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Abstract

Path from Photorealism to Perceptual Realism

Fangcheng Zhong

Photorealism in computer graphics — rendering images that appear as realistic as

photographs — has matured to the point that it is now widely used in industry. With

emerging 3D display technologies, the next big challenge in graphics is to achieve Perceptual

Realism — producing virtual imagery that is perceptually indistinguishable from real-world

3D scenes. Such a significant upgrade in the level of realism offers highly immersive and

engaging experiences that have the potential to revolutionise numerous aspects of life and

society, including entertainment, social connections, education, business, scientific research,

engineering, and design.

While perceptual realism puts strict requirements on the quality of reproduction, the

virtual scene does not have to be identical in light distributions to its physical counterpart

to be perceptually realistic, providing that it is visually indistinguishable to human eyes.

Due to the limitations of human vision, a significant improvement in perceptual realism

can, in principle, be achieved by fulfilling the essential visual requirements with sufficient

qualities and without having to reconstruct the physically accurate distribution of light.

In this dissertation, we start by discussing the capabilities and limits of the human visual

system, which serves as a basis for the analysis of the essential visual requirements for

perceptual realism. Next, we introduce a Perceptually Realistic Graphics (PRG) pipeline

consisting of the acquisition, representation, and reproduction of the plenoptic function of

a 3D scene. Finally, we demonstrate that taking advantage of the limits and mechanisms

of the human visual system can significantly improve this pipeline.

Specifically, we present three approaches to push the quality of virtual imagery towards

perceptual realism. First, we introduce DiCE, a real-time rendering algorithm that exploits

the binocular fusion mechanism of the human visual system to boost the perceived local

contrast of stereoscopic displays. The method was inspired by an established model of

binocular contrast fusion. To optimise the experience of binocular fusion, we proposed

and empirically validated a rivalry-prediction model that better controls rivalry. Next,

we introduce Dark Stereo, another real-time rendering algorithm that facilitates depth



perception from binocular depth cues for stereoscopic displays, especially those under low

luminance. The algorithm was designed based on a proposed model of stereo constancy

that predicts the precision of binocular depth cues for a given contrast and luminance. Both

DiCE and Dark Stereo have been experimentally demonstrated to be effective in improving

realism. Their real-time performance also makes them readily integrable into any existing

VR rendering pipeline. Nonetheless, only improving rendering is not sufficient to meet all

the visual requirements for perceptual realism. The overall fidelity of a typical stereoscopic

VR display is still confined by its limited dynamic range, low spatial resolution, optical

aberrations, and vergence-accommodation conflicts. To push the limits of the overall

fidelity, we present a High-Dynamic-Range Multi-Focal Stereo display (HDR-MF-S display)

with an end-to-end imaging and rendering system. The system can visually reproduce

real-world 3D objects with high resolution, accurate colour, a wide dynamic range and

contrast, and most depth cues, including binocular disparity and focal depth cues, and

permits a direct comparison between real and virtual scenes. It is the first work that

achieves a close perceptual match between a physical 3D object and its virtual counterpart.

The fidelity of reproduction has been confirmed by a Visual Turing Test (VTT) where

naive participants failed to discern any difference between the real and virtual objects in

more than half of the trials. The test provides insights to better understand the conditions

necessary to achieve perceptual realism. In the long term, we foresee this system as a

crucial step in the development of perceptually realistic graphics, for not only a quality

unprecedentedly achieved but also a fundamental approach that can effectively identify

bottlenecks and direct future studies for perceptually realistic graphics.
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Chapter 1

Introduction

1.1 Overview

Realism is an everlasting and primary pursuit in the field of computer graphics. Well-

established physically-based rendering techniques can generate images that are as realistic

as photographs. Nowadays, photorealistic rendering has matured to the point that it is

widely applied in the industry. From natural substances of multitudinous forms to intricate

human facial expressions, artists and engineers can synthesise images of virtual scenes with

complex geometry, materials, and illumination, especially in cinematography where most

cutting-edge graphics algorithms in nearly all sub-fields are practised. Yet, photorealistic

rendering places an upper limit on the realism achieved by a photograph. Emerging

display technologies can deliver high dynamic range (HDR) and contrast, accurate colour

reproduction, and a close approximation to a full set of real-world cues of 3D structure.

