided by combining the characteristics of the
driving automation system and the infrastructure (both static and dynamic).

An integral road classification system would also enable efficient planning
of public investments in physical infrastructure (I1), by improving the
operability of driving automation, and in digital infrastructure, by increasing
the benefits of connectivity (V2X). Information-sharing of all elements in the
intelligent transportation environment — vehicles, road users, infrastructure,

traffic, weather data and so on — will lead to a more accurate knowledge of
traffic situation across the network, and consequently, end-users will be
informed about the level of automation they can enable through each road
segment. As a result, a safer, sustainable and more comfortable road
network (I2) is expected.

1.4.2. CCAM limitations

Although vehicle technology is constantly enhancing and evolving, the
sensors and algorithms included in CAVs cannot cope with specific
challenging situations [6].
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e Most Traffic Sign Recognition (TSR) systems recognize only posted
speed limits and priority of way signs such as stop or yield. The
performance of these systems depends on the position and
orientation of the traffic sign and they are also influenced by
maintenance status or lighting conditions.

e Despite the few studies quantifying the influence of pavement
conditions on CAVs' performance, it is clear that the status of the road
surface plays a critical role in automated driving. A good pavement
condition is needed to achieve the highest levels of automation.

e Environmental factors such as weather or lighting also affect CAVs
performance. Unfavourable weather conditions — heavy rain, fog,
etc.— make road marking and traffic sign recognition very difficult as
these tasks are performed with vision cameras that are very sensitive
to visibility.

e Speed is also a critical factor in road marking or traffic sign
recognition because information processing must be faster as the
vehicle speed increases. Thus, real-time functioning systems are
needed.

e Connectivity allows automated vehicles to monitor everything even
beyond the range of their sensors. Thus, rules and regulations are key
to ensuring the quality and reliability of the transmitted information.

All of these factors - infrastructure, environment, traffic conditions, vehicle
speed - many of which are variable, influence the ODD of automated systems
and generate road segments that are not suitable for automated vehicles.
However, the goal to reach a high level of automation is to have all road
ODD compliant whit all vehicles. Therefore, this thesis addresses the above
limitations in order to increase the ODD constrains of the vehicles as well as
to provide valuable information on the areas that are no compliant with the
road administrations and operators so that they can work actively towards
improving them and adapting new sections.

1.4.3. Context

The development of this thesis has been carried out in collaboration with the
Sustainable Transportation and Mobility (STM) group and the Intelligent
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Systems for Industry 4.0 group at Ceit. Two of the centre’s strategic lines of
action converge here: Cooperative Services for Intelligent Transport Systems
and Computer Vision for Smart Monitoring Systems. Those lines are
perfectly aligned with the thesis’” objective for the development of
technologies for CCAM. In fact, cooperative services are defined for the
correct integration of automated vehicles into the traffic environment. In
addition, the STM group has experience in standard vehicle communications
and has led several pilots regarding cooperative services in C-Mobile and C-
Roads projects. Ceit also participates in the European CCAM initiative
ensuring that developments are aligned with the European strategy on
cooperative, connected and automated vehicles.

On the other hand, from the analysis of the challenges and enablers of future
mobility, it becomes clear that continuous monitoring of the road to collect
dynamic data and detect where critical situations occur is key towards
CCAM.

In this context, Ceit has worked on several projects aimed at improving the
quality of road information through the development of specific perception
systems. These projects are based on the collection of real-time data
employing an onboard acquisition system installed in administrations’
dedicated vehicles — maintenance, police, cleaning, and other services - that
are on the road during all working hours (see Figure 1-7).

The projects that have allowed the development of the thesis are:

“TRAFIK DATA: On-board module for monitoring road signs and weather
conditions with co-operative services communications” industrial project in
which Ceit worked together with the company Gertek, involved in urban
and interurban traffic management and mobility tool provider. In this
project, the SW and HW architecture of the embedded system was designed
and the preliminary algorithms for the inventory of traffic signals and fog
detection modules were developed. Additionally, a proprietary
communication protocol was defined for direct communication with the
traffic control centre.
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Figure 1-7. Data acquisition system installed in a road
maintenance vehicle of Provincial Council of Bizkaia and
managed by Gertek.

“AUTOEV@L: Technological Ewvolution For Multivehicle Automation And
Evaluation Of Highly Automated Driving Functions “ public funding project
which, with the generated knowledge of the first project, allowed to improve
previous developments with enriched data and new algorithms. A new
module for road line marking condition monitoring was also developed
within this project.

Both projects pursue the same ultimate motivation of improving road safety
by taking steps toward cooperative driving where real-time information
from the environment can help drivers make better decisions as well as
anticipate and plan autonomous vehicles” behaviour. Furthermore, the
autonomous inspection tool developed in this thesis will also help to better
manage maintenance tasks by prioritising resources and reducing costs.
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1.5. Objectives

The future of mobility will be connected, cooperative and automated where
perception and vehicle-to-everything (V2X) communication will have a key
role to understand and interact with the environment. The reality of the road
is complex and its complexity will increase as new transport systems emerge
and vehicles become more automated. There have been great advances in
the core technology that solve autonomous driving, however many
perception algorithms still fail to work in critical driving conditions, this is
when the ODDs are exceeded. The impact of this weakness can be mitigated
and even prevented by providing a real-time twin of the physical and digital
infrastructure, but sensorizing the whole road network is not affordable.

To this end, the hypothesis of this thesis is to study if it is possible to monitor
road’s critical events and conditions by using specialized vehicles as
sensors on the move. These vehicles will have an in-vehicle image
acquisition system for applying computer vision and deep learning
techniques. Real-time monitoring will allow the collection of useful road
information and the creation of C-ITS services that help road users to drive
more safely and efficiently. In addition, this information will also be helpful
for infrastructure managers who will have a real inventory that will enable
them to manage tasks and investments. To achieve this, the following sub-
objectives have been identified:

e Research different computer vision techniques for fog bank detection
and visibility level classification to inform the driver or the
autonomous vehicle control system and generate situational
awareness for adverse weather conditions.

e Research different computer vision techniques for the recognition of
vertical traffic signs to generate an asset inventory that can assist in
the management of infrastructure maintenance.

e Research different computer vision techniques for road line marking
damage detection to advise maintenance tasks to the competent
authorities or to activate the ToC in case the automated vehicle is
using a lane-keeping based system on a section of road that does not
meet the necessary conditions to operate this function.

24



Section 1.5 Objectives

e Study the functional requirements needed for a future application of

the solution as an embedded system that fulfils the following

characteristics:

0 Modular, to facilitate the integration of new functionalities;

o Compact, to facilitate the installation in different vehicles;

0 Low-cost, to facilitate accessibility and user acceptancy;

0 Real-time, to generate valid and useful information in time for
other road users;

0 Common language, to facilitate communication between all
stakeholders;

0 Standardized, to ease its development and implementation;

0 Interoperable, to facilitate data exchange;

0 Universal, to be applicable to roads worldwide and to all
types of roads;

0 Useful, to facilitate the application by road administrations or

road operators.
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1.6. Document structure

The report of the thesis entitled “Computer Vision and Deep Learning based
road monitoring towards a Connected, Cooperative and Automated
Mobility” is composed of six chapters:

e Introduction

e Weather conditions Monitoring: fog detection
e Traffic Signs Monitoring: asset inventory

e Road Damage Monitoring: road lines

e Application in CCAM

e Conclusions and Future Research Directions

In this first chapter, an introduction has been given to the road mobility of
the future, its impact, challenges and enablers as well as to the different
alternatives for sensing and building perception systems.

In Chapter 2 the development of a fog bank detection system is presented.
For this purpose, the state of the art for fog modelling and detection is first
studied. This is followed by the development and validation of the results of
the two algorithms developed for the resolution of this problem (rule-based
and DL-based) and a comparison is carried out.

In Chapter 3 the development of a system for traffic sign recognition is
presented. First, the state of the art is studied and the developed solution is
detailed, which is divided into the detection and classification stages.

In Chapter 4 the development of a system for the detection of road marking
damage is presented. The state of the art is first studied and then the
developments are presented. Firstly, the initial algorithm based on classical
computer vision techniques is presented, followed by the development of
the final solution based on DL.

In Chapter 5 the importance of V2X communications in CCAM is
highlighted. In addition, messages in DATEX II and C-ITS format are
presented for the communication of fog bank events, traffic signal
information as well as road marking damage warnings.

Finally, Chapter 6 presents the conclusions of this work and proposes future
lines of research.
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Chapter 2 Road Damage Monitoring: road lines

2.1. State of the art

The weather has a great influence on road conditions and therefore on
driving. Poor conditions in which visibility is reduced hinder the driver's
ability to drive cautiously and affect directly driving safety. Likewise, it also
significantly affects camera-based intelligent driving systems as it has been
shown that their performance in foggy scenarios is much more challenging
than in clear weather scenes [11-13]. Therefore, current technologies focus
on fog detection or visibility estimation to further work on image
enhancement or even image restoration for fog removal.

Fog visibility estimation algorithms can be broadly classified into classical
computer vision and deep learning-based approaches.

2.1.1. Classical computer vision techniques

The first classical computer vision methods for fog detection rely on the
analysis and measurement of visibility distance by using image processing
techniques such as edge, vanishing point or horizon line detection or region
growing with a special focus on contrast and brightness study. Koschimieder
was one of the first researchers that treated this phenomenon and proposed
a simplified atmospheric scattering model that relies on the attenuation of
brightness contrast by the atmosphere [14].

L=L,e Pl 4+ L(1—eP9)

Where L is the total luminance reaching the observer from an object at
distance d through a diffusing media such as fog with an extinction
coefficient f (m™) and L, is the luminance of the object at close range and L
the luminance at the horizon. Thus, the first term is the light from the object
itself while the second term is the diffuse light from the environment which
has been scattered into the vision of the observer. In this way, the greater the
distance to the object, the less light the subject will see from the object and
more from the environment light, which will cause a decrease in the contrast
between the object and the background.

This definition allows W. Middleton to formulate an attenuation law of
atmospheric contrasts [15]:
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L—1Ly
Ly

C= = C,e B

Where C is the contrast between the object and the background at distance d
and C, is the contrast at close range. To define standardized visibility, a black
object against a white background is considered, which will have a C, of 1.
Furthermore, a minimum threshold contrast of 0.05 is assumed to be
distinguishable for the human eye. Therefore, by solving the equation above
an objective measure of the visibility distance or Meteorological Optical
Range (MOR) is obtained, which is one of the most popular methods in
automatic visibility measurement for ADS.

In 0.05 _2.99%

BB
This law fostered many other works among which the work carried out by
Hautiere et al. [16-21] should be highlighted. They do various refinements

implementing dynamically Koschmieder’s law to extract the road and sky
within the image, compute the weather conditions and restore its contrast,

MOR = —

which can be considered the first approaches dedicated to transportation
systems. They also created one of the most popular datasets called FRIDA
(Foggy Road Image Database). Based on the same principles Negru et al. [22—
24] also published various works to present an image dehazing method from
a moving vehicle and advise drivers with the adequate speed for the
detected fog density. The method considers an exponential decay in the
foggy image and applies a median filter which increases the clarity of the
reconstructed image.

Other leading research works on dehazing techniques were developed by
Tan [25] that removes haze by maximizing the local contrast of the restored
image and Fattal [26] who estimates the albedo of the scene and the medium
transmission under the assumption that the transmission and the surface
shading are locally uncorrelated. However, this may not be physically valid
or fail in some cases. Later, He et al. [27] proposed a novel prior for single
image haze removal, the dark channel prior, which is based on the statistics
of outdoor haze-free images. They found that some local regions which do
not cover the sky and have very low intensity (called dark pixels), can
directly provide an accurate estimation of the haze transmission. With this
haze thickness estimation, a high-quality haze-free image can be restored by
the atmospheric scattering model. Yeh et al. [28,29] based on the same idea
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improved the last method by estimating the atmospheric light using haze
density analysis and using a bilateral filter to calculate and refine the
transmission map. That results in better colour information and lower
computational time compared to He’s method. Huang et al. [30] also
analysed this dark channel prior method and developed a new one to fix the
problems related to halo effects, colour distortions and insufficient
transmission map. This method based on depth estimation, colour analysis
and visibility restoration outperformed other methods.

However, all these physical models lie on strong priors. Methods based on
Koschmieder’'s law depend on several assumptions such as static and
uniform atmosphere and flat and diffuse ground surface. In addition, they
are valid only for daytime scenarios, making them unusable for real-life
automotive applications where the system can work 24h/day. Methods
based on dark channel prior are also based on the assumption that at least
one of the colour channels has a very low intensity at some pixels.

There are also several methods in the literature based on the extraction of
image characteristics for fog detection and classification. Some of these
methods analyse these features to discern a final result while others use
classical vision as a pre-processing step to subsequently compute a classifier
(ML). For example, Pavlic et al. [31] analyse the power spectrum (squared
magnitude of Fourier transform) of the image without considering any
special information. This way, fog scenes that contain frequency components
near-zero can be differentiated from much more high-frequency components
that present the non-fog scenes. Later on, the author extended the method
for night conditions [32], however, it still fails to detect clear weather when
high contrast elements appear in the image (eg. oncoming vehicles,
overtaking trucks or bridges) in a foggy scene. Spinneker ef al. [33] also
focused their work on frequency characteristics and analysed the power
spectrum slope around the vanishing point to obtain a visibility range. Other
researchers studied the fog looking for its colour characteristics. Asery et al.
[34] analyse the image Gray Level Co-occurrence Matrix (GLCM) features
and considered its contrast, correlation and homogeneity to construct a
Support Vector Machine (SVM) classifier that will differentiate foggy and
non-foggy images, but the background of the image seems to have great
influence when applied to natural images. In [35] Alami et al. proposed a fog
detection algorithm based on the analysis of correlation and saturation
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characteristics in RGB colour space. This analysis was focused on the
vanishing point which is calculated using an edge-based algorithm and
Hough Transform. Li et al. [36] presented a fog level detection method based
on grayscale features where they measure the average grey value of each
row in the image and classify them into non-foggy, little-foggy or dense-fog
analysing the slope of the calculated curves. And Liu et al. [37] addressed the
fog level detection method based on image information characteristics like
H (hue), S(saturation) and V(value) which reduces the number of judgment
threshold value demand and thus detection complexity. Finally authors in
[38] made a comparison between seven histogram-based methods: Color and
Edge Directivity Descriptor (CEDD), Edge Histogram Descriptor (EHD),
Fuzzy Color and Texture Histogram (FCTH), Fuzzy Opponent Histogram
(FOH), Joint Histogram Descriptor (JHD), Scalable Color Descriptor (SCD),
and Simple Color Histogram (SCH). They used SVM classifier for no fog,
light fog and heavy fog scenarios, and observed that JHD and FCTH had the
best performances.

2.1.2. Deep learning techniques

On the other hand, Neural Networks are also used for fog detection. This
Machine Learning method has been on the rise in recent years due to its
ability to solve complex non-linear functions. In the image classification area,
Deep Neural Networks (DNN) are mostly used which analyse the global
features of the image. Chaabani et al. [39] proposed a three-layer neural
network with a global feature descriptor based on Fourier transform that
captures the power spectrum of the image to learn six different visibility
ranges between 60-250 meters. The achieved classification rate was 90.2%
tested on synthetic images from Foggy Road Sign Images (FROSI) dataset
[40]. Later on, Palvanov et al. proposed VisNet, an approach based on deep
integrated CNNs for the estimation of visibility distances from camera
imagery. The implemented networks use three steams of DCNN connected
in parallel and pre-processed the input image by applying one filter in the
frequency domain and another spectral filter for the extraction of low-
contrast regions. This approach achieved 94% on FROSI dataset images.
Later on, Vaibhav et al. [41] develop a CNN with two image inputs, one
original and the second input a block-wise discrete cosine transform (DCT)
and Shannon entropy features. This model classifies three visibility ranges
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less than 50 m, 50-150 m and 150 and above and obtains a 94.51 % accuracy
for the FROSI dataset. Both Palvanov and Vaibhav tested their algorithms
also on real scene images, which decreased the performance by 4.5% and
7.06% points respectively, however, none of these datasets is publicly
available. In summary, the performance of the current state-of-the-art
algorithms in real driving scenarios is still inconclusive.
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2.2. Materials and Methods

In this section an analysis of the existing databases is made and the ones
chosen or created for the development of this thesis are presented.
Subsequently, the different methods studied for fog detection are explained.

2.2.1. Existing Datasets

Although there are large-scale road datasets such as KITTI [42], Cityscapes
[43], Mapillary Vistas [44], ApolloScape [45] and BDD100k [46] the
availability of useful image datasets for the foggy road scenes evaluation is
very low. Most of the existing datasets contain few or even no foggy scenes
due to the difficulty of collecting and annotating them. For example, the
Mapillary Vistas database contains 10 images out of 25000 misty images (not
dense fog). Thus, some of the existing foggy datasets are generated synthetic
images or real-world images post-processed with synthetic fog. See Table 2-1
for a summary.

Foggy Road Image Dataset (FRIDA) is the most popular one, which was
created by Hautiere et al. with synthetic images [20] and was later extended
[21]. This last image set presents 66 diverse road scenes that have associated
4 different fog types (no fog, uniform fog, heterogeneous fog, cloudy fog,
cloudy heterogeneous fog) which comprises a total of 330 synthetic images.

The Foggy Road Sign Images (FROSI) dataset was introduced by Belaroussi
et al. [40] and contains a set of 504 base synthetic images 1400x600 with
different road signs placed at different distances on the image. For each
image 7 types of uniform synthetic fog are applied with visibility ranging
from 50 m to 400 m. Therefore FROSI set is made of a total of 3528 images.