Together, such displays can potentially exceed the realism of photographs and bring

us closer to what we define as perceptual realism — displaying virtual scenes that are

perceptually indistinguishable from real-world 3D scenes.

The increasing level of realism has the potential to significantly impact numerous aspects of

life and society. For instance, in the entertainment sector such as gaming and filmmaking,

perceptually realistic graphics (PRG) enhances the overall experience by creating a more

believable and engaging environment for players and viewers. In live streaming, PRG

transcends the experience of traditional media by enabling the audience to freely immerse

themselves in every detail of the event. In other domains such as education, business,

science, engineering, and design, incorporating PRG and 3D displays offers a valuable tool

for complex concepts and ideas to be demonstrated through vivid visual aids and realistic

simulation. Furthermore, PRG provides an opportunity for individuals to better connect
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with friends, family, and colleagues as if they were physically present. People can also

explore places from afar, such as outer space, natural wonders, museums, and historical

sites, without the need for long-distance travel.

From the physics perspective, the ultimate objective of perceptually realistic graphics is to

reproduce a virtual scene that faithfully approximates the true light field of the real world.

Unfortunately, this entails an unreasonable requirement for storage, computing power, and

physical control of light, which is currently unrealisable for any display system. However,

the capability of the human visual system is limited in perceiving minor inaccuracies

in the light field. The virtual reproduction of light does not have to be identical in

distribution to its physical counterpart to be perceptually realistic, provided that it is

visually indistinguishable to human eyes.

Limits of human vision have been widely exploited in photorealistic graphics such as

level of detail, tone mapping, and colour coding. We continue this endeavour. In this

dissertation, we investigate the essential visual requirements for perceptual realism and

propose practical solutions that exploit the limits and mechanisms of human vision to push

the quality of computer-generated 3D imagery towards perceptual realism. Throughout

this dissertation, we argue that both the physical and perceptual perspectives are equally

paramount in the evaluation and advancement of perceptually realistic graphics.

With this approach, we start this dissertation with a background on the human visual

system (HVS), providing a theoretical basis for the analysis of essential visual requirements

for perceptual realism from the geometric, spectral, and temporal aspects. The most

relevant visual requirements that we identify as essential and fundamental for perceptual

realism are retinal image, spatial resolution, depth perception, dynamic range, contrast,

colour (gamut and accuracy), and temporal resolution. Such requirements provide concrete

objectives for the aimed displayed qualities of perceptually realistic graphics. Next, we

introduce a perceptually realistic graphics (PRG) pipeline consisting of the acquisition,

representation, and reproduction of the plenoptic function of a 3D scene. We examine both

the physical and perceptual perspectives in the evaluation and advancement of this pipeline.

As many integral parts across the pipeline share the same techniques with photorealistic

graphics, we focus on aspects that are unique or substantial to perceptual realism, such

as computational 3D displays and depth reproduction, high-dynamic-range imaging, and

scene representations for view synthesis with megapixel images. Finally, we present three

approaches to push forward the quality of perceptually realistic graphics by exploiting

the limits and mechanisms of human vision. First, we introduce DiCE, a dichoptic

contrast enhancement method that exploits the binocular fusion mechanism of the human

visual system to boost the perceived local contrast for stereoscopic displays. Next, we
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introduce Dark Stereo, an algorithm manipulating contrast to facilitate depth perception

for stereoscopic displays under low luminance. Finally, we introduce a High-Dynamic-

Range Multi-Focal Stereo display (HDR-MF-S display) with an end-to-end imaging and

rendering system that can reproduce virtual 3D objects with high fidelity to the point that

they can be confused with physical ones. Overall, we position our work throughout this

dissertation within a general framework such that each sub-work is dedicated to advancing

certain aspects of the PRG pipeline to improve the quality for certain visual requirements

for perceptual realism, as shown in Figure 1.1.
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Acquisition (Section 2.2) Representation (Section 2.3) Reproduction (Section 2.4)Perception (Section 2.1)

Rendering

Display
technologiesDynamic range

Colour gamut

Contrast

Spatial resolution

Depth

Reproducing reality (Chapter 4)

Background (Chapter 2)

DiCE (Section 3.1)

Dark Stereo (Section 3.2)

Apparent Enhancement (Chapter 3)

Figure 1.1: Illustration of the dissertation structure. We start with a background (Chap-
ter 2) discussing the perception (Section 2.1), acquisition (Section 2.2), representation
(Section 2.3), and reproduction (Section 2.4) of the plenoptic function. In particular,
Section 2.1 identifies the essential visual requirements for perceptual realism. Sections 2.2 -
2.4 constitute a perceptually realistic graphics (PRG) pipeline. Our main work (Chap-
ters 3 and 4 ) is positioned such that each sub-work focuses on improving specific aspects
of the PRG pipeline to meet specific visual requirements for achieving perceptual realism.