A more recent dataset derivated from the Cityscapes dataset [43] was
generated by Sakaridis et al. which is called Foggy Cityscapes [47]. It
constitutes a collection of 25000 images from the original dataset that are
processed and automatically annotated into 3 foggy levels using a fog
simulator ranging visibility of 600, 300 and 150 m. Later, an improved
version of this dataset called Foggy Cityscapes -DBF (Dual-reference cross-
Bilateral Filter) [47] was published which additionally uses both colour and
semantics as reference for the transmittance map refinement and comprises
3475 synthetic foggy images with better adherence to semantic boundaries
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in the scene than the latter dataset. The same authors also generated two new
datasets with real-world foggy road scenes called Foggy Driving and Foggy
Zurich. The Foggy Driving dataset contains 101 light fog images captured
with a cell phone camera at different points of Zurich and also with images
collected from the web. Later own, they extended this dataset with collected
video frames of the same city and its suburbs improving the resolution and
having much variety of scenes and different fog levels, this last dataset
contains 3808 images and is named Foggy Zurich [48]. Finally, they
published the Adverse Conditions Dataset with Correspondences (ACDC)
[49] with the aim of training and testing semantic segmentation methods on
adverse visual conditions. ACDC consists of a large set of 4006 annotated
images, containing fog, nighttime, rain and snow scenarios equally
distributed.

Table 2-1. Summary of the existing datasets for fog detection and
its principal characteristics.
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Foggy Cityscapes 31 Germany and  synthetic
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- Germany,
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Finally, the SeeingThroughFog dataset [50] was developed in the context of
DENSE project. It records 10,000 km of driving in Northem Europe under
different weather and illumination conditions. It contains 12000 samples in
real-world driving scenes and 1500 samples in controlled weather conditions
within a fog chamber. The resulting annotations contain 5,5k clear weather
frames, 1k captures in dense fog, 1k captures in light fog, and 4k captures in
snow/rain.

2.2.2. Our datasets

2.2.2.1. Ceit-Foggy

Ceit-Foggy dataset consists of a set of 41 videos corresponding to
approximately 300 km of driving through the Basque Country and Segovia.
These videos were recorded in different weather conditions as shown in
Figure 2-1.

(c) Dense fog (d) Moderate fog

-

(e) Light fog (f) No fog

Figure 2-1. Ceit-Foggy dataset. Sample images showing the
annotated four different classes. Three fog levels and the
category containing negative images, this is, no fog.
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Around 4000 frames were extracted and of these 1681 images were labelled
in 4 categories: no fog, light fog, moderate fog and dense fog. These images
were recorded using different mobile phones and onboard cameras situated
on the dashboard. The images were subsequently cropped to avoid showing
the interior of the car. Therefore, the resolution of the images may vary from
549x411 to 1441x1080.

Due to the difficulty of finding this meteorological phenomenon the
distribution of the classes is not balanced as it is shown in Figure 2-2.
Although this imbalance is not appropriate for training purposes, it could be
used for model evaluation as it is representative of the samples that would
occur in natural driving.

1000 872

800

400

171
200 103

. B e

H Dense fog M Moderate fog [ Light fog B No fog

Figure 2-2. Class distribution of the Ceit-Foggy dataset.

2.2.2.2. Foggy Cityscapes DBF — extended

This dataset was generated from the Foggy Cityscapes DBF dataset to extend
the number of samples associated with different visibility ranges. This
refined version has 550 original real-world images and applies a synthetic
fog based on the standard optical model of Koschmieder [47][51]. The dataset
characterises three fog levels with an attenuation coefficient 3 of 0.005, 0.01
and 0.02 m-! corresponding to visibility ranges of 600, 300 and 150 m.

However, following the work done in DENSE project, it was found more
convenient to follow the visibility ranges defined by NF P 99-320 norm for
road fog [52]. It is worth noting that due to vehicle speed and depending on
the availability of contrasted objects along the road the distance to the
furthest visible object can be different to the general visibility distance. Thus,
this norm specifies that road fog has a lower threshold of visibility than
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meteorological fog. These ranges are specified in Table 2-2. This thesis is
focused on the analysis of road fog and considers the meteorological fog as
no foggy scene. A slight adaptation is applied by merging the last two road
fog visibility levels to reduce road fog levels to three for comparative reasons
with the Ceit-Foggy dataset. The attenuation coefficient for each class is
inferred from Koschmieder’s law (see section 2.1.1) as in the paper of the
original dataset.

Table 2-2. Definition of fog classes following the definition of
AFNOR norm NF P99-320. Road fog is differentiated into three
different levels, light fog, moderate fog and dense fog
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Meteorological fog <1000 [0.007 - 0.0003] 2975
200to 400
light fog - [0.03 - 0.007] 2750
100 to 200
Road fog moderate fog 50 to 100 [0.06 - 0.03] 2750
dense fog <50 [0 - 0.06] 2750

To construct a balanced dataset, 2750 samples were generated for the four
different visibility ranges: light fog, moderate fog, dense fog and no fog (see

Figure 2-3). Thus, finally, the dataset contains 11,225 images in total of size
2048x1024.

2.2.3. Developments

As it was explained in the state-of-the-art revision there are two main
approaches for the detection of foggy scenes based on vision techniques: (1)
measurement of the visibility range and (2) extraction of image
characteristics. The first approach was discarded for this application because
there is no direct relation to the fog's physical properties since several factors
affect it such as background light, road curvature, presence of contrasted
objects etc. [53]. The high complexity of this problem could lead to the study
of a solution with neural networks. However, this option could be
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problematic if the onboard system has hardware limitations. Thus, in this
thesis, a classic computer vision approach is explored in Section 2.2.3.1 which
can be less demanding in terms of computation, although, later a deep
learning-based algorithm is also addressed in Section 2.2.3.2.
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Figure 2-3. The five selected samples of attenuation coefficient
per class for the construction of the Foggy Cityscapes DBF —
extended dataset.
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It is worth mentioning that the hardware used in these developments is a
Windows 10 PC with an Intel Core i7 processor, NVIDIA GeForce RTX 3080
10 GB GPU and a total RAM of 32 GB. The software used for the classical
computer vision approach was Matlab 2020a (Image Processing Toolbox
V11.1 & Computer Vision Toolbox v9.2) while for the deep learning
approach Python 3.7.13, Tensorflow V2.8.2 and keras.applications were
employed.

2.2.3.1. Classical computer vision approach

In this section, a classical computer vision approach is applied where the
colour thresholding technique is used to model and detect fog
characteristics. Although, most of the previous works have analysed
grayscale images; our work aims to study whether other colour spaces could
help to get more information on the image and help to improve the results.

After several experimental studies in the RGB and HSV colour spaces, it was
concluded that this information was not sufficient to properly differentiate
between cloudy and foggy scenes. The thresholding was highly complex and
failed to generalize the different cases presented in the reference images.
Therefore, it appealed to a not-so-popular colour space, the XYZ which
defines quantitative links between distributions of wavelengths in the
electromagnetic visible spectrum (see Appendix B). This new colour space
allows us to define a rule-based method from scratch that can classify sunny,
cloudy and foggy scenes by using XYZ features. Afterwards, the designed
algorithm estimates the fog level of the foggy images by using RGB features
(see Figure 2-4).

Thus, our work extracts the specific features of the images and establishes
several rules to classify scenes as sunny, cloudy and foggy. These rules are
summarised in Table 2-3 and they will be presented in detail in the following
lines.
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Image features
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Figure 2-4. Implemented fog detection workflow for the rule-
based method classifier.

Table 2-3. The proposed rule-based method for fog detection and
fog level estimation. This method analyses RGB and XYZ colour

spaces.
Sunny Z>0.35 && ZYdiff>0.1
Cloudy 2<0,35
Light greylevel [10-30]
Foggy Z>0.35 && ZYdiff <0.1 Moderate greylevel [30-60]
Dense greylevel [60-100]

First, the XYZ colour space was analysed, here the Z channel will find cloudy
scenes and the parameter defined as ZYdiff will differentiate between foggy
and sunny scenes. Second, once the foggy scene is detected, our algorithm
will classify the foggy scenes into light fog, moderate fog and dense fog by
using the RGB colour space-based features. One of the main characteristics
of fog is that it blocks visibility from a certain distance. This causes a decrease
in the contrast between the object and its background so that the scene takes
on a white/grey colour. The calculated grey level will provide an estimation
of how dense the fog is.

It is worth mentioning that for these analyses, just pixels from the upper half
image will be considered. In this portion of the image, it will be mostly the
sky after having previously calibrated the camera position.
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Z and ZYdiff calculation

In the XYZ colour space, the Z average level of the pixels located on the
upper half of the image (referred to as Z) was analysed. It is observed that
this channel makes a difference between cloudy scenes and the rest since the
Z value is lower in cloudy scenes (Z < 0.35).

However, this characteristic presents similar values both for sunny and

foggy scenes. Therefore, a further feature is calculated by the @ formula,

which represents the difference of the Z and Y channels averages with
respect to luminance (Y); hereinafter referred to as ZYdiff. This value is not
relevant for cloudy situations but leads us to differentiate between sunny
and foggy scenes as can be seen in Figure 2-5. ZYdiff is higher in sunny
scenes (Z2Ydiff >0.1) than in foggy ones (ZYdiff <0.1).

Grey level estimation

The grey level allows approximating how much contrast has been lost in the
image due to fog. This feature has been extracted by establishing several
rules for the RGB channels. Firstly, it was considered as grey pixels those
RGB values enclosed in the (140-255) range. This range represents bright
pixel values. Additionally, a limitation was established for the difference
between each channel to 20, this rule will ensure that the saturation of the
pixel is low.

Thus, this grey level would be the percentage of pixels that meet these
conditions compared to the total number of pixels analysed on the upper half
of the image.

The calculated greylevel seems to be a good representative of the fog level.
Thus, based on experimental tests three thresholds that will conform to the
three different fog levels were defined. This way, the light fog scene is
expected to have 10-30% of grey pixels, moderate fog conditions will oscillate
between 30-60% and an image with more than 60% grey pixels will be
considered a dense fog scenario
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(a) original sunny (b) ZYdiff sunny (c) Z value sunny

(d) original cloudy (e) ZYdiff cloudy () Z value cloudy

(g) original foggy (h) ZYidiff foggy (i) Z value foggy

Figure 2-5. Studied XYZ features in three different weather
scenes. From up to down sunny, cloudy and foggy sample
scenes.

In this manner, the fog detection matrix presented in Table 2-3 is finally
constructed.

2.2.3.2. Deep Learning-based approach

Due to the high complexity of the problem, currently, many works are
focused on solving it by applying DL techniques because of their ability to
solve complex non-linear functions. Therefore, in this section, the approach
to construct a neural network-based model is presented. This model can deal
with different scenarios and classify three different levels of road fog
depending on the visibility range.

Network architecture

For this approach EfficientNetV2 [54] is introduced, a new family of CNN
that presents a faster training speed and better parameter efficiency than
previous models while being up to 6.8x smaller (see Figure 2-6). This model
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increases both training speed and parameter efficiency by using training-
aware Neural Architecture Search (NAS) and scaling the image size,
however, this technique often causes a drop in accuracy. To solve this
inconvenience, and achieve both fast training as well as good accuracy,
EfficientNetV2 proposes to adaptively adjust regularization along with the
image size by a dropout or data augmentation. This technique is called
progressive learning which jointly increases image size and regularization
during training.

EfiNetV2-XL(21k)
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Figure 2-6. Model comparison trained on ImageNet ILSVR2012
top-1 Accucary vs. Training Time. Image extracted from [54]

Model setup

The selected architecture is EfficientNetV2 B0 since it is the most lightweight
one, initialize the model with the pre-trained ImageNet weights and fine-
tune it to apply transfer learning to our target domain. The dataset used for
this training is the Foggy Cityscapes BDF-extended that has been partitioned
in 80% train 10% test and 10% validation (see Table 2-4). The experiments in
this Section were carried out using Keras API. To use this model the original
images were re-scaled to the shape 224x224x3 and stored as TFRecords
(binary records) so that they can be read efficiently.
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Table 2-4. Foggy Cityscapes BDF-extended distribution for
training, validation and testing of a deep learning-based

classifier.
Foggy Cityscapes BDF-extended
Train (80%) 9353
Valid (10%) 936
Test (10%) 936
11225
Source dataset Convolutional layers Dense layers Source labels
(Imagenet)
Goldfish
Tree frog
Alligator lizard
Pre-trained network
TRANSFER LEARNING
Frozen lavers New
rozen ayers Classifier
j====n
| 1
| 1
1 : Light fog
1
[ : Moderate fog
—_— I ——
3 1 : Dense Fog
. 1
T .
; 1 : '
. [ I
Target dataset ) )
(Foggy Cityscapes BDF - extended) Convolutional layers Dense layers Target labels

Figure 2-7. Transfer learning architecture designed for the new
fog classifier

The first step to transfer learning was freezing all layers so as to avoid
destroying any of the information the pre-trained model contains during
future rounds. Then add some new trainable layers that will learn to turn the
old features into predictions on the new dataset (see Figure 2-7). For this step,
it is selected a relatively large learning rate of 0.001 and set 100 epochs with
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an early stopping callback to monitor the val_loss. The next step was to
unfreeze part of the model (the top 155 layers) and reduce the learning rate
to 1e* for another 60 epochs followed by another 40 epochs with a learning
rate of 1e®. This fine-tuning phase where part of the model is re-trained can
potentially achieve meaningful improvements by incrementally adapting
the pertained features to the new data.

2.2.4. Evaluation parameters

For the evaluation of the multiclass classification model’s performance,
accuracy metric was employed that calculates how often predictions match
the one-hot label. Thus, the accuracy is defined as:

Matched predictions

Accucary = —
y Total predictions

Inference times have also been measured to assess their real-time
performance

Additionally, the confusion matrix is also generated to illustrate the results
of the classifier for each class, which allows to analyse what are the most
difficult scenarios.

For the comparison of the two different models presented above, it is used
the Foggy Cityscapes DBF-extended validation partition that contains 936
images and the whole Ceit-Foggy dataset with 1681 images. Both of them
have 4 categories: light fog, moderate fog, dense fog and no fog.
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2.3. Results

In this section, it is first illustrated an offline analysis of the rule-based
method to illustrate how the defined thresholds fit the datasets. Then the
results of the two models are presented and discussed.

2.3.1. Rule-based method data visualization

This validation was executed for the Ceit-Foggy dataset in order to check
whether the defined thresholds for the rule-based method were
representative. Thus, the algorithm was executed and all parameters were
recorded and drawn in the following figure (see Figure 2-8).
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Figure 2-8. Image features representation for each ground truth
label in the Ceit-Foggy dataset

Figure 2-8 shows the representation of grey level, Z and ZYdiff parameters
obtained by the analysis of RGB and XYZ colour spaces.

All the parameters analysed range from [1,100]:

Grey level: which has a direct link with the fog level when the scenario is
classified as foggy. It is represented in grey in the figures above.

46



Section 2.3 Results

Z value: which differentiates cloudy from foggy scenarios when the sky is
not clear. It is represented (multiplied by a factor of 10) in orange in the
figures above.

ZYdiff: which differentiates foggy from sunny scenes. It is represented
(multiplied by a factor of 10) in yellow in the figures above.

Represented in grey in the first column data, the grey level shows a clear
difference between the four scenarios. With a special focus on the foggy
scenarios, it is observed that most of the points could be clustered from [10-
30] for light fog, [30-60] for moderate fog and [60 -100] for dense fog. On the
other hand, ZYdiff is mostly under 10 and Z above 35 for foggy scenes.
However, for no-fog scenarios where both sunny and cloudy situtations are
included the range of this values is much wider.

2.3.2. Models comparison

For the comparison of the two models developed in this chapter, the two
datasets are presented in Section 0. were used and executed both algorithms.

Table 2-5 shows the summarized results of this comparison where the
accuracy and the processing time per image were analysed

The best performance result achieved for the deep learning model is 95.83%
while for the rule-based method is 80.07%. This can be explained by the high
complexity of modelling a complex phenomenon such as fog in different
light conditions and scenarios with only four parameters. However, the
neural network-based model learns by itself the characteristics of the
training images and can collect thousands of different parameters, thus
presenting much more adaptability to the different scenes that can be
presented. Regarding the processing time of the algorithms, it is observed
that the processing in the rule-based method is always slower. However,
both models have an adequate computation time (below 300 ms) to run the
analysis in real-time with no problem as long as the same current
computational capabilities can be commanded.
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Table 2-5. Fog detection models’ evaluation parameters
comparison for the Ceit-Foggy and Foggy Cityscapes DBF -
extended datasets.

RULE-BASED DEEP LEARNING
N f ti ti
DATASET %nnber © Accuracy (%) . {me per Accuracy (%) . {me per
images image (ms) image (ms)
Foggy CityScapes
BDF-extended 936 0,6368 296,27 0,9583 252,6
Ceit-Foggy 1681 0,8007 164,03 0,7055 74,4

For a deeper analysis of the performance of the two models, the confusion
matrix was calculated for each test that allows studying in which scenarios
each algorithm fails or succeeds.

Rule-based method

In Figure 2-9 it is shown that the rule-based method confuses light fog and
non-fog classes on several occasions for both datasets (40.4% and 30.1%),
which is also true for the human eye in many of these cases. Though, a
detailed analysis has shown that many of these cases have a limiting grey
level. Failures in this scenario are considered to be of low importance since
the alert level is lower and no false alarm is generated for the driver.

However, in Figure 2-9 (a) the confusion that occurs between the moderate
fog and light fog classes for the synthetic dataset is considered more severe
since the alert level is higher than the ground truth. The prediction in this
classes is of a higher fog level in 41.9% and 37% of cases respectively. In the
detailed analysis of the images, it is concluded that this behaviour may be
explained due to the colour of the synthetic fog of the Foggy CityScapes BDF-
extended dataset. The rule-based method has used real fog images as a
reference to define the boundaries, in these pictures the fog takes a warmer
colour than synthetic fog which is represented with a much pure and cold
white tone which results in a foggier sensation.
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RULE-BASED DEEP LEARNING
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Figure 2-9. Fog detection models' confusion matrix comparison

for the Ceit-Foggy and Foggy Cityscapes DBF - extended
datasets.

Deep learning —-based method

The reverse occurs for the deep learning-based model when tested on real
fog images from the Ceit-Foggy dataset. Both in the case of light and
moderate fog 28% and 68% of the cases respectively are predicted to have a
lower fog level. This use case is also related to the previous fog tone
phenomenon: since the deep learning model was trained with synthetic fog
images the real fog does not have enough white level to be classified at the
level of the ground truth (see Figure 2-10).