18



Figure 1.2: Comparison of standard stereo images and the images with enhanced perceived
contrast using DiCE [202].

1.2 Apparent enhancement rendering

The quality of visual content depends not only on the physical light distribution of the

content, but also on the latent processing of it by the human visual system. As such, we

can leverage particular characteristics of the HVS to improve the perceived quality of 3D

scenes, transcending the limits of the display device. These approaches are referred to as

apparent enhancement techniques.

In Chapter 3, we propose two apparent enhancement rendering algorithms designed to

boost the perceived quality of contrast and depth for stereoscopic displays. In Section 3.1,

we present DiCE [202], a dichoptic contrast enhancing method that exploits the HVS

binocular fusion mechanisms to boost the perceived local contrast and visual quality of

images (Figure 1.2). While this method was inspired by an established model of binocular

contrast fusion, we proposed and empirically validated a rivalry-prediction model to better

explain the main factors contributing to binocular rivalry when two images of different

contrasts are displayed. This way we can effectively control the contrast enhancement while

maintaining rivalry at a moderate level. Since the method is based on fixed tone curves, it

has a negligible computational cost, and therefore, is well suited for real-time applications

such as VR rendering. In Section 3.2, we present Dark Stereo [182], a depth-enhancing

method that compensates for the deteriorated depth perception from stereo cues under
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Figure 1.3: Comparison of standard stereo images and the images after stereo constancy
processing using Dark Stereo [182].

low luminance (Figure 1.3). The algorithm was designed upon a proposed model of stereo

constancy that predicts the precision of binocular depth cues for a given contrast and

luminance. We applied the model of stereo constancy to develop a multi-scale contrast

compensation method to preserve the precision of binocular depth cues at various display

luminance levels. The method has been implemented in GPU shaders and thus is also well-

suited for real-time applications. Both DiCE and Dark Stereo have been experimentally

demonstrated to be effective in improving realism and overall visual quality.
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Figure 1.4: Photographs of virtual objects rendered by our High-Dynamic-Range Multi-
Focal Stereo (HDR-MF-S) display [203] in comparison with real objects.

1.3 Reproducing reality

Imagine a black box containing either a physical 3D object or one virtually rendered by a

3D display. If an observer, without prior knowledge, is unable to discern the difference

between these two scenarios, the display system can be said to have passed a Visual Turing

Test (VTT) [5]. Passing a visual Turing test for arbitrarily complex scenes is the holy grail

of perceptually realistic graphics. Only improving rendering as introduced in Chapter 3 is

insufficient to fulfil all the visual requirements to pass a visual Turing test. The overall

fidelity of a typical stereoscopic VR display is confined by limited dynamic range, low

spatial resolution, lens distortions, and vergence-accommodation conflicts. Volumetric

displays such as light-field or holographic displays also cannot achieve the resolution, colour

accuracy, gamut, and dynamic range required for perceptual realism.

To push the limits of overall fidelity and maximise the quality of all the essential visual

cues for perceptual realism, in Chapter 4, we introduce a High-Dynamic-Range Multi-Focal

Stereo display (HDR-MF-S display) [203] with an end-to-end imaging and rendering system

that can reproduce virtual 3D objects with high fidelity so that they can be confused with

physical ones (Figure 1.4). By combining four custom-built HDR displays into a single-
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viewer two-focal plane stereoscopic display and integrating differentiable rendering with

lumigraph view synthesis and linear depth filtering, the system can acquire a real-world

3D object and reproduce it with high resolution, accurate colour, a wide dynamic range

and contrast, and most depth cues, including binocular disparity and focal depth cues.

Moreover, the system supports a direct comparison between the real and virtual scenes.

This allows us to perform a visual Turing test to evaluate the quality of the display. We

propose a strict three-interval-forced-choice (3IFC) visual Turing test to ensure that the

virtual scene must not be visually different in any respect from the real scene. The results

indicate that naive observers can only detect a discrepancy between real and displayed 3D

objects with a probability of 0.44. With such a level of realism, our system can function

as a testbed to facilitate a variety of studies in perceptually realistic graphics where both

faithful reproductions of all visual cues and comparison to reality are paramount.
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1.4 Contributions

In this dissertation, we provide a unified background for the study of perceptually re-

alistic graphics from the perspectives of the acquisition, representation, reproduction,

and perception of the plenoptic function. Next, we identify the essential visual require-

ments for perceptual realism and propose several approaches to push the quality of

computer-generated imagery towards such requirements. Finally, we demonstrate that

taking advantage of the HVS can significantly improve the perceptually realistic graphics

pipeline. Specifically, we propose two apparent enhancement rendering algorithms to boost

the perceived quality of contrast and depth for stereoscopic displays, without having to

expand the display contrast ratio or manipulate disparity. Both algorithms have been

experimentally demonstrated to improve realism and can be readily integrated with any

existing VR rendering pipeline with their real-time performance. We also introduce an

HDR-MF-S display apparatus with an end-to-end imaging and rendering system. The

system can achieve a close perceptual match between the real and virtual objects by

maximising the quality of essential visual cues, and without having to reconstruct the

physically accurate light fields. This is the first work that passed a visual Turing test with

a strict 3IFC criterion. We believe that this is a significant step in computer graphics

that combines all different aspects towards the holy-grail goal of digitising and visually

reproducing a physical 3D object. We also believe that our proposed 3IFC visual Turing

test on a display apparatus allowing for a direct comparison between real and displayed

scenes is a fundamental approach for the future studies of perceptually realistic graphics.

Such studies not only provide insights to better understand the conditions necessary to

achieve perceptual realism, but also help identify the most salient artefacts and bottlenecks

of existing display technologies, which is crucial in directing the future designs of the PRG

pipeline and 3D displays towards where the HVS is most sensitive.

In summary, this dissertation made the following contributions:

• Identification of the essential visual requirements for perceptual realism analysing

the visual perception of the plenoptic function.

• A unified overview of the perceptually realistic graphics pipeline.

• A real-time dichoptic contrast enhancement method that improves the perceived

contrast based on the binocular fusion mechanism of the human visual system, while

controlling the level of rivalry based on a proposed model explaining the main factor

causing the rivalry.

• A stereo constancy method that improves depth perception on dimmed displays
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based on a proposed model of stereoscopic constancy on various luminance and

contrast.

• A novel display apparatus with an end-to-end system capable of capturing and

reproducing all the essential visual cues for a static scene of moderate size to reach

a close perceptual match between the real and virtual scenes.

• A fundamental approach to study the necessary conditions for perceptual realism

and evaluate the qualities of 3D displays, including a 3IFC visual Turing test and

display architecture that permits a direct comparison between the real and virtual

scenes.

• The first work that passed a strict 3IFC visual Turing test with a near-eye and

binocular presentation of a 3D object and without any degradation of the real scene.
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and Rafa l K. Mantiuk. Reproducing reality with a high-dynamic-range multi-focal

stereo display. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH Asia 2021,

Journal Track), 40(6), dec 2021. ISSN 0730-0301. doi: 10.1145/3478513.3480513.

URL https://doi.org/10.1145/3478513.3480513

• Krzysztof Wolski, Fangcheng Zhong, Karol Myszkowski, and Rafa l K. Mantiuk.

Dark stereo: Improving depth perception under low luminance. ACM Trans. Graph.

(Proceedings of ACM SIGGRAPH 2022, Journal Track), 41(4), jul 2022. ISSN 0730-

0301. doi: 10.1145/3528223.3530136. URL https://doi.org/10.1145/3528223.

3530136

The following works were produced and partially incorporated into the background chapter

during the course of this dissertation:

• Param Hanji, Fangcheng Zhong, and Rafa l K. Mantiuk. Noise-aware merging of

high dynamic range image stacks without camera calibration. In Advances in

Image Manipulation (ECCV workshop), pages 376–391. Springer, 2020. URL http:

//www.cl.cam.ac.uk/research/rainbow/projects/noise-aware-merging/

• Jingyu Liu∗, Fangcheng Zhong∗, Claire Mantel, Søren Forchhammer, and Rafa l K.