It is also worth mentioning the good results obtained for the deep learning
model when testing with synthetic fog images. Since the fog tone of the

49



Chapter 2 Road Damage Monitoring: road lines

training and test images is the same, the model fits very well with the new
test images.

(a) Synthetic fog (b) Real fog

Figure 2-10. Fog tone comparison of the two datasets. Synthetic
fog presents a colder colour than the real foggy scenes.

Video analysis for both models

Finally, Figure 2-11 shows a comparison of the two models with one of the
original videos used to generate the Ceit-Foggy dataset. This video was
recorded in a light-fog scenario, but during the route, the vehicle enter a
thicker fog bank which then fades away at the end of the video.
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(c) Example frames

Figure 2-11. Off-line video analysis and model comparison for a
light-fog scenario with a moderate-fog bank that disappears in
the last frames

Figure 2-11 (a) shows the result of the rule-based method where the
evolution of all the parameters was illustrated. The diamond markers
present the fog event alarm and judging de grey level it is shown how the
light-fog [10-30] evolves to the moderate-fog level [30-60] and finally
decreases to a no-fog scenario.

The same tendency is reflected in Figure 2-11 (b). This graphic presents the
behaviour of the deep-learning model which has a discrete output of four
different levels. It is also observed the change from light to moderate when
entering the fog bank and to no fog when exiting the fog bank.

Lastly, Figure 2-11 (c) shows three samples of the video with the three
different scenarios commented above.
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2.4. Discussion

Fog is one of the most dreaded weather phenomena on the road as it can
significantly reduce visibility abruptly in a matter of seconds and can last
from a few metres to kilometres. It poses a safety hazard to both human-
driven and automated vehicles. Nowadays, information regarding fog can
be displayed on variable messaging boards, however, this method is not very
effective as its location is imprecise.

In this chapter, a new dataset was generated containing 1681 foggy images
that were labelled in three different fog levels. In addition, the synthetic
Foggy Cityscapes DBF dataset was extended for 4 different visibility levels.
The development of two fog detectors has been also presented, the first one
addressed classic computer vision techniques while the second one uses the
most recent deep learning techniques.

Both models have shown good results in tests with different datasets and
videos. Accuracy levels of more than 80% and processing times of less than
300ms have been reported. Therefore, it could be said that both are valid
detectors to integrate into an on-board system that can monitor in real-time
this meteorological phenomenon. This sensorisation would provide better
and more accurate information on the location of fog banks, making it
possible to generate ad-hoc warnings to help drivers and automated vehicles
to be prepared and make better decisions while driving and this enhance
road safety.

It is worth mentioning that a preliminary version of this system is already
integrated on an onboard barebone industrial mini PC and is being validated
on-site generating real-time traffic alerts (Linux i7-6600U CPU & 8GB RAM).
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3.1. State of the art

Vertical signalling is essential for the safe coexistence of all road users and
road management. For this reason, there are already many studies on traffic
sign recognition in the literature. These systems are of great interest for
ADAS, for the decision-making of autonomous vehicles as well as for road
network maintenance (asset inventory) [55]. TSR can be categorized into two
subtasks, detection which aims on locating the traffic sign in an image and
classification which will later predict the category of the detected sign.

Computer-vision methods have been widely spread to address this task.
Those have evolved over the years, first, classical vision techniques were
used most of them based on shape or colour modelling, ML techniques were
also employed, however, these methods present weakness when dealing
with different scenarios with illumination change, occlusions etc. Thus, deep
learning techniques arise to solve these problems, however, they require
large annotated datasets. Next, a brief review of these methods will be
presented.

3.1.1. Classical computer vision techniques

3.1.1.1. Colour and shape-based methods

These methods are the oldest in the state of the art and were mainly used for
traffic sign detection.

Colour-based methods take advantage of the traffic sign design which means
to be easily distinguishable from the background. Segmentation techniques
by colour thresholding of different colour spaces are the most used among
the researchers. RGB is the most intuitive colour space, however, it is also
very sensitive to light conditions, weather conditions, reflections etc. Thus,
choosing the colour space is very important. Other works developed colour-
based detection methods using hue, saturation and value (HSV), hue,
saturation and intensity (HIS) as well as other various colour spaces [56].

Regarding the shape-based methods, the most used one is the Hough
Transform which consists of voting of each pixel edge image for the object
centre at the object boundary [57,58]. Others apply template matching
techniques [59] or similarity detection by analysing symmetry [60,61]. Some

54



Section 3.1 State of the art

works use Distance Transforms [62] capturing object shape template
hierarchy, Edge Detection features [63] and Haar-like features [64].

Despite TSR requiring colour and shape information, the problems of
illumination changes or colour fading of traffic signs, as well as the
deformation and occlusions are still unresolved [65].

3.1.1.2. Machine learning methods

Thus, conventional computer vision methods are employed to extract and
learn new specified visual features. The most popular features are Haar-like
features, SIFT (Scale Invariant Feature Transform) features, HOG
(Histogram Oriented Gradients) features and SURF (Speed Up Robust
Features) features, but there are also others such as ICF (Integral Channel
Feature), ACF (Aggregated Channel Features) etc. They were further applied
both for detection and classification tasks.

The increase in complexity of the features to learn requires using more
powerful algorithms. The most popular ones are the cascaded detectors as
Viola-Jones [66] strategy, which performs classifier training based on
AdaBoost [67]. The benefit of this classifier is that detection runs fast and its
accuracy is fair [68]. Other popular methods are also used for TSR, such as
SVM [69] that contract an N-dimensional hyperplane that optimally
separates the data into two categories; Random Forests (RF) [70] which
operates by constructing multiple decision trees during the training time and
outputting the class of individual trees, genetic algorithms [71] based on
natural selection processes; artificial neuronal networks (ANN) [72] or CNNs
[73,74]. These last two methods are increasingly gaining popularity in recent
years due to the advances in graphics processing units.

However, these methods also still present limitations, especially when the
number of features to be learned increases, and the speed of the algorithms
also increases, making them ineffective for real-time analysis. In addition,
some of these features still present difficulties when there are abrupt changes
in the background.

3.1.2. Deep learning techniques

In recent years, DNNs have received great attention in computer vision
research and have been widely used in both object detection and recognition.
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The main difference and also its strongest point is that deep learning uses
multilayer neural networks to automatically extract and learn the features of
visual objects.

The most popular approach for TSR is the end-to-end CNN-based models.
For these models, there are two kinds of algorithms, the two-stage detectors
which are based on the generation of region proposals by selective search to
predict the candidate bounding boxes followed by the classification, and in
contrast the one-stage detectors who do the object classification and
bounding-box regression directly in a single-step without using pre-
generated region proposals. The first ones are normally more accurate;
however, they are also slower than single-stage algorithms.

The TSR systems have evolved as the algorithms themselves have advanced.
Zhu et al. [75] proposed a six layers Fast-RCNN model to simultaneously
classify and locate traffic signs. Zuo et al. [76] used Faster R-CNN-based
model. Shao et al. proposed a simplification of the Gabor wavelet to improve
Faster R-CNN for traffic sign detection [77,78]. Zhang et al. [79], Yang et al.
[80] and Yuan et al. [81] added an attention module to the CNN to improve
the detection of small traffic signs or under complex backgrounds. With the
emergence of single-stage detectors, new works were developed. Zhang et
al. [82] apply CNN inspired by YOLOv2 while Wang et al. [83]Jused YOLOv4.
Whereas Shan et al. [84] and Jin et al. [85] proposed different improvements
for Single Shot Detector (SSD) CNN-based algorithms.

There are countless examples in this field and currently, in the state of the
art, many of them achieve results that exceed human performance (98.84%)
[86]. However, these deep learning methods are highly dependent on the
quality of the datasets they use. Although technically the level is very high,
many non-technical challenges can be overcome to jeopardise the
performance of these algorithms, especially when dealing with complex
scenarios where the resolution of the images is low, there are different
lighting or weather conditions, fading and blurring, occlusions or other
artefacts, multiple appearances of signs etc. [87] (see Figure 3-1).
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Lighting/weather conditions

Artefacts

Low resolution

Motion blur
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Occlusion

Intra-class variation

Damage

Inconsistency

Figure 3-1. Sample images for TSR challenges: lighting or
weather conditions, artefacts, low-resolution signs, motion blur,
rotation, occlusion, damage, inconsistencies and intra-class
variation (The vast majority of the samples are extracted from
Ceit-TSR dataset).
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3.2. Materials and methods

3.2.1. Existing datasets

The traffic sign recognition research field has increased its attention in the
last years and therefore since 2011 many new large datasets have been
publicly available. This has allowed many comparative studies that have
helped to improve existing algorithms.

The German Traffic Sign Recognition Benchmark (GTSRB) is one of the first
large and public datasets collected in various locations in Germany that was
created to evaluate the classification branch of the problem with the
International Joint Conference on Neural Networks (JCNN) 2011
competition [88]. The authors of this dataset added a new benchmark for
detection purposes (GTSDB) and organised also the IJCNN 2013 [89]. These
were the boom for the creation of many other new public datasets for TSR in
different countries.

Belgium Traffic Sign Dataset [90], STS Dataset recorded in Sweeden [91],
RUG from Netherlands [92], Stereopolis dataset from France [93] and
MASTIF dataset from Croatia [94] which together with the GTSDB led to the
creation of the European Traffic Sign Dataset (ETSD) [95] which includes all
these datasets and also extend the annotations of some of them to label all
possible classes. Some datasets contain images from China such as Tsinghua-
Tencent Dataset (TT100K) [96], Chinese Traffic Sign Dataset (CTSD) [97],
Changsha University of Science and Technology Chinese traffic sign
detection benchmark (CCTSD) [82], and Complex Traffic Sign Dataset CTSD
[98]. Russian traffic Sign Dataset (RTSD)[99], LISA dataset with American
signs [100], Dataset of Italian Traffic Signs (DITS) [99], Korean Traffic Sign
dataset (KTSD) [101], DFG from Slovenia [102] and Cure TSD of Belgium
[103].

Finally, there is a recent dataset called Mapillary Traffic Sign Dataset (MTSD)
[104] for detection and classification on the Global Scale created by Facebook.
This dataset aims to cover the diversity of countries all over the world in
urban and rural areas, images of different quality and captured under
varying conditions. The last paper that reported on TSR datasets proposed
two new synthetic datasets [105] which consist of Carla Traffic Sign
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Detection (CTSD) and Carla Traffic Sign Recognition Dataset (CATERED)
both created through the Carla simulator.

All the characteristics of these publicly available datasets are summarized in
Table 3-1.

3.2.2. Our dataset

Ceit-TSR consists of 264 colour images captured from 40 different videos of
driving tracks within the Basque Country (Spain). They were recorded using
different mobile phones and onboard cameras located on the dashboard. The
images of this dataset were specifically selected so that in addition to the
different weather and light conditions that are covered in other existing
datasets, they would also include other complex conditions. Those
incorporate images with motion-blur, low-resolution signs, distant signs,
low contrast and windshield artefacts (reflections, raindrops, dirtiness etc.)
as it is shown in Figure 3-2. All images were manually annotated using the
Computer Vision Annotation Tool (CVAT) [106] resulting in 583 bounding
boxes that were also classified in 49 different classes (see Figure 3-3).

Figure 3-2. Ceit-TSR dataset. Sample images showing some of the
challenging conditions: low contrast, fog, reflections, shadows,
and heavy rain.
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H: HECP>DH — SHORN:
- .
2

Figure 3-3. CVAT tool that shows the labelling task for Ceit-TSR
dataset

3.2.3. Used datasets

In addition to the Ceit-TSR dataset and to be able to evaluate the
generalisability of the developed algorithms and contrast them with the
works reported in the state of the art, the datasets GTSDB, GTSRB and ETSD
have also been used (see Table 3-2).

Table 3-2. Summary of the used datasets for TSR in Chapter 3.

Number images Labels Classes Country
GTSDB (test) 300 361 43 Germany
GTSRB (test) 12630 12630 43 Germany

Belgium, Croatia, France, Germany,

ETSD 18550 18550 164 Netherlands, Sweden

Ceit-TSR 264 583 49 Spain

3.2.4. Developments

The implemented traffic sign recognition system is composed of two
modules: detection and classification (see Figure 3-4). As will be explained
in the following sections, both algorithms were fine-tuned, detector and
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classifier, except for the neural networks used for the classification which
were pre-trained models.

- =
image sign

CNN Classifier

Figure 3-4. Implemented Traffic Sign Recognition workflow.

The hardware used in these developments is a Windows 10 PC with an Intel
Core i7 processor, NVIDIA GeForce RTX 3080 10 GB GPU and a total RAM
of 32 GB. As for the software, the authors employed Matlab 2020a (Image
Processing Toolbox V11.1, Computer Vision Toolbox v9.2, Piotr's Matlab
Toolbox v3.5, Deep Learning Toolbox v14.0, Deep Learning Toolbox
Importer for Caffe Models v20.1.0 and Deep Learning Toolbox Importer for
Tensorflow-Keras Models v 20.1.0).

3.2.4.1. Traffic Sign Detection

After the revision of the state-of-the-art of traffic sign detection methods, it
can be concluded that there is no clear framework that achieves the best
results. Thus, it was decided to implement and compare some of the most
popular methods. Firstly, classical features were used such as colour and
shape for modelling a Viola-Jones cascade detector. However, these
alternatives were finally discarded as they were difficult to adjust and not
very flexible with changing light conditions.

Usually, existing detectors could be improved in two ways: using more
complex features or implementing more powerful learning algorithms. Since
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the combination of boosting and cascading is proven to be very efficient for
object detection [107], the key is to find representative characteristics at a low
computational cost. In this context, a combination of record-breaking
characteristics has emerged for pedestrian detection [108] and in this thesis,
this method was applied for traffic sign detection. The ACF detection
framework uses an AdaBoost classifier trained with ACF features to classify
image patches. The entire image is searched by using a multiscale sliding
window approach. These ACF features consist of ten different channels:
three from the LUV colour space, the gradient magnitude, and the six
oriented gradient maps (see Figure 3-5). Afterwards, the sum of every block
pixel of these channels is computed using fast features pyramids and
downscaled. Features are single-pixel lookups in the aggregated channels.
Boosting is used to train and combine decision trees over these features
(pixels) to locate accurately the object [108]. The channel extension offers a
rich representation capacity, while the simplicity of the features allows a low
computational cost.

original

Figure 3-5. ACF features. In the first row from left to right:
original image, LUV channels, the gradient magnitude and
individual representation of HOG features in different angles, of
a sample sign.

3.2.4.2. Traffic Sign Classification

In this phase, two different pre-trained classifiers were used for inference
and then a voting system was employed to give a final prediction.

e European Classifier: this is an 8-layers model with VGG architecture
modified adding 1) L2 regularization of le-4 value on each
convolutional and fully connected layer and 2) Batch Normalization

63



Chapter 3 Road Damage Monitoring: road lines

after each convolutional layer and before the ReLu activations. Adam
optimizer was used and the learning rate was set to 1e-3. This model
was trained by Serna et al. [95] on the ETSDB dataset. The input shape
is 48x48x3 whereas the output is an array of 164 different classes (see
Figure 3-6).

Figure 3-6. Traffic sign samples of the ETSDB dataset. There are
164 different classes grouped into 9 categories: danger,
regulatory (priority, prohibitory, mandatory and special
regulation) informative (information, direction and additional
panels) and others.

German Classifier: this is an 8-layers model with AlexNet
architecture. However, the authors do not provide details of the
training. This model was trained by people of the Center for Digital
Technology and Management [109]on the GTSDB dataset. The input
shape is 227x227%3, whereas the output is an array of 43 different
classes (see Figure 3-7).
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Figure 3-7. Traffic sign samples of GTSRB dataset. There are 43

different classes.

Image pre-processing

Several studies had probed that pre-processing methods that normalize the
image and give better contrast can improve the performance of the existing
pre-trained CNN models [95,110-112]. Thus, after studying different
combinations a specific pre-processing routine was finally defined for each
of the classifiers that are used in this chapter. (1) The V channel
normalization is firstly applied for the input images of the European
classifier to smooth the pixels” luminance distribution. (2) Then, both models
require the mean image subtraction to make the network less sensitive to the
changing background and lighting conditions. For this step both images
must be of the same size, thus they are resized to the CNN input shape before
doing the subtraction. (3) Next, the input image will go through a random
cropping loop to generate ten different images. All of them will be passed to
the classifier and the one with the highest confidence score will be selected
(see Figure 3-8).
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Mean image
of ETSB
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Resize and image
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V channel
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(a) For European classifier

Mean image
of GTSRB

227%227

©
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Resize and image
normalization
with mean image

43433
43 333

Random
cropping

(b) For German classifier

Figure 3-8. The pre-processing phase before applying the
corresponding classifiers. V channel normalization, mean image
subtraction and random cropping tasks are presented.
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Voting system

Voting is an ensemble method that combines the performance of multiple
models to make predictions. In this case, the predictions of the german and
the European classifiers are combined to obtain the final output. The aim of
incorporating this voting is to mitigate the risk of one model making an
inaccurate prediction by having other models that can make the correct
prediction. For the case of these two classifiers, the European classifier covers
a wider variety of traffic sign classes whereas the german model output is
more reduced but presents better performance for some of the classes.

Therefore, a soft voting system was implemented where every individual
classifier provides a probability of the output class and the target label with
the greatest sum of probabilities wins the vote. Therefore, since there are
only two votes, in this case, the winning class will be the one in which the
two votes coincide or, if they differ, the class with the higher confidence
score.

3.2.5. Evaluation parameters

For the analysis of the detector’s performance precision and recall metrics
were employed, where precision measures the proportion of the total
number of signals detected that are correct, while recall measures the
proportion of the total number of signals to be detected that are correctly
detected.

o TP
Precision = W
TP
Recall = 75 ¥ FN

For the evaluation of the multiclass classification model’s performance,
accuracy metric was employed that calculates how often predictions match
the one-hot label. Thus, the accuracy is defined as:

Matched predictions

Accucary =
y Total predictions

Inference times have also been measured to assess their real-time
performance.
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3.3. Results

In this section, the results of both the detector and the ensemble classifier are
evaluated in four different datasets. GTSDB and Ceit-TSR contain complete
road scenes where detection followed by classification is necessary. GTSRB
and ETSDB are composed of cropped images containing just a traffic sign, so
just the second phase should be needed. However, GTSRB detection is also
applied since the original dataset includes a border around the actual sign of
10 per cent of the sign size, at least 5 pixels.

Table 3-3 shows the detection and classification results of the pure and
ensemble models presented in this chapter for the detection and
classification phase. In addition, the computational time per frame is
measured.

Table 3-3. Detection and classification results of the pure and

ensemble models tested in the four different datasets used in this
chapter.

Model

European German Ensemble

detection
prec./recall
GTSDB classification
(300 imgs) accuracy
processing
time

1.00/0.76 1.00/0.76 1.00/0.76

0.967 0.971 0.985

0.069 0.121 0.138

detection
prec./recall

European  classification
(18145 imgs) accuracy
processing

time

0.889 0.868 0.924

0.009 0.062 0.071

detection
prec./recall
GTSRB classification

1.00/0.52  1.00/0.52  1.00/0.52

Il 934 964
(12630 imgs)  accuracy 0.915 0.93 0.96
processing 0.011 0.065 o2
time
detection

prec./recall 0.87/0.57 0.87/0.57 0.87/0.57

Ceit-TSR  classification

(64imgs)  accuracy 0.691 0.552 0.713
processing 4 590 0.146 0.138
time
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3.3.1. Traffic Sign detection

Since the learning process of an ACF detector is very similar to that of the
cascade detector, this function also needs images with and without traffic
signs. It uses as positive images all those that are passed as an argument
while the negative ones are automatically generated.

The design and selection of parameters for the detector are crucial to
achieving optimal implementation of it. Thus, several fine-tuning
experiments were done showing that:

e The inference time was always about 200ms per image.

e Up to 5000 learners or decision trees do not improve the results.

e Object training size should be a maximum of 30x30 pixels, bigger
dimensions may increase the false negatives.

e The confidence threshold is key to compensate false positives and
negatives.

The final detector was trained with an object training size of 30x30 pixels. It
used 5000 weak learners in 30 stages.

As it can be observed in Table 3-3 the precision of this detector is pretty good
(1.00 - 0.87), this is, most of the predicted bounding boxes are correct.
However, the recall is lower (0.76 - 0.52). This means that there are some
traffic signs that the detector will miss. Nevertheless, this factor is not
considered to be that relevant for the actual application of this thesis, since it
is a model that will be in an on-board vehicle that is continuously driving on
the same roads and therefore will make several passes and will have the
opportunity to detect the traffic sign that it has previously missed. Even so,
a detailed analysis has been carried out to try to identify the scenarios where
the detector fails. Figure 3-9 shows an example of Ceit-TSR dataset where
there is one True Positive (TP) or detected sign and three False Negatives
(FN) or missed signs. It is shown that, when the traffic sign to detect is small,
this is, less than 15x15 pixels (see Table 3-4) the detector fails.
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Figure 3-9. Example of false-negative detections due to the small
size of the traffic sign. Table 3-4 shows detailed information.

Table 3-4. Ground truth of the example shown in the figure
above. A sign is considered small when its width and height are

below 15 pixels.

Image Bounding Box Class Width Height
IMG (5).jpg [454,335,467,348] 80 13 13
IMG (5).jpg [848,174,977,303] 24 129 129
IMG (5).jpg [225,339,239,353] 41 14 14
IMG (5).jpg [347,337,358,348] 87 11 11

For the case of the GTSRB dataset in which the image has almost no
background, the size of the images where the detector failed versus those
where it succeeded to predict the bounding box has been analysed. After
doing a Wilcoxon Rank Sum test it is observed that there is a significant
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difference in the image size between both groups of samples (p <0.0001) (see
Table 3-5).

Table 3-5. Image size comparison between GTSRB detected
traffic signs and missed traffic signs.

Mean size Standard deviation

Detected signs 60.33 x 61.71 24.71 x 26.59

Missed signs  39.71 x 38.72 16.6 x 15.86

Analysing the traffic sign classes that the detector is missing there is no clear
pattern. In Figure 3-10 are illustrated the traffic signs that present more
difficulties when analysing the GTSRB dataset, this is, the ones that have
more missed samples than detected ones.

Permitted directions
Mandatory roundabout
Speed limit 120

Speed limit 60
Mandatory turn right
No overtaking for trucks
Stop

End of no overtaking general
Mandatory pass right
Mandatory straight

No entry

Speed limit 80

End of no overtaking for trucks

i

End of all prohibitions

)

50 100 150 200 250 300 350 400

H missed M detected

Figure 3-10. Traffic sign classes were there is more missed
samples than detected for GTSRB dataset.
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3.3.2. Traffic Sign classification

Concerning the classification of the detected signs, as was explained in
section 3.2.4.2 two models were used that were already for TSR, thus they
did not require any hyperparameter fine-tuning. Nevertheless, an additional
pre-processing was added to the input images for improving their
performance and the final voting system to ensemble both outputs.

Table 3-3 shows the classification results of the pure and ensemble models
for the four different datasets used in this chapter. In overall conclusion, it
can be observed that the ensemble model performs in all cases better than
the pure models. Regarding the datasets, the best result is obtained with
GTSDB achieving a 98.5% classification accuracy followed by GTSRB and
ETSDB which achieve also accuracies higher than 92.4%. The worst
performance is for Ceit-TSR where the classification accuracy drops to 71.3%.
This is probably due to the complex conditions presented in this dataset.
Next, Figure 3-11 shows some examples where the classifier has failed in
different conditions. The left side shows the complete scene and on the right
side the cropped problematic detection. These complicated conditions are
listed below:

e The classifier (and detector) can recognise traffic signs that the
authors did not label since they were not able to differentiate them.
See Figure 3-11 (a).

e The low resolution of the image gives confusion to some of the
symbols although the overall category of the sign is detected
correctly. See Figure 3-11 (b).

e The pre-processing harmed the image in some specific scenarios and
the classifier receives an input image that is not clear. See Figure 3-11
(0).

e The model detects objects with similar characteristics to traffic signs
but which are not traffic signs. See Figure 3-11 (d).
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Pred.: Closed all directions

Pred.: Speed limit 80

A

Pred.: Attention bottleneck
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Pred.: No overtaking trucks

(b) Low-resolution traffic sign

Pred.: No entry trucks

Pred.: Speed limit 60

(c) Pre-processing harmed the input image
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Pred.: Closed all directions

Pred.: Standing and parking
prohibited

Pred.: Mandatory pass right.

(d) Detected other objects

Figure 3-11. Visual analysis of complex situations in Ceit-TSR
dataset where the classifier fails. The left side shows the complete
scene and the right side shows the cropped detection before and
after pre-processing.
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In addition, the classification results were analysed through the confusion
matrix of each test. These matrixes can be seen in Appendix C. After studying
them it is concluded that there is no specific pattern for the failures. In
general, the bad classifications confuse the symbol but the overall category
(warning, prohibition, regulatory etc.) is generally correct, this is especially
noticeable for speed limit signs (see Figure A-3).
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3.4. Discussion

Vertical traffic signal recognition technology has come a long way in recent
years and is already on the market today. However, in order to achieve a
future of autonomous driving, it is imperative to further improve the
robustness of this technology so that it can function in all circumstances and
expand the number of recognised signals. This chapter has presented the
TSR system developed to be embedded in a maintenance vehicle that can
continuously monitor the signalling to create an asset inventory. This system
will allow to study the status of the signals and manage the necessary
maintenance tasks.

Nevertheless, in order to improve the robustness of these systems, many new
images are needed to cover all types of scenarios. Therefore, in this thesis, a
small dataset containing 264 annotated images has been generated to detect
and classify up to 49 different signals. This dataset provides new images
from another country that was not covered by the current datasets and
presents complicated scenarios with low-resolution images, dirt on the glass
and different weather conditions. The recognition was addressed in two
stages, one model for signal detection and one for signal classification. These
algorithms have been tested on some of the best-known public datasets and
have produced results suitable for the application.

It is worth mentioning that this system is already integrated on an onboard
barebone industrial mini PC and is being validated on-site (Linux i7-6600U
CPU & 8GB RAM). Currently, it is working as an assistant system for the
road management authorities. However, this solution could also help to
update in-vehicle maps and traffic signage or assist with the dynamic speed
limit system.
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The final development presented in this chapter has been published in:

Iparraguirre, O., Iturbe-Olleta, N., Brazalez, A., Borro, D., “Road marking
damage detection based on deep learning for infrastructure evaluation in emerging
autonomous driving”. IEEE Transactions on Intelligent Transportation Systems
July 2022. doi: 10.1109/TITS.2022.3192916.
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4.1. State of the art

Increasing traffic, harsh weather conditions, ageing, poor construction
quality and lack of proper maintenance cause the road infrastructure to
deteriorate. This deterioration in turn leads to a loss of driving quality,
passenger comfort and road safety. In addition, poor road infrastructure,
and especially poor signage, could lead to the malfunctioning of
autonomous vehicles that would fail to detect the environment. Therefore,
maintaining the roadway infrastructure in an optimal state is of vital
importance.

Currently, these tasks of observing and detecting infrastructure failures in
order to make maintenance decisions are entirely manual, which is tedious,
time-consuming and costly work. Therefore, in recent years, more and more
research is prioritising safety and the reduction of inspection costs to
improve the efficiency of infrastructure maintenance by developing
automatic road condition monitoring systems to drive a new type of
intelligent maintenance of road infrastructure. The emerging cost-effective
Road Condition Monitoring (RCM) systems allow to rationalize periodic
inspections and thus minimize the costs associated with failing pavement
structures and warrant long-standing structural integrity and safety levels.

4.1.1. Data adquisiton systems

RCM systems rely on data acquisition systems, which are a combination of
non-intrusive sensors and their platforms for the collection of 1D data, 2D
visual data or 3D depth data (see Figure 4-1). The convenient deployment of
these sensors can be done in different data acquisition platforms: Unmanned
Aerial Vehicles (UAVs), smartphones and ground vehicles or robots.

Low-cost sensors such as accelerometers, gyroscopes, magnetometers and
GPS are employed to measure one-dimensional parameters such as motion,
rotation, velocity, orientation and location for vibration-based RCM. This
kind of sensor cannot be used for real-time applications and a drawback is
detection is limited only along the wheel path.

The most commonly used sensors are the ones acquiring 2D imaging which
allows studying multiscale low-level and high-level feature extractions.
These sensors are also economical and they can be used for real-time
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applications depending on the processor’s capability. However, as a
drawback, they are sensitive to illuminance levels.

The depth consideration (3D) of these bidimensional images can be acquired
by using thermal imaging sensors, LiDAR, laser sensors or radars. Those
sensors are not sensitive to light effects and facilitate the examination of
intrinsic characteristics, however, these systems increase the cost
significantly.

%!& Laser Sensor

—

[ ]
@ Magnetometer

Ground

Gyros;mpe -E ‘:r Robot
UAV

= Smartphone

Accelerometer --

o—0

—

®@0O@ Stereo camera

—

Ground Vehicle

o~
LiDAR (()) BOJ RGB camera

Thermal Sensor

Figure 4-1. Sensors and data acquisition platforms schema for
Road Condition Monitoring (RCM). Image extracted from [113]

4.1.2. Road condition monitoring

4.1.2.1. Vibration-based RCM

Inertial sensors such as gyroscopes or accelerometers, including those
embedded in smartphones, are used to measure accelerations and estimate
the IRI of the road in many scientific works [114,115]. The most novel
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attempts, consider the dynamic characteristics of the vehicle (ie. suspension)
to improve the measurement accuracy [116] or reconstruct the pavement
profile [117]. This road condition measurement method is memory friendly
and suitable for real-time detection, but they are vulnerable to errors due to
noise or other road obstacles and the monitored area is limited.

4.1.2.2. Vision-based RCM

On the other hand, vision-based object detection, classification and
segmentation have largely contributed to road distress detection, monitoring
and analysis since these systems are economical solutions that are capable of
monitoring the entire area covered by an image.

Machine Learning techniques

Some studies explore ML methods in pavement engineering to detect,
classify and analyse anomalies. Generally, the algorithms used are SVMs,
ANNSs, RF or Canny edge detection combined with Otsu Thresholding. [118—
120].

Deep Learning techniques

However, DL methods have become the most extensively used
computational approach in the field of civil engineering and ITS. In
comparison with the conventional feature extraction techniques, the DL-
based techniques learn multi-level image features in detail, which are more
descriptive than the handcrafted ones. Thus the DL models are better than
ML computer vision approaches in terms of performance [121]. Overall, all
these DL models are CNN-based models and they cover three different
pattern recognition tasks: object detection, classification and segmentation
[113]. Classification identifies the category of the defect, while object
detection apart from classifying also locates where the object is at a bounding
box and finally segmentation predicts the categories of each pixel and
distinguishes the object instance.

Most of the work done on the classification and segmentation of road defects
focuses exclusively on potholes and cracks. Some specific neural network
architectures have even been proposed, such as CrackGAN or CrackU-net.
In the field of damage detection, a more extensive study has been carried out
with a greater variety of defects to be detected: potholes, joints, manholes,
longitudinal lateral and alligator cracks, patches, fatigue etc. In these
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researches, some images were used but in most of the cases, they were
proprietary. The large-scale Road Damage Dataset (RDD) published by the
University of Tokyo was the breakthrough that provides a platform to the
scientific community for the comparison and evaluation of state-of-the-art
DL models. This dataset proposed eight different damage types (see Table
4-1). and [122] and two different Road Damage Detection Challenges were
organised in 2018 and 2020. In this last challenge, they addressed a multiclass
detector trained just four out of the eight defined defects (potholes,
longitudinal cracks, alligator cracks and lateral cracks) and the best team
reported an F1 score of 0.6748.

Table 4-1. Road damage types and definitions proposed by
Maeda et al. [122]

Damage type Detail Class name
o Wheel-marked part D00
Longitudinal .
Linear Construction join part D01
Crack Crack Equal interval D10
Lateral Lo
Construction join part D11
Alligator Crack Partial pavement, overall pavement D20
Pothole D40
Other damage Cross walk blur D43
While line blur D44

Thesis use case: Road marking damage

The novelty of this RDD2020 dataset is that it introduces annotations of new
defects such as crosswalk blur or white line blur that very few works have
addressed to date.

Vokhidov proposed a CNN-based method to recognize arrow-road
markings in different light and damage conditions [123]. Kawano applied
the YOLO model to detect road markings blur in colour and white lines and
marks as well as in crosswalks [124]. Xu et al. proposed a hybrid feature
detector and threshold-based method for line-making identification,
classification and worn percentage calculation at pixel level [125]. On the
other hand, Wei et al. built a road marking inspection system based on
semantic segmentation to estimate the damage ratio by comparing the
marking’s damage part vs. the marking region [126]. However, one of the
most outstanding works in this field is the one done by Maeda et al., authors
of RDD datasets, who proposed a multi-class classifier for eight different
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defects including white line and crosswalk blur [122]. This study tries several
CNN architectures and obtained the best performance with SDD Inception
V2 and SDD Mobilenet achieving an accuracy of 0.83 for the specific white
line blur damage (D44) (see Table 4-2).

Table 4-2. Table extracted from [122]. Detection and classification
results for each class using the SSD Inception and SSD
MobineNet. SIR: SSD Inception V2 Recall, SIP: SSD Inception V2
Precision, SIA: SSD Inception V2 Accucary, SMR: SSD Mobilenet
Recall, SMP: SSD Mobilenet Precision, SMA: SSD Mobilenet
Accuracy

Class D00 D01 D10 DI1 D20 D40 D43 D44
SIR 022 0.60 0.10 0.05 0.68 0.03 081 0.62
SIP 073 084 099 095 073 067 077 0.8l
SIA- 078 080 094 092 085 095 095 0383
SMR 040 089 020 005 068 0.02 071 0.85
SMP 0.73 0.64 099 095 068 099 085 0.66
SMA 081 077 092 094 083 095 095 0.81

The authors of this thesis, therefore, see the detection of defects in road
markings as a field in which progress can be made and the next sections will
focus on this topic.

Road Monitoring systems’ interoperability

Concerning the interoperability of the RCM systems, D. Arya et al. presented
extensive work to study the usability of a single-source model in other
countries and proposed models capable of detecting and classifying road
damages in more than one country [127]. They conclude that the
performance of a model is significantly degraded when applied to road
images from another country and recommend the mixed-modelling strategy.

Moreover, these same authors have recently announced a new challenge
oriented to address road damage detection in multiple countries. This
challenge is named as “Crowdsensing-based Road Damage Detection
Challenge” (CRDDC2022)[128] and allows participants to develop/propose
their own datasets. This way, after a suitability analysis the selected datasets
have been added officially to the RDD2022 dataset [129], a continuation of
the original RDD2018 dataset. This new dataset contains 47,420 road images
from six different countries: India Japan Czech Republic, Norway, the
United States, and China. The images are annotated with four types of road
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damage: Longitudinal Cracks (D00), Transverse Cracks (D10), Alligator
Cracks (D20) and Potholes (D40).

85



Chapter 4 Road Damage Monitoring: road lines

4.2. Materials and Methods

4.2.1. Existing datasets

Nowadays, a few public datasets are available, for road damage detection.
The lack of standardisation in the classification of road defects and in the
systems for acquiring them is one of the major problems for the development
of novel algorithms in this area.

Currently, there are several open-source datasets, the oldest one was
generated in 2015, which indicates how recent research in this field is.

Most of the studies tested their methods on their own datasets [130-132].
After a detailed review, eight meaningful open-source datasets [133-141]
were found and summarized in Table 4-3. As it is observed the most
encountered defect type are cracks of different topologies followed by
potholes. However, these categories do not have always the same
characteristics since there is no standard, thus they are handcrafted. For the
rest of the categories, there is a huge imbalance as is the case of the road
marking blurring. In addition, most of these datasets were recorded with a
specific data acquisition hardware which difficult a lot the comparison with
new labelled images.