Mantiuk. Chapter 17 - computational 3d displays. In Giuseppe Valenzise, Martin

Alain, Emin Zerman, and Cagri Ozcinar, editors, Immersive Video Technologies,

pages 469–500. Academic Press, 2023. ISBN 978-0-323-91755-1. doi: https://doi.

org/10.1016/B978-0-32-391755-1.00023-7. URL https://www.sciencedirect.com/

science/article/pii/B9780323917551000237

25

https://doi.org/10.1145/3355089.3356552
https://doi.org/10.1145/3478513.3480513
https://doi.org/10.1145/3528223.3530136
https://doi.org/10.1145/3528223.3530136
http://www.cl.cam.ac.uk/research/rainbow/projects/noise-aware-merging/
http://www.cl.cam.ac.uk/research/rainbow/projects/noise-aware-merging/
https://www.sciencedirect.com/science/article/pii/B9780323917551000237
https://www.sciencedirect.com/science/article/pii/B9780323917551000237


26



Chapter 2

Background

Restricting our considerations to geometric optics1, the light distribution of a 3D scene

can be fully described by a light field, expressed as a 7D plenoptic function:

Φ = F (x, y, z, θ, φ, λ, t), (2.1)

which indicates the spectral radiance Φ (W sr−1 m−3) in wavelength λ of a ray traversing

the spatial coordinates (x, y, z) along the direction (θ, φ) at time t. The plenoptic function

plays a significant role in the study of photorealistic graphics, as it can be used to synthesise

photorealistic images of a 3D scene at an arbitrary viewing position, orientation, and

time. The same criticality of the plenoptic function, if not greater, applies to the study of

perceptually realistic graphics, as the objective is to synthesise an entire virtual light field.

Therefore, in this chapter, we provide a unified background for the study of perceptually

realistic graphics from the perspectives of the acquisition, representation, reproduction,

and perception of the plenoptic function.

We start by formulating visual perception as the visual sampling of the plenoptic function

(Section 2.1), relating the capabilities of the human vision system (HVS) to the required

precision of the virtual light fields. Next, we introduce a perceptually realistic graphics

pipeline consisting of the acquisition (Section 2.2), representation (Section 2.3), and

reproduction (Section 2.4) of the light fields. We discuss the advancement and challenges

of this pipeline from both the physical and perceptual perspectives. As this background

reviews the entire pipeline, it is impossible to cover all the details. We focus on aspects

that are unique or substantial to perceptual realism and refer to other references for further

details.

1incoherent light and objects larger than the wavelength of light.
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2.1 Visual requirements for perceptual realism

Although the plenoptic function (Equation 2.1) is a seven-dimensional continuous function,

the human vision system (HVS) is limited in perceiving minor inaccuracies in the light

fields. The virtual reproduction of light does not have to be identical to its physical

counterpart, restoring the redundant information that exceeds the limits of human vision,

to be perceptually realistic. For example, we do not directly perceive the spectral radiance

of individual rays but the irradiance (projection) of rays coming from all directions on

the retina. Spectral irradiance is further integrated over various ranges of wavelengths by

the photoreceptors leading to colour vision. The spatial and temporal resolution that the

HVS can resolve is also limited. These significantly simplify the visual requirements for

perceptual realism. By leveraging the limitations of the HVS, it is possible to reduce the

precision of the virtual light fields rendered by a 3D display while maintaining identical

visual perceptions.

In this section, we explain the basics of the HVS, identifying the relevant visual requirements

for perceptual realism by analysing the capabilities and limitations of the HVS in terms of

its perception of the plenoptic function. We discuss such requirements from the geometric,

spectral, and temporal aspects, each pertaining to the parameters (x, y, z, θ, φ), (λ), and

(t) of the plenoptic function. We argue that, from the geometric aspect, the most relevant

visual cues for perceptual realism are retinal image, spatial resolution, and depth percep-

tion; from the spectral aspect, the most relevant visual cues are dynamic range, contrast,

and colour (gamut and accuracy). We do not prioritise considerations on the temporal

aspect in this dissertation. Qualitative and quantitative requirements on such visual cues

direct the designs of the perceptually realistic graphics pipeline with concrete objectives,

optimising the distribution of limited resources in computation, data transmission, and

display hardware to where the HVS is most sensitive. In general, it is a great challenge

for a display system and its associated imaging and rendering algorithms to reproduce a

virtual 3D scene that collectively meets all the visual requirements without artefacts and

trade-offs.