Therefore this thesis aims to follow in the footsteps of the Japanese RDD2018-
2019 dataset that includes 8 different defects [141] and continues in the
RDD2020 dataset [140] and RDD2022 dataset [129] with newly collected data
from India and the Czech Republic as well as Norway, the United States and
China respectively. These last two datasets contain only 4 specific damage
types focused on cracks and potholes. This family of datasets are currently
the ones that include most samples and its acquisition method seems to be
the most easily replicable and thus it is selected to be the reference dataset in
this thesis. Those opted for using the camera mounted on the front part of
the vehicle with a wide view angle that records the road and other elements
of the infrastructure. .
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Table 4-3. Existing publicly available datasets for road defects

monitoring.
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4.2.2. Used datasets

Following the analysis of the state of the art, this chapter will be focused on
monitoring the while line blur defect. For this aim, the public reference
dataset RDD2019 will be used so that it is comparable to the latest state-of-
the-art work that uses the already defined category D44. In addition, a
proprietary dataset is generated with Spanish images to study the
interoperability and generalization capability of the developed models.

4.2.2.1. Road Damage Dataset 2019 (D44)

Road Damage Dataset 2019 (RDD2019) is a continuation of RDD2018 created
by the researchers of the University of Tokyo Maeda et al. It contains 13,135
images and 30,989 annotations for nine different damage categories, the ones
listed in Table 4-1 and the category D50 which corresponds to utility hole
(see Figure 4-2). These annotations are in Pascal VOC format.

{b) DO1 B

, (d)p11

Figure 4-2. Sample of Road Damage Dataset 2019 (RDD2019)
from (a) to (h) the nine different defects are represented.
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Since this work is exclusively focused on the blurred line defect the RDD2019
dataset [140] was truncated to use only the images containing D44 damage
type. Those are 3,290 images and 4,104 labels collected in Japan with a
resolution of 600x600.

4.2.2.2. Our dataset: Ceit Road Damage Dataset (CRDD)

On the other hand, new images were collected for this study on Spanish
roads using an onboard RGB fish-eye camera. These images were recorded
between February 2020 and September 2021 in the territory of Bizkaia,
Basque Country (Spain), saving some months in which the maintenance
vehicle was not operational. Most of them show highway scenes. Their
resolution is 1280x720 and was captured at an average speed between 80 and
120 km/h. This dataset provides also new complex situations, there are
daylight and night images considering a wide variety of light and weather
conditions. In addition, these images have the added difficulty that the
camera is installed on the roof of the vehicle and therefore, as there is no
windscreen, droplets or other artefacts may appear (see Figure 4-3).

Figure 4-3. Examples of Ceit Road Damage dataset in different
light and weather conditions. Top right sunny with shadows,
bottom right rain, top left sunrise and bottom left cloudy.
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Firstly, a preliminary cleaning was applied, where invalid images were
discarded, either because the vehicle is on the breakdown lane, because the
eyepiece was excessively dirty or because they were overexposed. Next, the
remaining 6101 images were manually labelled using the Labellmg tool [142]
and saved in PASCAL VOC format. After all, the set of images proposed in
this study has 971 images and 1,262 labels of defect D44.

It is necessary to clarify that as a result of different experiments carried out
for this study, it was decided to select a subset of the Spanish image set by
discarding some of the more complex images, mainly those containing night
scenes. Additionally, in order to maintain the resolution of the input images
for the neural networks and not distort the defect area, a square crop of
720x720 was also applied taking into account that in most of the samples the
road defects are located in the central part of the image (see Figure 4-4). After
these changes, the subset used for this work has 879 images and 1,132 labels
as it is shown in Table 4-4.

Table 4-4. Distribution of used datasets: RDD2019 for D44 defect,
Ceit Damage Dataset and its simplified subset.

Country Number

Dataset . Labels Resolution  Night scenes
of images
RDD2019 (D44) Japan 3290 4104 600x600 -
CRDD Spain 971 1262 1280%720 v
CRDD simplified Spain 879 1132 720x720 -

It should be stressed that after the tests carried out throughout this work,
this arrangement to maintain the resolution of the images, as well as a good
selection of the transformations applied in the dataset augmentation phase,
is vital for the good performance of the models.
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(a) without crop correction (b) with crop correction

Figure 4-4. Applied crop correction for keeping the resolution of
the input image in Ceit Road Damage dataset.

Lastly, it is worth mentioning that this study will also sum up both datasets
and create a new mixed one to evaluate the influence of multiple-source
models.

4.2.3. Developments

First, the problem was tackled using classical computer vision techniques.
However, the results were not good and it was switched to an end-to-end
deep learning approach.

The hardware used in these developments is a Windows 10 PC with an Intel
Core i7 processor, NVIDIA GeForce RTX 3080 10 GB GPU and a total RAM
of 32 GB. The software used for the classical computer vision approach was
Matlab 2020a (Image Processing Toolbox V11.1 & Computer Vision Toolbox
v9.2) and Python 3.7.9. Whereas for the deep learning approach Python
3.8.13, Tensorflow v2.8.0 together with the Tensorflow 2 Object Detection
API were employed.

4.2.3.1. Classical computer vision-based

This is a hybrid algorithm which uses first a pre-trained CNN model for road
lanes detection and applies classical machine vision techniques for paint
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condition assessment. Figure 4-5, shows the defined steps to detect and
evaluate road lane conditions.

Input N Lane detection N Mask N Day/Night
image based on NN no. 1 classification

Output Feature extraction

Figure 4-5. Flow chart of the classical computer vision-based
approach for road lanes quality assessment.

Step 1: Detection of lanes in the scene. For this purpose, a pre-trained CNN-
based model is used called PINet_new, which is based on PINet model [143]
and has been optimized. This network was trained with the CULane dataset
which includes different urban roads, rural roads, and highways with
different light and weather conditions including night images or crowded
roads. The output of the CNN gives segmentation of the road lanes given by
a dotted green line (see Figure 4-6).

Figure 4-6. Machine learning-based lane condition assessment.
Step 1, lane detection.
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Step 2: Lane mask generation. This step applies classical vision techniques
such as morphological operations to adapt the output of the CNN model and
obtain a mask suitable for the study of lane quality (see Figure 4-7).

Figure 4-7. Machine learning-based lane condition assessment.
Step 2, mask generation.

Step 3: Day/night image classification. The classifier consists of an HSV
colour space analysis of the top half of the images. Several experiments have
shown that the V value can differentiate between these two cases, with night
scenes being those with an average V value of less than 100. This step is
necessary to separate the night and day images since each scene contains
different characteristics. The night images are pre-processed to improve the
light conditions so that the subsequent stage of the algorithm works correctly
for both cases (pre-processed day/night) (see Figure 4-8).
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Figure 4-8. Machine learning-based lane condition assessment.
Step 3, day/night scene classifier.
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Step 4: Analysis of the mask’s features and detection of deteriorated areas.
In this last step, the condition of the paint of the detected lanes is classified
using thresholding techniques. For this aim, the image is segmented into 3
levels using Otsu’s method to next evaluate each area independently. In this
analysis, the pixels that meet the conditions to be categorized as "bad" are
counted. However, since the segmentation always takes part of the asphalt
as well as paint, different pixel weights are set depending on whether the
pixels are from inside or outside of the segmented area. Finally, each
detected lane is classified as OK/NOK according to the proportion of pixels
defined as "bad" (see Figure 4-9).

Figure 4-9. Machine learning-based lane condition assessment.
Step 4, analysis of the mask's features.

Evaluation parameters

The results of this algorithm will depend on the good performance of the
first block, the detection of lines using the PINet model. No metric has been
used to evaluate the segments detected in this first step, the analysis of the
results is explained in detail in section 4.3.1.

4.2.3.2. Deep Learning-based

Data augmentation

Since the Ceit-TSR dataset did not contain as many images with defects as
expected, and given that the benefits of enhancing this type of image have
been demonstrated [144] [145], it was decided to apply this pre-processing
to generate “synthetically” novel training data from both datasets. Given
that our dataset did not contain as many images with defects as expected,
and given that the benefits of enhancing this type of image have been
demonstrated [133,144], it was decided to apply some pre-processing to
generate synthetically novel training data from both datasets.
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For this aim, the imgaug library [146] was used, which supports a wide range
of augmentation techniques. Six types of image transformation methods
were combined paying special attention to ensure that the images will not
break by changing them too much. The operations used are listed below and
shown in Figure 4-10: horizontal flip, linear contrast, multiply, additive
brightness, additive hue and saturation and additive Gaussian noise. The
augmenter has been configured in such a way that applies a combination of
none to six transformations on the original image random in number and
type of operation.

(d) Linear contrast (e) Brightness (f) Saturation & Hue

Figure 4-10. Example of the applied six different transformations
without combination for the data augmentation.

The objective of this pre-processing is to reach in both training datasets the
5,000 labelled images recommended by [141,147] for each class for an image
processing-based classification task to provide satisfactorily accurate results.
Thus, the times that an original image has been augmented are different for
each dataset. Table 4-5 shows the composition of the new augmented
datasets. It is worth noting that before doing the augmentation all datasets
were split into 80% training and 20% for test and validation partitions (10%-
10%).
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Table 4-5. Resulting used datasets' partition after data
augmentation process.

RDD2019 (D44) CRDD Mixed

Images Labels | Images Labels | Images Labels

Original Dataset

Train (80%) 2632 3289 703 903 3335 4213
Test (10%) 329 413 88 112 417 515
Valid (10%) 329 402 88 117 417 508

Augmented Dataset

Train 5264 6578 4911 6311 6668 8824

Model setup

Given the recent advancements in image content analysis using CNNSs, there
are several proposed methods for generic object detectors based on deep
learning architectures that demonstrate to have a very good performance.
Therefore, in this study transfer learning is applied to train and optimize
different algorithms to fit our application.

The experiments have been carried out using the open-source Tensorflow
environment and its TF2 Object Detection APIL This platform offers a
collection of detection models pre-trained on the COCO 2017 dataset to
facilitate initializing models when training on novel datasets. For this study,
the comparative study made by Huang et al. [148] was used as a guideline to
meet the balance between speed and accuracy of the convolutional object
detector use. Finally, the base model Faster R-CNN with Inception Resnet
V2 feature extractor was considered. This two-stage detector attained the
best possible accuracy achieving the state-of-the-art single model
performance at that moment.

However, in the last years, the TF2 Model Zoo has been updated with new
single-stage detectors which seems to improve the performance of the above
ones. Thus, it is also selected for this study the Single Shot Detector (S5SD)
with Mobilenet V2 which is one of the most used models in the literature and
the EfficientDet DO as one of the most recent architectures. The overall mAP
numbers for these models are shown in Table 4-6.
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Table 4-6. Summary of the properties of the studied different
object detection models.

COCO Mean
Model Name Speed (ms) Average Precision Outputs
(mAP)
Faster R-CNN Inception Resnet V2
540 6‘;0 203 37.7 Boxes
SSD Mobilenet FPNLite 640x640 39 28.2 Boxes
EfficientDet V1 D0 512x512 39 33.6 Boxes

The major difference between the selected architectures lies in the age of the
architectures and the optimisation improvements that have been applied in
subsequent iterations. Two-stage detectors such as Faster R-CNN [149]
achieve very good accuracy levels, however, they are usually the slowest. In
the first stage, the network proposes regions where the object can be found
and in the second step it predicts the class of the object. However, single-step
detectors (such as SSD [150]) get rid of the first step and explore the
network's ability to predict the presence and class of the object. Thus, one-
stage detectors have gained in popularity because of their potential to be
faster and simpler but they tend to lag behind two-stage detectors in
accuracy. However, later on, a new family of object detectors was born called
EfficientDet [151], which based on the single-stage detectors, goes deeper
into the network architecture design to improve efficiency and find the right
balance. They propose a weighted bi-directional feature pyramid network
(BiFPN), which allows easy and fast multiscale feature fusion; as well as a
compound scaling method that uniformly scales the resolution, depth, and
width for all backbone, feature network, and box/class prediction networks
at the same time

Object Detection Model

This study carries out the training of different models based on some of the
state-of-the-art architectures. These training can be differentiated into two:

e Pure models: those who use images only collected in one country.
e Mixed models: those who merge the database of different sources
and countries to seek greater generalisation of the models.
These models will be tested on data collected from the target country as
well as on images from different countries.
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Evaluation parameters

For the evaluation of the model’s performance, the PASCAL VOC 2012 object
detection competition evaluation metric [152] was employed. Thus, a correct
prediction is the one in which the corresponding predicted bounding box
has over 50% Intersection over Union (IoU) with the ground truth bounding
box.

With this aim, a code based on the work developed by Padilla R. et al. was
used [153]. The current metrics calculated are the Precision-Recall curve and
Average Precision. An object detector of a particular class is considered good
if its precision stays high as recall increases, this is, when varying the
confidence threshold, the precision and recall will still be high. Another way
to compare the performance of object detectors is to calculate the area under
the curve (AUC) of the Precision-Recall curve. This value is the precision
averaged across all recall values between 0 and 1.

In addition, the Fl-score metric is also calculated. The Fl-score measures
accuracy using the statistics of precision and recall.

Finally, the inference time of the trained models has also been measured for
comparative reasons.
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4.3. Results

4.3.1. Classical computer vision approach

The success of this algorithm depends on the good performance of the initial
phase, this is the detection of road lanes. If no lanes are detected, the
following analysis will not be possible.

Table 4-7. Results of the machine learning approach for road
paint assessment in RDD2019 (D44) dataset and CRDD dataset.

RDD2019 (D44) dataset CRDD dataset

Total images 329 88
Overall result

no-lane 181 (55%) 33 (38%)
NOK 18 (12%) 23 (49%)
OK 130 32
Bounding box result

TP 4 (1.2%) 3(3.3%)
TN 0 0

FP 43 36
FN 290 53
Processing time (s)

Lane Detection 136.72 36.73
Lane condition analysis 17.08 6.04
Total proc. time / frame 0.47 0.49

As is shown in Table 4-7 about 55% and 38% of the images in datasets
RDD2019 (D44) and CRDD were discarded in this first phase because PINet
was not able to detect any lane. This may be because the lanes are too
degraded to be detected or because of the camera's perspective with which
the algorithm has not been trained.

In the next phase, the detection of lanes in poor condition has been assessed
in two ways. On the one hand, the result of the global scene was analysed,
this is, whether there is an alert in the image that the paint needs to be
repaired (taking into account that all the images in the dataset should contain
at least one). And on the other hand, a more exhaustive evaluation in which
the bounding boxes of the ground truth have been contrasted with those
calculated by the algorithm.
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In the first analysis, 12% and 39% of the scenes contain a warning for
RDD2019 (D44) and CRDD datasets respectively. And when the analysis
focuses on the bounding boxes the result worsens. Just 4 (1.2%) and 3 (3.3%)
bounding boxes for RDD2019 (D44) and CRDD datasets respectively were
detected correctly. This may be due to the difficulty of modelling pixels in
need of repair for any kind of environmental conditions. There are also
situations where a crack or joint has been detected as a lane. In addition, the
size of the bounding boxes calculated by the ML algorithm is usually smaller
than those of the ground truth so the IoU does not meet sufficient conditions
to consider the result valid (see Figure 4-11).

(a) Small detected bounding boxes (b) Pedestrian pavement detected

(c) Good result of RDD2019 (D44) dataset (d) Good result of CRDD dataset

Figure 4-11. Visual results of the ML-based road paint damage
detection
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Due to the bad behaviour of this algorithm, this thesis proposes another way
of addressing the problem using deep learning techniques that are explained
in the following section.

4.3.2. Deep learning approach

4.3.2.1. Object detection models

As it was advanced in the previous section this work studied two different
neural network model architectures presented in Table 4-6.

Regarding the fine-tuning of these networks, several hyperparameters were
explored to optimize the pre-trained model that will be used. Finally, the
following configuration was selected and defined on the different pipelines.
Since the images available of the different datasets were originally in
different sizes all input images were re-scaled to 512x512 size. All models
were trained for 25,000 steps. The SGD optimizer was used with a
momentum of 0.9 and the L2 regularized or weight decay was fixed to 3.9E-
05. However, both learning rate and batch size were tuned for each model
and dataset as shown in Table 4-8.

It is worth noting that architectures like Faster RCNN Tensorflow Object
Detection API encounters memory consumption problems and for the
resources of our machine, the batch size should be reduced considerably to
avoid OOM (Out Of Memory) errors, however, for SSD-like architectures, a
little increase on this number was permitted.

Table 4-8. Summary of the hyperparameters used on the
different object detection models trained in this section.

Network architecture Model version Hyperparameters
Faster RCNN Inception Resnet V2 Vi input size 512x512
batch size 2
num steps 25000
optimizer SGD
momentum 0.9
regularizer L2 3.90E-05
learning rate Japan  0.07
(cosine decay) Spain  0.0003
‘Mixed 007
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SSD Mobilenet V2 A% input size 512x512
batch size 18
num steps 25000
optimizer SGD
momentum 0.9
regularizer L2 3.90E-05
learning rate Japan  0.07
(cosine decay)  Spain  0.0003
Mixed 0.07
EfficientDet V1 DO Vi input size 512x512
batch size 8
num steps 25000
optimizer SGD
momentum 0.9
regularizer L2 3.90E-05
learning rate Japan  0.07
(cosine decay)  Spain  0.0003
Mixed 0.07
EfficientDet V1 DO V5 input size 512x512
batch size 8
num steps 25000
optimizer SGD
momentum 0.9
regularizer L2 3.90E-05
learning rate Japan  0.07
(exponential decay)  Spain  0.0003
Mixed 0.07

4.3.2.2. Performance of the models for different countries

Table 4-9 presents the F1-score and mAP values obtained for the detection of
D44 damage type for all the experiments conducted in this work. A total of
eight pure models and four mixed models were trained. Marked in bold, the
best results obtained for each country and model type based on the F1-score
value are shown.

In general, it is observed that models work better for the Japanese dataset.
Comparing the best two pure models it is shown that the best Japanese pure
model achieves 75% of mAP while the best Spanish pure model’s mAP is less
than 30%, both tested with their target country. This may be because the
Spanish images are more complex and although they were augmented, there
were originally fewer samples.
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Nevertheless, it should be noted that training with the mixed dataset clearly
improves the model performance for the two countries, although the
difference for the Spanish images is much more noticeable (an improvement
from 27.73% to 83.79%). It is therefore clear that building a dataset containing
images from different sources greatly enriches the dataset and helps the
generalisation of the trained models.

Table 4-9. Fl-score and mAP (mean average precision) for the
white line blur detection and each used dataset.