2.1.1 Geometric considerations

We first consider the geometric parameters (x, y, z, θ, φ) of the plenoptic function (Equa-

tion 2.1), which specifies the origin and direction of rays. The HVS does not directly

perceive the radiance of individual rays specified by these geometric parameters but their

irradiance (projection) on the retina with a finite resolution. This greatly reduces the
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number of rays needed to be controlled in a virtual reproduction. Such reduction is

three-folded. First, due to the limited pupil size and field of view (FoV) of human eyes,

only a fraction of light from the scene can reach the retina through the pupil, which

has a diameter varying from 2 to 4 mm in daylight and 4 to 8 mm in the dark [166]. As

shown in Figure 2.1, the maximum FoV for both eyes combined is approximately 100◦

vertically and 200◦ horizontally, with a binocular FoV (i.e. overlapped FoV seen by both

eyes) of 120◦ [29]. An individual eye has a horizontal FoV of approximately 160◦. The

FoV contributes significantly to the sense of immersion but is not an essential visual cue

for realism, as reducing the FoV does not necessarily degrade fidelity. Second, the visual

system does not directly perceive the radiance of individual rays but a retinal image, the

irradiance (projection) of rays onto the retina. Therefore, accurate control of individual

rays is not a necessary precondition for correct image formation on the retina. Finally,

human vision has a limited acuity, ability to distinguish small details on the retina. This

is mainly determined by the density of photoreceptors on the retina and diffraction and

aberration throughout the lens [155], with other factors including luminance, contrast,

and colour, as can be explained by a contrast sensitivity function (Section 2.1.2). Visual

acuity reaches its peak at the fovea, an area on the retina with the highest density of cone

photoreceptors. It has a resolving power of approximately 120 cycles per degree (cpd)

of visual angle [120], corresponding to a spatial resolution of 240 pixels per degree (ppd)

for a display. To match this level of acuity, the required spatial resolution R of a display

(measured by pixels per unit length (e.g. m, cm, mm)) at viewing distance d (measured

by the same unit length) can be calculated as:

R =
240

2d tan π
360

. (2.2)

Although the retina only perceives the projected images of incoming rays, the HVS can

acquire additional depth information of a 3D scene which is not preserved in a retinal

image. Depth perception refers to the visual ability to perceive objects in three dimensions

and infer their relative or absolute distances. It arises from a variety of depth cues that can

be classified into pictorial cues, where retinal images provide the depth information, and

oculomotor cues, where depth judgment is based on eye movements. Depth perception can

also be categorised as binocular cues or monocular cues, depending on whether sensory

information is observed by both eyes or a single eye.

Conventional 2D displays can provide a variety of depth cues such as shading, relative size,

occlusion, and perspectives, but there are other cues unique to 3D displays. For example,

binocular disparity, or stereopsis, is a binocular pictorial cue where two retinal images

of the same scene are formed from disparate viewpoints of two eyes. When an object
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Figure 2.1: Illustration of the bonocular FoV. Each eye sees a FoV of 160◦, resulting in a
200◦ combined horizontal FoV, 120◦ of which are overlapping.

is closer, the disparity between its left and right retinal images is larger, and vice versa.

Inaccurate disparity causes distortions in perceived depth [63, 184]. Binocular disparity

is one of the most important depth cues [28] that is commonly employed in VR and

cinematographic applications to evoke stereo 3D scene appearance. Vergence is a binocular

oculomotor cue where the optical axes of the two eyes rotate and converge towards the

location of the object in focus. Kinaesthetic sensations from extraocular muscles provide

information for depth perception as the depth of an object is inversely related to the angle

of vergence [136]. Disparity and vergence together are referred to as stereo cues. Defocus

blur is a monocular pictorial cue where objects outside the depth of field of the eyes appear

blurry on the retina. Evidence has shown that focus cues affect both 3D shape perception