Model name testset F1 mAP inference time (ms)
Japan 0.743 65.61% 191.582
frenn_inception-resnetv2_japan
Spain  0.197 6.50% 189.726
. . . Japan 0270 17.75% 193.120
frenn_inception-resnetv2_spain .
Spain  0.390 25.05% 190.478
. . . Japan 0.860 86.85% 193.519
frenn_inception-resnetv2_mixed .
Spain  0.600 58.27% 189.524
Japan 0.755 71.07% 25.171
ssd_mobilenetv2_japan
Spain  0.220 8.00% 21.217
. . Japan 0.120 3.20% 25.102
ssd_mobilenetv2_spain ]
Spain  0.335 18.62% 20.897
Japan 0.920 92.48% 24.690
ssd_mobilenetv2_mixed .
Spain  0.848 77.94% 21.565
Japan 0.830 75.00% 47.049
efficientdetvl_d0_japan (V1)
Spain  0.194 6.91% 44.464
L. . Japan 0.235 11.90% 49.159
efficientdetvl_d0_spain (V1) .
Spain 0.422 27.73% 44.281
Japan 0.790 92.34% 45.400
efficientdetvl_d0_mixed (V1)
Spain 0.934 83.79% 43.901
o . Japan 0.785 76.07% 47.816
efficientdetvl_d0_japan (V5) .
Spain  0.238 8.39% 43.542
. . Japan 0233 8.46% 47.267
efficientdetvl_d0_spain (V5) .
Spain  0.418 30.69% 43.878
L. . Japan 0.929 91.74% 47.361
efficientdetvl_d0_mixed (V5) ]
Spain  0.828 78.97% 44.363

It is worth mentioning that the F1-score results obtained in this paper with
the mixed models exceed the results reported in the state of the art for both
Spanish and Japanese images.
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4.3.2.3. Empirical analysis
Figure 4-12 shows visually the F1 scores in the previous table.

It can be seen that the tendency of the results is very similar for each model.
This is, the mixed model obtains better results than the pure one and models
trained with Japan dataset perform better than models trained with the
Spanish dataset. In addition, for pure models, the performance with target
images is much better than the performance with images from a different
country.

frenn_inception-resnetv2_japan
frenn_inception-resnetv2_spain
frenn_inceptionresnetv2_mixed
ssd_mobilenetv2_japan
ssd_mobilenetv2_spain
ssd_mobilenetv2_mixed
efficientdetvl_d0_japan (V1)
efficientdetvl_d0_spain (V1)
efficientdetvl_d0_mixed (V1) 0.934

efficientdetvl_d0_japan (V5)

m

efficientdetvl_d0_spain (V5)
efficientdetvl_d0_mixed (V5)
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Figure 4-12. Fl-score summary results for the models and
datasets considered in this chapter

Regarding the comparison between the different models, it can be noted that
the ones based on EfficientDet perform somewhat better than the other
architectures. Besides that, concerning inference time there is a clear
difference between single-stage detectors and two-stage detectors, being the
last ones the slowest. However, if the system were time-critical, it should also
be noted that within the single-stage models, the ones based on SSD
Mobilenetv2 could predict in half the time of those based on EfficientDetV1
DO (20 milliseconds/image faster).
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4.3.2.4. Visual analysis

The results presented in the last section are promising. However, in this
section, the results of the predictions will be analysed visually in order to
better understand the differences between the two datasets and the failures
of the detectors. Note that in the next images the red box corresponds to the
ground truth label with the green box illustrating the prediction done by the
detector.

For the visual analysis, some images of the inference of four models marked
in bold in Table 4-9 were extracted.

To predict the Japanese dataset’s defects:
e Pure model: efficientdetvl_d0_japan (V1)
e Mixed model: efficientdetvl_d0_mixed (V5)
To predict the Spanish dataset’s defects:
e Pure model: efficientdetvl_d0_spain (V1)
e Mixed model: efficientdetvl_d0_mixed (V1)
Generally, mixed models present higher confidence score detections than

pure models. In addition, these models detect more defects and their
bounding boxes fit better the area of interest (see Figure 4-13).

(a) Mixel model (b) Pure model

Figure 4-13. Comparison of the detection bounding boxes for a
mixed and efficientdetvl_d0_spain (V1) pure model in CRDD
dataset sample.
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On the other hand, the comparison of the two databases shows that the
images from Spain dataset (see Figure 4-14) present more complex situations
than Japan dataset (see Figure 4-15).

(a) Small label
S

-

(c) Too worn paint label (d) Wear too light label

Figure 4-14. Difficult labels of CRDD dataset where the detector
has missed the defect.

Figure 4-14 shows some of the difficulties identified in CRDD datasets, such
as:

e smaller labels;
e dirtiness of the glass used in the on-board system;
e lower contrast of the images;
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e awider range of labelled paint wear. Samples with paint too worn to
be detected or samples where the wear is too light to be detected;
e the camera setup is not focused on the asphalt zone. Large focal

length.

Figure 4-15. Samples from the RDD2019 (D44) dataset.

These factors plus the fact that this dataset was originally smaller may
influence the performance of the detectors for these images to be somewhat
lower than for the Japanese dataset.
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4.4. Discussion

Good quality of the road infrastructure is key for road safety but also of vital
importance for the future’s autonomous driving. Potholes, cracks etc. affect
driving comfort, safety and make our driving much less efficient. But poorly
maintained road signals or markings difficult to interpret the road and the
road rules that govern the coexistence of all road users and seriously
jeopardise our safety whether the vehicle is autonomous or human-guided.
This chapter has discussed road line monitoring as a key element for many
of the ITS that is based on lane-keeping on the intelligent or autonomous
vehicles

However, road marking damage detection is a task that has hardly been
addressed in the literature due to its complexity and the lack of sufficient
images. Therefore, this thesis provides a set of 971 images labelled for this
specific defect and considers high complexity scenarios to be used in the
future. In addition, this dataset provides the scientific community with new
images from other countries that was not covered by the current datasets.
Several experiments were carried out for three different architectures,
obtaining a promising performance of an Fl-score value higher than 0.92,
which exceeds the results reported in the state of the art (F1-score 0.743) by
25%.

It should be noted that for this task it is vital to have both quantity and
quality of data. It is very important to have enough images that represent all
possible scenarios (or countries) as well as the labelling task to select the data
to be trained with criteria so that they do not confuse the neural network. It
is also crucial the preprocess the images and do a good data augmentation
that does not distort the original image (for this particular defect,
maintaining the resolution of the image was indispensable).
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5.1. Context

Until a few years ago, the vehicle was considered an individual element on
the road network. It was governed solely by the sensors and technologies
installed in it. And to this was added the perception of the user who was
driving it, which was limited to the visual horizon of the road area in which
it was located. However, vehicular communications have changed this
paradigm, creating a much more cooperative and enriched environment.
These communications allow the exchange of information in real-time
between different elements and road users. In this way, the perception of the
environment is enhanced as the vehicle can receive information about the
manoeuvres of the users around it even before they are in its field of vision.
In addition, it allows the vehicle to cooperate with the infrastructure (V2I)
and other road users (V2V, V2P) and to anticipate situations further ahead
on its route such as road works, accidents, fog banks, etc. Vehicular
communications in road transport have involved new systems and services
that help improve road safety and driving efficiency, moreover, they will be
an essential part of autonomous driving.

5.1.1. ITS value chain

In the same way, vehicular communications have also evolved in the last 25
years. Originally, the vehicle as an individual element was connected
directly to the traffic control centre. However, in the meantime, other actors
have appeared in between (see Figure 5-1).

e Service Provider (SP): this actor came in due to the first digitalization
step of road traffic information. The SP exchange the information in
real-time between the traffic centre and the vehicle, an electronic
format is needed to automate these services.

e Content Aggregator (CA): more and more data sources emerged and
thus SP needed a CA who combines traffic information with other
kinds of relevant information for road users. Here, the need for
standardization of the electronic processable data became obvious
and need to be used by all the actors in the ITS value chain.

e National Access Points (NAP): From this need to standardize
information, the NAPs arise from the delegated acts on ITS. This
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actor gathers several types of traffic information and provides traffic
data according to European standards. These EU regulations aim to
accelerate the development of interoperable services to end-users
throughout Europe.

Service Access Point (SAP): this actor emerged in the domain of
advanced traffic information and individual navigation services
intending to manage the information provided to the road user and
vehicle from different service providers efficiently and effectively.
Therefore, the devices used by cars and travellers do not need a direct
relationship with the service providers anymore.

Road Side Unit (RSU): this last actor came in to connect the vehicle
with the traffic centre (and close the circle), this is direct digital
communication between road operators and vehicles. The C-ITS
technology enables this and RSUs are developed to support this.

Technological innovations make that all actors in this ITS value chain can

communicate with each other. However, consistency and reliability of
information throughout the value chain need to be ensured. For this aim
different standards arise for the different domains that are involved here.

Road operators domain: which involves from RSUs to the NAPs.
They have developed an extensive standard called DATEX II. In
DATEXII all relevant details of traffic information and management
can be expressed. The focus of this standard is on providing an as
complete information view of the road as feasible.

Content and service aggregators domain: which involves NAPs to
SAPs. Here the leading standard is TPEG, which was developed to
enable the consistent provision of traffic and traffic-related
information to end-users across several media.

Service providers and OEMs: that involves the vehicle and its
connections to the ITS value chain, the SAPs and RSUs. The main
standards here are the C-ITS standards developed by ETSI.
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Road Operators

Content/Service DATEX II

Aggrrlsgét o National
Access
b‘ Content Point Traffic
Aggregator control centre

Service
Provider

Service Access Road Site
Unit

Vehicle

Service providers / OEMs
C-ITS

Figure 5-1. ITS value chain representation. It contains all
involved actors and domains with its leading standards.

5.1.2. Data exchange via cooperative V2X communication

In a cooperative road traffic scenario, cooperative V2X communication units
— so-called ITS stations — are implemented in vehicles and traffic
infrastructure, and exchange data with each other via the cooperative V2X
short-range ad-hoc network.

Nowadays, the vast majority of new vehicles are equipped with a navigation
system and different sensing technologies. And every so often, onboard
units in the vehicles broadcast data such as their position, speed and driving
direction to their surroundings. Additionally, they send out event-triggered
messages about special incidents, such as an emergency braking, a vehicle
defect or a slippery road detected. As an example, the vehicles receiving such
positioning information can calculate where the cars are going to be, predict
whether a hazardous situation of a crash could occur and consequently warn
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the driver to react in this situation (V2V). Similarly, an event detected by the
vehicle such as a slippery road can be transmitted to the road site units of the
infrastructure so that they can alert other vehicles that are about to pass
through the same area (V2I).

In addition to intelligent vehicles, the road infrastructure is also starting to
incorporate more and more technology (speed sensors, acoustic sensors, IP
CCTV cameras, smart traffic lights, condition/weather monitoring systems,
digital signage, etc.) and thus, getting smarter. The 12V communication is
also used when the so-called roadside units in the traffic infrastructure
inform e.g. about signal phases of traffic lights, speed limits or road works.
This way, for example, traffic lights can advise the driver about green or red
lights and inform of an adequate speed to find it open, thus influencing the
driving behaviour to be more efficient (see Figure 5-2).

=== DATEXII
-== C-ITS

—
Traffic ~e
control centre .

'

<

»” i

. i

(PAY 7o !

. Infrastructureto _»~ i N
o 12V Vehicle +” |
+, Infrastructure to et | Vehicle to
. Vehide P Infrastructure
.

Figure 5-2. V2X communication ecosystem diagram plus the
communication with the Traffic Control Centre.
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Throughout the development of this thesis, V2I and 12V communications
were worked on, this is, in the service provider and road operator domains.
For this purpose, the C-ITS standard has been studied to transmit
information obtained by the monitoring vehicle to the RSU or vice versa. On
the other hand, the Datex Il standard has also been analysed to communicate
events of other sources from the traffic control centre to the RSU.
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5.2. Message handling

In the previous chapters, the monitoring of the road using artificial vision
techniques has made it possible to detect fog banks, traffic signs and
damaged road markings. These events can be of great use for cooperative
and connected mobility and it is therefore important to know which
standards allow this information to be transmitted in a harmonised way so
that other road users (V2V) or road operators (V2I/I2V) can interpret it.

5.2.1. C-ITS standard

C-ITS is a standard managed by the ETSI TC ITS committee which defines
specifications for Co-operative ITS, which offers enormous potential through
vehicle-to-vehicle and vehicle-to-roadside communication. Applications
include road safety, traffic control, fleet and freight management and
location-based services, providing driver assistance and hazard warnings
and supporting emergency services. These specifications are crucial for the
commercial deployment of the technology

TC ITS develops standards related to the overall communication
architecture, management and security as well as the related access layer
agnostic protocols: the physical layer, Network Layer, Transport Layer and
Facility Layer.

In this thesis and concerning the services in the Facility layer for the
communication between infrastructure and traffic participants there are two
C-ITS messages to highlight that may represent the type of events that would
be generated in the previous chapters:

e Decentralized Environmental Notification Message (DENM) was
defined as a Basic Set of Applications (BSA) for Road Hazard
Warning (RHW) application to alert road users of a detected event. It
is composed of multiple use cases (see Appendix D). Its technical
specification reference is ETSI EN 302 637-3.

e Infrastructure to Vehicle Information message (IVIM) that supports
mandatory and advisory road signage such as contextual speeds and
road works warnings. IVIM either provides information on psychical
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road signs such as static or variable road signs, virtual signs or road
works. Its technical specification is ETSI TS 103 301.

5.2.1.1. Weather Condition

Bad weather conditions such as fog banks are contemplated in the DENM
messages as reduced visibility warning events categorized as
adverseWeatherCondition-Visibility (see Appendix D).

The next DENM message shows an example of a fog bank event (cause code
18 — subcause code 1) with a range of 1000 meters that affects all traffic
directions in the A-8 road passing through the municipality of Eibar
(43.195055, -2.437543). The event was created the 06/07/2022 8:41:45 a.m. and
has a validity duration of 10 minutes (see Message 5-1).

Message 5-1. DENM message example for a fog bank event.

"header”: {
"protocolVersion”: 1,
"messagelD": 1,
"stationID": 3494000000

"denm”: {
"management”: {
“actionID”: {
"originatingStationID": 3494000000,
"sequenceNumber”: 0

"detectionTime"”: 1657089705,
"referenceTime”: 1657089705,
"eventPosition”: {
"latitude”: 43195055,
"longitude”: -2437543,
"positionConfidenceEllipse”: {
“semiMajorConfidence”: 1,
"semiMinorConfidence”: 1,
"semiMajorOrientation”: 0

},

“altitude”: {
"altitudeValue”: 0,
"altitudeConfidence”: "alt-000-01"

}/

"relevanceDistance”: "lessThan1000m”,
“relevanceTrafficDirection”: "all TrafficDirections”,
"validityDuration”: 600,

“stationType”: 5

"situation”: {
"informationQuality”: 0,
"eventType”: {

"causeCode”: 18,
"subCauseCode”: 1
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}
}
}
}

5.2.1.2. Traffic Signs

C-ITS standard allows representing the traffic sign information with IVIM
messages. Usually, they are composed of two different containers, the
General Ivi Container (GIV) which defines the ivitype and the road sign code,
and the Geographic Location Container (GLC) where the location of the
traffic sign is detailed.

The Pictogram category code which defines the kind of traffic signal
represented in the message is defined in ISO 14823:2017. These traffic signs
are separated into three main category types (see Figure 5-3):

Category code
Service category code Pictogram category code
Category Sub category
Saben inbes Category number
1: Danger . . .
warning 1-9: Danger warning
1-3: Priority
2: Regulatory 4-6: Prohibition or restriction
1: Traffic sign 7-9: Mandatory
1-3: Advance direction
3: Inf " 4: Direction
a inrormative -t
6: Lane guidance Serial number (1-99)
7-9: Road/place identification
2: Public 1: Public . ) I )
facilities facilities 1-9: Public facilities and services
1: Ambient . -
s 1-9: Ambient condition and nature
3: Ambient/ condition
road condition  |2: Road .
condition 1-9 Road condition and nature

Figure 5-3. Table extracted from ISO 14823:2017(E) where
general category codes are defined [154].

o Traffic sign: traffic signs are officially established pictograms in each
country to control traffic using warning, regulatory or informative
signs.

e Public facilities: public facilities indicate the existence of certain
public facilities and their service details (e.g. toilets, restaurants,
hospitals, etc.).
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e Ambient/road conditions: they are concerned with the ambient
condition of the roadway or local conditions which may affect the
flow of road traffic (such as bad weather and traffic congestion). The
next message shows an example of a regulatoryMessages (1) ivi type
which contains a 100 km/h speed limit event in the A-8 road reaching
the Zarautz toll (43279035, -2.152400) (see Figure 5-4). It was created
on at 06/07/2022 10:38:18 am and has a validity duration of 24 h (see
Message 5-2). For this specific case the category code is constructed
as follows (see Table 5-1):

Figure 5-4. Representation of the traffic sign that is codified in
the IVIM message example.

Table 5-1. Breakdown of the codes defining the speed limit sign
according to ISO 14823:2017 (E) [154].

Service category Pictogram category
Category Sub category Nature Serial Full name
number number number
1: Traffic sign 2: Regulatory 5 57 Maximum speed limited

to the figure indicated
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Message 5-2. IVIM message example for a speed limit sign.

"header”:{
“protocolVersion”:1,
"messagelD”:1,
"stationID":0

"ol
"mandatory”:{
"serviceProviderld”:{
"countryCode”:”8500" 4
"providerldentifier”:3495

"ivildentificationNumber”:1,
"timeStamp”:1657096698,
"validFrom”:1657096698,
"validTo"”:1657183098,
"iviStatus”:1

"optional”:[
"in™[
{

"iwiType”:1,
"roadSignCodes”:[
{
"code”:{
"15014823":{
"pictogramCode”:{
"serviceCategoryCode” :{

n.on

"trafficSignPictogram”: "requlatory”
"pictogramCategoryCode”:{
"nature”:5,
"serialNumber”:57
}
}/
“attributes”:[

"spe”
"spm”:100,
"unit”:0

4 Country code follows the standard ISO 3166-1:2020 Codes for the representation of names
of countries and their subdivisions — Part 1: Country code. The representation for Spain is ES
that using ITA2 Baudot-Murray code is codified as 1000010100 in binary and 8500 in
hexadecimal.
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}
]
}/
{
"olc”A{

“referencePosition”:{
"latitude”:43279035,
"longitude”:-2152400,
"positionConfidenceEllipse”:{

"semiMajorConfidence”:1,
"semiMinorConfidence”:1,
"semiMajorOrientation”:0

}/
“altitude”:{

"altitudeValue”:0,
"altitudeConfidence”:”alt-000-01"
}

},
"parts”:[
{

"zoneld”:1

It should be noted that such C-ITS messages do not make sense in the
vehicle-RSU direction but could be transmitted in the other direction in the
case of the In-Vehicle Signage (IVS) service. IVS provides information about
existing, fixed and dynamic traffic signs to passing vehicles employing IVI
messages. For the practical case where the maintenance vehicle equipped
with a signal recognition system is being used to generate/update a signal
inventory, no communication standard has been established.

5.2.1.3. Road Damage

There is no C-ITS message defined for the exchange of road marking damage
event data. However, other road damages such as subsidence or burst pipe
are contained in DENM messages for hazardousLocation-SurfaceCondition
cause code (see Appendix D).

The next DENM message example shows the case of a hazardous location
event due to subsidence damage on the road surface (cause code 9 — subcause
code 4) of less than 200m in the GI-3440 mountain road (43.330319, -
1.898631). The message was created on at 06/07/2022 13:19:44 a.m and the
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validity duration of this event is 24 h. Just one lane or traffic direction is

affected (see Message 5-3).

Message 5-3. DENM message example for subsidence damage

on the road surface.

"header”:{
"protocolVersion”:1,
"messagelD”:1,
"stationID"”:3494000000

4

"denm":{
management”:{
"actionID”:{

"sequenceNumber”:0

},
"detectionTime”:1657106384,
"referenceTime”:1657106384,
"eventPosition”:{
"latitude”:43330319,
"longitude”:-1898631,
"positionConfidenceEllipse”:{
"semiMajorConfidence”:1,
"semiMinorConfidence”:1,
"semiMajorOrientation”:0

}/
“altitude” :{
"altitudeValue”:0,

/

"validityDuration”:3600,
"stationType”:5

"situation”:{
"informationQuality”:0,
"eventType”:{

"causeCode”:9,
"subCauseCode”:4

"originatingStationID":3494000000,

"altitudeConfidence”:”alt-000-01"
}

4
"relevanceDistance”:"lessThan200m”,
"relevanceTrafficDirection”: "upstreamTraffic”,

It should be noted that the subcause code field is an integer that supports a

range of 0-255. Therefore, a new cause code (e.g. 10) could be defined to cover

this specific case.
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HazardousLocation-SurfaceConditionSubCauseCode ::= INTEGER {
unavailable(0),
rockfalls(1),
earthquakeDamage(2),
sewerCollapse(3),
subsidence(4),
snowDrifts(5),
stormDamage(6),
burstPipe(7),
volcanoEruption(8),
fallingIce(9),
roadMarkingDamage (10)

} (0..255)

5.2.2. DATEX II standard

DATEX 1I is the electronic language used in Europe for the exchange of
traffic information and traffic data. The development of DATEX II was
initiated in the early 90s because of the need to exchange information
between traffic centres of motorway operators. Soon there was the need to
open this information to service providers and DATEX I was too limited for
this. Therefore, DATEX II was developed in the early 2000s. Employing
DATEX 1I, traffic information and traffic management information are
distributed in a way that is not dependent on language and presentation
format. This means that there is no room for misunderstandings and/or
translation errors by the recipient, but the recipient can choose to include
spoken text, an image on a map, or integrate it into a navigation calculation.

DATEX II is a multi-part standard created and maintained by CEN TC278.
The content of these specifications can be found in CEN 16157. In addition,
there is also an Exchange Specification standard that has led to several
options to implement DATEX II content exchange based on different
requirements from different DATEX II application fields. This last one can
be found in ISO/CEN TS 19468.

The DATEX II data model includes various sub-standards or parts. Part 1
describes the rules of the standard, Part 2 describes the chosen location
referencing method and Part 7 describes common information elements.
Parts 3 to 6 and 8 to 13 describe the data model for the exchange of
information about a certain type of information (see Figure 5-5).
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Figure 5-5. DATEX II standard's components schema. Extracted
from [155].

In this thesis and for the representation of the event types generated in the
chapters below the DATEX II components that will be used are Road
Situation for road hazard events and Traffic Regulations for traffic signs. It
is will be also necessary for the Common and the Location Referencing
components for modelling and to specify their location.

5.2.2.1. Weather condition

For the representation of bad weather conditions such as fog banks, the
DATEX II standard contemplates the component Situation — Traffic element
where there is a specific section for PoorEnvirontmentConditions (eg. fog,
heavy rain, snowfall, etc.). For this type of event, the location reference type
that will be used is TpegAreaLocation since this kind of event cannot be
specified in more detail. For the specific case of fog representation DATEX II
provides a different level definition (see Table 5-2).

The next DATEX II message shows an example of a fog bank event with a
coverage area of 1000 meters in the A-8 road passing through the
municipality of Eibar (43.195055, -2.437543). The event was created the
2022/07/07 11:16:22 a.m. and has a validity duration of 10 minutes (see
Message 5-4).
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Table 5-2. Fog levels are defined by the DATEX II standard for
PoorEnvironmentType events.

D fog, limiti isibility to 50
Situation PoorEnvironmentTypeEnum  Dense fog ense 10g, imiting VISIbHty to sim

or less.
Situation PoorEnvironmentTypeEnum Fog Fog, visibility more than 50m.

Misty conditions impair vision over
Situation PoorEnvironmentTypeEnum  Moderate fog ty P

100m.

Fog, in which intermittent areas of

Situation PoorEnvironmentTypeEnum  Patchy fog dense fog may be encountered

Message 5-4. DATEX II message example for a fog bank event.

"d2:payload”: {
"@lang”: "eng”,
"@modelBaseVersion”: "3”,
"publicationTime": "2022-07-07T11:16:22",
"publicationCreator”: {
"country”: "es”,
"nationalldentifier”: "ceit-brta”
"sit:situation”: [

"@id”: "2840",

"sit:headerInformation”: {
"informationStatus”: "technicalExercise”

"sit:situationRecord”: [

"@id”: "2840-00",
"@uversion”: "1”,
“sit:situationRecordCreationTime”: "2022-07-07T11:15:49",
"sit:situationRecordVersionTime”: "2022-07-07T11:15:49",
“sit:probabilityOfOccurrence”: "riskOf”,
"sit:validity”: {
"validityStatus”: "active”,
"validity TimeSpecification”: {
"overallStartTime”: "2022-07-07T11:15:49",
} "overallEndTime”: "2022-07-07T11:25:49"
}/
“sit:locationReference”: {
"loc:tpegAreaLocation”: {
"loc:tpegAreaLocationType”: ”
"loc:radius”: 1000,
"loc:centrePoint”: {
"loc:latitude”: 43.195055,
"loc:longitude”: -2.437543

other”,

}
}/
"sit:poorEnvironmentType”: [
fog
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}
]
}
}

5.2.2.2. Traffic Signs

DATEX II standard has recently added a new component for traffic
regulation where a specific traffic regulation issued by a competent authority
can be communicated. In this component, different traffic regulation types
are included such as speed limits, road or ambient warnings, traffic jams

ahead, etc.

The next DATEX II message shows an event example of a traffic sign limit of

100 km/h located in the A-8 road Bilbao direction (see Message 5-5).

Message 5-5. DATEX II message example for a speed limit traffic
sign.

"d2:payload”: {

"@lang”: "eng”,

"@modelBaseVersion”: "3”,

"@id”: """,

"publicationTime": "2022-07-07T16:36:40",

"publicationCreator”: {
“country”: "es”,
"nationalldentifier”: "ceit-brta”

';tro:trafficRegulationsFromCompetentAuthorities "
“tro:trafficRequlationOrder”: [
{

"@id"”: "2842",
"@uversion”: "1”,
"tro:issuingAuthority”: {
"values”: {
value”: [
"road maintenance operator”

”

}
1
"tro:requlationld”: “2842-00",
"tro:status”: "madeAndImplemented”,
"tro:implementedLocation”: {
"loc:supplementaryPositional Description”: {

"loc:roadInformation”: [

"loc:roadDestination”: "BILBAO”,
“loc:roadName”: "A”,
"loc:roadNumber”: "8”

1
}
}/
“tro:trafficRequlation”: [

",

"tro:status”:

active”,
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“tro:typeOfRequlation”: [
{

"tro:advisorySpeed”: {
"tro:numericValue”: 100,
"tro:unitOfMeasure”: "kilometresPerHour”

It is worth mentioning that DATEX II also allows communication in case a
traffic sign is damaged. For this aim, the correct component is Situation-
Traffic Element and it is defined under the option of EquipmentOrSystemFault
where it can be specified as the literal TrafficSignals.

5.2.2.3. Road Damage

DATEX II standard contains a new Situation-Traffic Element component to
define road surface conditions that are not related to the weather but which
may affect driving conditions. This element allows for communication of
event types such as slippery roads or the presence of oil, road as well as road
marking not present or road surface in poor condition. However, as it is seen
in Table 5-3 the event referring to road marking is not related to road damage
itself but to the situation where the lanes are missing due to some
maintenance works. Thus, this option was discarded, nevertheless since the
element “Road surface in poor conditions” is much more global, it could be
used and add a general comment where the damage description is given.

Table 5-3. Road surface condition definitions of DATEX II
standard for Road Damage type events.

Situation NonWeatherRelatedRoa  Road marking not Road markings are not present due
dConditionTypeEnum present to maintenance works in progress
The road surface is damaged,
. NonWeatherRelatedRoa  Road surface in poor 8 s
Situation severely rutted or potholed (i.e. it is

dConditionTypeEnum condition . .
in a poor state of repair).

The next DATEX II message represents an example of a road marking
damage on the exit branch of the GI-636 road towards Pasaia
Antxo/Donibane/Errenteria that has an extension of about 200m (from PK 0
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to PK 0.182) (see Figure 5-6). The event was created the 2022/07/07 12:23:45
a.m. and has a validity duration of 24 h. For this type of event, the location
reference type selected is linear since it is clearly defined in a road section
and could affect only a specific carriageway (see Message 5-7).

Figure 5-6. Road marking damage detected in GI-636 exit branch
road.

Message 5-7. DATEX II message example for road in poor
conditions event.

"d2:payload”: {
"@lang”: "eng”,
"@modelBaseVersion”: "3”,
"publicationTime": "2022-07-07T12:23:45",
"publicationCreator”: {
"country”: "es”,
"nationalldentifier”: "ceit-brta”
"sit:situation”: [

"@id”: "2841",

"sit:headerInformation”: {
"informationStatus”: "technicalExercise”

"sit:situationRecord”: [

"@id”: "2841-00",

"@uversion”: "1”,

"sit:situationRecordCreationTime”: "2022-07-07T12:23:01",
"sit:situationRecordVersionTime”: "2022-07-07T12:23:01",
"sit:probabilityOfOccurrence”: "riskOf”,
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"sit:validity”: {
"validityStatus”: "active”,
"validity TimeSpecification”: {
"overallStartTime”: "2022-07-07T12:23:01",
"overallEndTime”: "2022-07-08T12:23:01”

",sit:generalPubliCComment".' [

"sit:comment”: {
"values”: {
"value”: [
"Road marking damage”
]
}
1
}
1
"sit:locationReference”: {
"loc:secondarySupplementaryDescription”: {
"loc:roadInformation”: [

"loc:roadName”: "GI”,
"loc:roadNumber”: "636-1-0"

]

}/

"loc:tpegLinearLocation”: {
"loc:tpegDirection”: "unknown”,
"loc:tpegLinearLocationType”: "segment”,
"loc:to”: {

"loc:pointCoordinates”: {

"loc:latitude”: 43.3113699,
"loc:longitude”: -1.9169185

U
"loc:name”: [

"loc:descriptor”: {
"values”: {
"value”: [
"PK 0.182"
1

", onm

b
"loc:tpegOtherPointDescriptorType”: "pointName”

1
},
"loc:from”: {
"loc:pointCoordinates”: {
"loc:latitude”: 43.3113314,
"loc:longitude”: -1.9153143

4
"loc:name”: [
"loc:descriptor”: {
"values”: {
"value”: [
" PK0”
]

}
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}/
"loc:tpegOtherPointDescriptorType”: "pointName”

]
}

}

}/

"sit:nonWeatherRelatedRoadConditionType”: [
"roadSurfaceInPoorCondition”

It is worth mentioning that, in relation to this road damage, DATEX II
standard allows also to create of specific messages concerning both
maintenance works such as repair work for resurfacing work or road
marking work as well as construction works for road improvement or

upgrading.
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5.3. Discussion

The interconnection of all the elements of the intelligent transport
environment is essential to achieve a future of connected, cooperative and
autonomous mobility. Incorporating road dynamic information will
facilitate anticipation of drives in vehicles with low driving automation
levels as well as CAVs systems with high driving automation levels. In this
way both will be able to adapt their driving task in the event of an
unexpected situation - low visibility due to weather conditions,
infrastructure in poor conditions, etc. -. As a result, V2X communications will
have an impact on efficiency, sustainability and road safety.

For these communications to be effective, they must be secure and reliable,
and the messages transmitted must be interpretable by any user. Therefore,
regulations in this area are of utmost importance as well as standardisation.

In this chapter, two of the most widely used standards for communication
with OEMs (C-ITS) as well as with road operators (DATEX II) have been
studied. Example messages have been implemented in both standards that
capture the events generated by the modules developed in the previous
chapters: fog banks, vertical signalling and road marking. In this study it has
been found that the fog event is defined in both standards, similarly, there is
also the possibility to report on vertical signage although it would have to be
checked if DATEX Il includes all the signs listed in the catalogues. However,
there is currently no defined C-ITS format for a vehicle capable of detecting
the status of signals or road markings to transmit them. Similarly, the
DATEXII standard does not allow the case defined for road surfaces in poor
conditions to be detailed.

It is clear that there is still a long way to go in the regularisation and
standardisation of CCAM and it is necessary to continue working and
updating the existing ones in order to adapt to new needs that may arise.
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Chapter 6 Conclusions and Future Research Lines

6.1. Conclusions

The mobility of the future will be connected, cooperative and autonomous.
The defined roadmaps make it clear that, although 100% autonomous
mobility is still far from being a reality, vehicles will increasingly feature a
higher level of automation. For this to be sustainable, interaction between all
road users, V2X, is essential. In addition, it is also key that the infrastructure
is in good condition so that the perception of the environment is as clear and
reliable as possible. In this way, the exchange of safety-critical information
together with a robust and reliable perception system will be able to assist
the behaviour of both drivers and autonomous vehicles to improve driving
efficiency and safety.

The general objective of the thesis has been met, having designed a road
monitoring system capable of detecting critical situations such as fog banks
and infrastructure damage by employing computer vision techniques.

e [t has been implemented a system for the detection of fog banks
between 0 and 400 meters of visibility, differentiated into three
different alert levels.

e A traffic signal recognition system capable of recognising up to
164 different signal classes has been implemented.

e A system capable of detecting road line damage has been

implemented.

This road monitoring system comprises three modules that already have a
TRL level of between 5 and 6, this is, a model prototype already exists and
for some of the modules the field verification process has started.

In general terms, the following can be concluded with regard to the sub-
objectives:

Fog bank detection module

e Two different algorithms have been developed. The first one is a
rule-based algorithm with an accuracy of 80% in real scenarios
and 63% for synthetic ones. Whereas the second algorithm is
based on DL which has an accuracy of 96% on synthetic images
but 70% on real images.
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For the comparison of the module, it has not been possible to
contrast it with the state of the art since results for public datasets
of real scenarios have not yet been reported.

It is observed that current algorithms for synthetic fog generation
are not realistic enough as they present a much whiter colour than
what the image acquisition systems capture.

It is concluded that by generating a synthetic dataset where the
fog has a more realistic colour, a DL model could be trained to
improve the performance of the rule-based method for real scenes.

Traffic sign recognition module

A two-stage algorithm has been developed for separate detection
and classification. The first stage is based on classical CV while the
second stage is based on a DL classifier voting system. The
classification stage obtains accuracy values of around 92.4-98.5%
while the detection stage presents good precision values but a low
recall (52-76%).

Regarding the validation of the module, similar values to the state
of the art have been achieved for signal classification, however,
the signal detection performance could be improved.

It is concluded that although the developed system is suitable as
an inventory tool, the development of a single-stage end-to-end
recognition system based on DL could improve the performance
of the current system.

Road marking damage module

Two algorithms have been developed, firstly the problem was
tackled with classical vision methods but due to the impossibility
of modelling the defects, an end-to-end model based on DL was
trained which achieves an F1 score of 92%.

The validation of this module demonstrates that the current state
of the art has been exceeded by 25% for the detection of the line
marking defect.
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Operational objectives

The designed system is modular since no algorithm depends on
any other algorithm than the acquisition system.

The system used in this thesis is compact and low-cost as it
consists of an RGB camera and a processing unit that could be
installed in any vehicle.

The system designed in the thesis can be implemented in real-
time. All developed algorithms can run with calculation times
between 70 - 300 ms.

The system studied in the thesis can generate and transmit events
for V2I/I2V communication in common and standardised
languages such as DATEX II and C-ITS messages.

The system designed in this thesis is universal and interoperable,
it has been proved that the algorithms can work with images
collected in different countries.

The road operators and public administrations we have contacted
show interest in the usefulness of the system designed in this
thesis for the prioritisation and management of their investments
and resources.

The work carried out in this thesis will make it possible to gain a better
understanding of the state of the road and to detect critical situations which
are limiting to the operation of ADSs or drivers and which endanger road

safety. This information will be useful to improve the management of

infrastructure maintenance and to warn vehicles so that they can anticipate

a dangerous situation. This will also involve the improvement and extension
of ISADs and ODDs that allow further progress to be made in completing
the safety cases of self-driving vehicles.
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6.2.

Future research directions

The results and conclusions drawn from the present work allow to think of

future developments related to road monitoring;:

Improvement guidelines:

Generate a synthetic dataset where fog has a more realistic colour
(not pure white). It could be improved by inserting the synthetic fog
directly into the real-scenario images already collected

Develop a single-stage end-to-end traffic sign recognition system
with a wider dataset.

Improvement of the embedded system to improve image quality and
prevent dirtiness of the frontal glass.

General future research lines

The quality improvement and extension of the current datasets with
new images that have a rich variety of different scenarios to improve
the performance of the algorithms. This will require making use of
other public image repositories such as Google Street View and
enriching images of real scenarios with synthetic fog or defects to
compensate for the imbalance of such rare situations (the use of
Generative Adversarial Networks (GANS) could be explored).
Extension of the road damage module to include other types of
defects that are critical to road safety such as potholes and others that
can help to better manage road maintenance by prioritizing
resources.

Extension of the adverse weather detection module to include
detection of spray or splash clouds effect produced by extremely wet
roads that highly hinder the visibility of the drivers and the
capabilities of autonomous vehicles.

For the construction of the embedded system, migration of the
execution of the algorithms to the cloud to allow for more powerful
processing than on an on-board computer.
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The universalisation and standardisation of data, so that the scientific
community can work synergistically with the ultimate goal of
improving road safety and sharing local developments with others
to achieve richer models for a global solution.

The dumping of the data collected by the road monitoring system
into a GIS data visualisation tool. This will allow post-processing of
the raw data to generate the asset inventory and improve
infrastructure maintenance management.

The physical modelling of the road (macroscale, microscale,
capacities, etc.) so that in combination with the data extracted from
the road monitoring system a Digital Twin (DT) of the road can be
built. This will allow the study of the life cycle and predict the
deterioration of the road.
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Abstract European road safety has improved greatly in recent decades. However, the current
numbers are still far away to reach the European Commission’s road safety targets. In this context,
Cooperative Intelligent Transport Systems (C-ITS) are expected to significantly improve road safety,
traffic efficiency and comfort of driving, by helping the driver to make better decisions and adapt to
the traffic situation. This paper puts forward two vision-based applications for traffic sign recognition
(TSR) and real-time weather alerts, such as for fog-banks. These mod ules will support operators in
road infrastructure mainkenance tasks as well as drivers, giving them valuable information via C-1TS
messages. Different state-of-the-art methods are analysed using both publicly available datasets
(GTSB) as well as our own image databases (Ceit-TSR and Ceit-Foggy ). The selected models for
TSR implementation are based on Aggregated Chanel Features (ACF) and Convolutional Neural
Networks (CNN) that reach mone than %% accuracy in real time. Regarding fog detection, an image
feature extraction method on different colour spaces is proposed to differentiate sunny, cloudy and
foggy scenes, as well as its visibility level. Both applications are already running in an onboard probe
vehicle system.

Keywords: Cooperative Inkelligent Transport Systems (C-ITS); traffic sign recognition; fog detection;
intelligent roads; V2X ¢

ications; road mai v

1. Introduction

No deaths and serious injuries on European roads by 2050, This is the goal established
by the European Con (EC). M hile, EU road safety targets halving these
numbers by 2030 [1]. The EU has seen a substantial decrease in road fatalities in the past,
but these numbers have been stagnating in recent years. The latest research studies indicate
that even with the lockdown due to the COVID-19 pandemic situation, deaths on the road
did not decline by the same degree as traffic volume did [2].

To address this trend and meet the targets, the EC is ¢ itted to digital technolog
Future intelligent vehicles will interact with other vehicles and with the road infrastructure.
This interaction is the domain of Cooperative Intelligent Systems (C-1TS) and isexpected to
significantly improve road safety, traffic efficiency, environmental performance and comfort
driving, by helping the driver to make better decisions and adapt to the traffic situation [3].
Additionally, the EU road safety policy framework also focuses on infrastructure safety
and the updating of some legislative measures.

Ower the last decades, the remarkable development in technology and the increasing
digitalisation made enomous advancements in the intelligent vehicles field. Its advanced
electronics and meck i ications and sensors made current vehicles scale-up
levels of driving automation. However, there is still a long way to go before we are faced
with fully autonomous and cooperative roads. The perception of the environment, given its

5, C
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Road Marking Damage Detection Based on Deep
Learning for Infrastructure Evaluation
in Emerging Autonomous Driving

Olatz [pamguirrco. Nagore Turbe-Olleta™, Alfonso Brazalez, and Diego Borro™, Member; IEEE

Abstract— The future of autonomous  driving is  slowly
approaching, but there are il many steps 1o take before it
can become o reality, It is crucial to pay altention to road
infrastructure, hecause without it, intelligent vehicles will not be
able to operate reliably, and it will never be possible to dispense
of driver’s control. This paper presents the work carried out for
the detection of road markings damage using computer vision
technigues. This is a complex task for which there are currently
not many papers and large image sets in the literature, This study
uses images from the public Road Damage Detection dataset for
the D4 defect and also provides 971 new labelled images for
Spanish roads. For this purpose, three detectors based on deep
leaming architectures (Faster RONN, SDD and Efficient Det ) have
beem used and single-source and mived-source models have been
studied to find the modd that best fits the target images. Finally,
Fl-score values reaching 0929 and 0,934 have been obtained
for Jap a panish i pectively which imp
the state-of-the-art resulis by 25%. It can be concluded that

The main for driving is the adaptability
to all circumstances that may arise along the road.

In this transformation towards automated mobility, many
expents believe that roads, as we know them today with traffic
control systems (signals, signs, markings), will continue to
exist for at least another S0-75 years. The human driver will be
able to take control of the vehicle until Level 4 and automated
vehicles often directly interface with road markings to ensure
that the vehicle stays on course. Therefore, regardless of the
level of automation and as long as roadways continue to have
a mix of human, hine and fully automated systems, there
is every reason to believe that, far from disappearing, proper
road markings and road maintenance practices will gain great
importance in the future of the automotive industry.

In this context, there is a proposal for Smart Roads Clas-
sification (SRC), which studies the degree of adaptation to
4 and/or connected driving. This classification would

the results of this study are g ing, although the collection of

many more images will be necessary for the scientific community
o continue advancing in the future in this field of research,

Index Terms— Autonomous driving, road damage detection,
road infrastructure maintenance, deep learning ohject detector,

L. INTRODUCTION

NTELLIGENT vehicles technology is advancing at

lightning speed. However, the future of fully autonomous
mobility is still unclear. In the coming decades, vehicles
with different driving automation levels will coexist on our
roads and traffic will be mixed with human-driven vehicles.
Nowadays, the most advanced systems on our roads are
the so-called level 2 autonomous vehicles defined by the
Society of Automotive Engineers (SAE) and level 3 vehi-
cles will be introduced on the market in the near future,
These vehicles provide support to the drivers with Advanced
Driver Assistance Systems (ADAS) that allow an automated
driving experience under specific circumstances and transfer
the control to the driver in case they face an unexpected event.
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Digital Object Identifier 10.1109TITS. 20223192916
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be valuable to determine which road sections are ready for any
autonomous system and which ones are not. In order to carry
out this assessment, both physical and digitl infrastructure
as well as the connectivity of the road isell come into
play [1].

Digital infrastructure needs were set in the Commission Del-
egated Regulation (ELT) 2015962 (2015) which describes what
information (in terms of infrastructure and traffic information)
should be made available digitally and what the requirements
are for updating this information. On the other hand, some
efforts have been carried out for the physical infrastructure
classification systems. The Connected Roadway Classifica-
tion System (CRCS) was the first proposal that defines the
attributes or conditions to be gathered (1alking, seeing and
simplifying) but does not specify any threshold for the specific
road levels. Later on, SRC was defined based on two previous
parameters: ISAD levels (Infrastructure Support Levels for
Automated Driving) and LOSAD levels (Level of Service for
Automated Driving). The first represents the readiness of the
infrastructure to accommodate automated vehicles, Whereas
the second one focuses on the support provided to connected
vehicles (see Fig 1),

This SRC framework could help all stakeholders (road
operators, administrations, vehicle facturers etc.) as well
as users, 1o know what they can provide and expect from
the infrastructure. On the one hand, drivers of vehicles with
low levels of automation should have clear indications of
where they can reliably activate their systems. On the other
hand, higher levels of automation would benefit tremendously
from digital information from the infrastructure and the envi-
ronment, complementing what they can perceive through the

See hutps: e re/publi

ion s/rightsfindes ml for more i

requines |EEE permission,
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A. Appendix — Smart Road Classification
framework

LOSAD

Table A-1. Road categories in terms of automation and
connectivity support [6]

Continuous
ORS. Not
revelant

disengagements

Dynamic
conditions may
temporarily limit
ORS
effectiveness

Non-continuous
ORS. Most
drivers may
retake manual
control

sometimes

No ORS or too
short. No
remarkable
benefit of ADAS

. 4 - Full Automatedway
2 - Assitedway )
. i . Level4 and 5 vehicles can
No information about dynamic

A perfom autonomously. Level 2 [5 - Autonomousway
parameters that could Dt . p e
and 3 might experience few
influence the ODD. Although i & P P )
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the road segment would not
. . Recommended for
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- critical roa
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autonomously.
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Disengagements are not very 3 - Automatedway
frequent, but exist, Level 3 The conectivity provided by the road digital
C vehicles do not have infrastructure can be used by Level 3 vehicles to
information to foresee foresee disengagements and warn the driver to
disengagements, so they resume controlin advance.
operate like Level 2 vehicles.
2 - Assitedway
The physical road infrastructure triggers relatively frequent disengagements that
D might affect the automated experience. Under certain circumstances, drivers might
be allowed to enable their driving automation systems. Due to their number, the
connectivity level should not be used to foresee disengagements (for Level 3
vehicles).
1 - Humanway
The road physical infrastructure triggers too many disengagements. Therefore,
E ] drivers are suggested to disable the driving automation systems. The connectivity

capabilities of the road cannot be used to foresee or reduce the number of

disengagements.
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B. Appendix — Colour spaces

In this section, there is a brief description of the three colour spaces that have
been used in this work to extract characteristics from the image.

RGB colour space

This colour space is the most common one since the human eye only has
colour-sensitive receptors for red (R), green (G) and blue (B). Thus, it is
theoretically possible to decompose every visible colour into combinations
of these three “primary colours” with different ranges of intensities from 0
to 255. Thus, this combination can be represented as a three-dimensional
coordinate plane with the values for R, G and B on each axis (see Figure A-1
a). This wayj, it is concluded that when all channels have a value of zero, no
light is emitted resulting in black colour. Whereas when all three colour
channels are set to their maximum the resulting colour is white.

HSV colour space

HSV colour space is a cylindrical representation where colours of each hue
(H) are arranged in a radial slice (see Figure A-1 b)The hue is the colour
portion of the model that is expressed in 0-360 degrees where it can be
considered colours like red, yellow, green, cyan, blue and magenta each in
60-degree increments. The central axis represents the value (V) or brightness
of the colour from 0 to 100 per cent, where 0 is completely black and 100 is
the brightest and reveals the most colour. Finally, saturation (S) describes the
amount of grey in a particular colour, its minimum value (0) introduces more
grey colour and the maximum (100) is the most similar to its primary colour.
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RGB c]glour space

HSV colour space

255 A

255 =
o g

(a) (b)

Figure A-1. Representation of (a) RGB and (b) HSV colour spaces.

XYZ colour space

The CIE XYZ colour space encloses all colour sensations that are visible to
the human eye. The human eye with normal vision has three kinds of cone
cells that sense light, S, M and L depending on their sensitivity to short,
middle or long wavelength light. The CIE colour model takes the luminance
(as a measure for perceived brightness) as one of the three colour
coordinates, calling it Y. The spectral response of the luminance is specified
as the photopic luminosity function. The maximum possible Y value, e.g. for
a colour image, may be chosen to be 1 or 100, for example. The Z coordinate
responds mostly to shorter-wavelength light (blue colours on the visible
light spectrum), while X responds both to shorter- and longer-wavelength
light [156]. Error! Reference source not found. shows the used colour
matching functions.
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Spectral sensitivity

CIE 1931 XYZ colour space
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Figure A-2.The CIE XYZ standard observer colour matching
functions.

Adapted from Jeff Mather (2021). Spectral and XYZ Color
Functions(https://www.mathworks.com/matlabcentral/fileexchange/702
1-spectral-and-xyz-color-functions), MATLAB Central File Exchange.
Retrieved January 5, 2021
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C.Appendix — TSR confusion matrixes
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Figure A-3. Confusion matrix of ensemble classifier in Ceit-TSR
dataset.
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Figure A-4. Confusion matrix of ensemble classifier in GTSRB
dataset.
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Figure A-6. Confusion matrix of ensemble classifier in ETSDB
dataset.
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D. Appendix — C-ITS messages

Table A-2. DENM message’s cause and subcause codes summary
that covers all possible use cases for Road Hazard Warning

(RHW) service.

DENM message - ETSI EN 302 637-3 V1.2.2 (2014-11)

CauseCode

SubcauseCode
reserved(0),
unavailable(0), increasedVolumeOfTraffic(1),
trafficlamSlowlyIncreasing(2),
trafficJamIncreasing(3),
trafficCondition(1), trafficlamStronglyIncreasing(4), trafficStationary(5),

trafficJamSlightlyDecreasing(6),
trafficJamDecreasing(7),
trafficlamStronglyDecreasing(8)

accident(2),

unavailable(0), multiVehicleAccident(1),
heavyAccident(2), accidentInvolvingLorry(3),
accidentInvolvingBus(4),
accidentInvolvingHazardousMaterials(5),
accidentOnOppositeLane(6), unsecured Accident(7),
assistanceRequested(8)

roadworks(3),

unavailable(0), majorRoadworks(1),
roadMarkingWork(2),
slowMovingRoadMaintenance(3),
shortTermStationaryRoadworks(4),
streetCleaning(5), winterService(6)

adverseWeatherCondition-Adhesion(6),

unavailable(0), heavyFrostOnRoad(1),
fuelOnRoad(2), mudOnRoad(3), snowOnRoad(4),
iceOnRoad(5), blacklceOnRoad(6), 0ilOnRoad(7),
looseChippings(8), instantBlackIce(9),
roadsSalted(10)

hazardousLocation-SurfaceCondition(9),

unavailable(0), rockfalls(1), earthquakeDamage(2),
sewerCollapse(3), subsidence(4), snowDrifts(5),
stormDamage(6), burstPipe(7), volcanoEruption(8),
fallinglce(9)

hazardousLocation-ObstacleOnTheRoad(10),

unavailable(0), shedLoad(1), partsOfVehicles(2),
partsOfTyres(3), bigObjects(4), fallenTrees(5),
hubCaps(6), waitingVehicles(7)

hazardousLocation-AnimalOnTheRoad(11),

unavailable(0), wild Animals(1), herdOf Animals(2),
smallAnimals(3), largeAnimals(4)

humanPresenceOnTheRoad(12),

unavailable(0), childrenOnRoadway(1),
cyclistOnRoadway(2), motorcyclistOnRoadway(3)

wrongWayDriving(14),

unavailable(0), wrongLane(1), wrongDirection(2)
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rescueAndRecoveryWorkInProgress(15),

unavailable(0), emergencyVehicles(1),
rescueHelicopterLanding(2),
policeActivityOngoing(3),
medicalEmergencyOngoing(4),

child AbductionInProgress(5)

adverseWeatherCondition-
ExtremeWeatherCondition(17),

unavailable(0), strongWinds(1), damagingHail(2),
hurricane(3), thunderstorm(4), tornado(5),
blizzard(6)

adverseWeatherCondition-Visibility(18),

fog(1), smoke(2), heavySnowfall(3), heavyRain(4),
heavyHail(5), lowSunGlare(6), sandstorms(7),
swarmsOfInsects(8)

adverseWeatherCondition-Precipitation(19),

unavailable(0), heavyRain(1), heavySnowfall(2),
softHail(3)

slowVehicle(26),

unavailable(0), maintenanceVehicle(1),
vehiclesSlowingToLookAtAccident(2),
abnormallLoad(3), abnormalWideLoad(4), convoy(5),
snowplough(6), deicing(7), saltingVehicles(8)

dangerousEndOfQueue(27),

unavailable(0), suddenEndOfQueue(1),
queueOverHill(2), queueAroundBend(3),
queuelnTunnel(4)

vehicleBreakdown(91),

unavailable(0), lackOfFuel(1),
lackOfBatteryPower(2), engineProblem(3),
transmissionProblem(4), engineCoolingProblem(5),
brakingSystemProblem(6), steeringProblem(7),
tyrePuncture(8)

unavailable(0), accidentWithoutECallTriggered(1),
accidentWithECallManuallyTriggered(2),

postCrash(92), accidentWithECallAutomatically Triggered(3),
accidentWithECallTriggeredWithoutAccessToCellul
arNetwork(4)

humanProblem(93), unavailable(0), glycemiaProblem(1), heartProblem(2)

stationaryVehicle(94),

unavailable(0), humanProblem(1),
vehicleBreakdown(2), postCrash(3),
publicTransportStop(4), carryingDangerousGoods(5)

emergency VehicleApproaching(95),

unavailable(0), emergencyVehicleApproaching(1),
prioritizedVehicleApproaching(2)

hazardousLocation-DangerousCurve(96),

unavailable(0), dangerousLeftTurnCurve(1),
dangerousRightTurnCurve(2),
multipleCurvesStartingWithUnknownTurningDirect
ion(3), multipleCurvesStartingWithLeftTurn(4),
multipleCurvesStartingWithRightTurn(5)

unavailable(0), longitudinalCollisionRisk(1),

collisionRisk(97), crossingCollisionRisk(2), lateralCollisionRisk(3),
vulnerableRoadUser(4)
unavailable(0), stopSignViolation(1),
signalViolation(98), trafficLightViolation(2),

turningRegulationViolation(3)
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unavailable(0),
emergencyElectronicBrakeEngaged(1),
preCrashSystemEngaged(2), espEngaged(3),
absEngaged(4), aebEngaged(5),
brakeWarningEngaged(6),
collisionRiskWarningEngaged(7)

dangerousSituation(99)
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