and the apparent scale of the scene [11, 50, 173]. Accommodation is the mechanism that

modulates the ciliary muscles to stretch or relax the lens and change the curvature of

the cornea to focus on objects close or distant. Such muscle movement provides feedback

to the HVS as a monocular oculomotor depth cue. As a cue weaker than defocus blur,

accommodation is mainly effective within two metres [42]. Accommodation and defocus

blur together are referred to as focus cues. A regular stereo display where the disparity is

provided by presenting two separate planar images to the left and right eyes does not drive

the accommodation to the correct depth. Both eyes accommodate to a fixed but incorrect

distance, since all the rays are originated from the screen rather than the actual depth of

the virtual object. Such incorrect accommodation cues lead to vergence-accommodation

conflict (VA conflict) since accommodation and vergence are coupled mechanisms [66].

Their decoupling may cause an unnatural visual experience that results in discomfort [185].

Finally, motion parallax is a monocular pictorial cue in which the viewers consider closer

objects to be moving faster than further objects.
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Figure 2.2: The normalised spectral responsivity of each type of cone cells, as reported by
the International Commission on Illumination (CIE) in 2006 [25].

While various 3D display architectures have employed distinct approaches to support the

aforementioned depth cues, it remains challenging to reproduce all the depth cues correctly

and collectively without introducing spatial or temporal artefacts.

2.1.2 Spectral considerations

Now we consider the spectral parameter (λ) of the plenoptic function (Equation 2.1).

Although Equation 2.1 is a function of wavelength (λ), the HVS does not perceive the

spectral radiance (or irradiance) per wavelength. Instead, it integrates the spectral irradi-

ance over the visible light spectrum, approximately ranging from 380 to 750 nanometres

in wavelength, via multiple types of photoreceptors on the retina. Cones and rods are

the photoreceptors responsible for the perception of spectral integration of light waves,

with cones predominantly sensitive to photopic (daylight, typically over 1 cd/m2) vision

and rods to scotopic (nocturnal light, typically below 10−3 cd/m2) vision. There are three

types of cones — L, M, and S cones, each peaking at a distinct wavelength in responsivity.

A multi-stage neural-circuity process of the signals received by each type of photoreceptor

contributes to the perception of colour.

For daylight conditions, colour is the result of LMS cone responses. The LMS cones

integrate the light spectrum weighted by the responsivity function of the L, M, and S
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cones:

L =

∫
λ

Φ(λ)L(λ) dλ ,

M =

∫
λ

Φ(λ)M(λ) dλ ,

S =

∫
λ

Φ(λ)S(λ) dλ ,

(2.3)

where L, M, and S are the cone responses of a light spectrum with spectral radiance Φ(λ)

per wavelength λ; L(λ), M(λ), and S(λ) are the spectral responsivity of cone cells of long,

medium, and short wavelength, as shown in Figure 2.2. If two nonidentical light spectra,

Φ and Φ, result in the same LMS responses:∫
λ

Φ(λ)L(λ) dλ =

∫
λ

Φλ)L(λ) dλ ,∫
λ

Φ(λ)M(λ) dλ =

∫
λ

Φ(λ)M(λ) dλ ,∫
λ

Φ(λ)S(λ) dλ =

∫
λ

Φ(λ)S(λ) dλ ,

(2.4)

the HVS perceive them as equivalent despite non-matching spectral power distributions

(SPD). Such colours are referred to as metamers. Due to metamerism, displays do not

have to generate light waves with physically correct spectra but a metameric match to

reproduce a target colour. Therefore, it suffices to simplify Equation 2.5 from a function of

wavelengths λ to a function of tristimulus colour channels c (such as LMS) for a perceptual

match, reducing Φ from spectral radiance to tristimulus colour values:

Φ = F (x, y, z, θ, φ, c, t). (2.5)

LMS can also be transformed into other tristimulus colour spaces such as XYZ and RGB

for specific applications. The set of all possible colours up to a metameric match can

be represented by a three-dimensional gamut of natural colours, such as one shown in

Figure 2.3.

The quality of colour can be further depicted by its chromaticity — the relative SPD

of the light waves regardless of its absolute intensities, and luminance — a photometric

measure of the intensity. For daylight vision, luminance can be calculated by integrating

the light spectrum weighted by a photopic luminous efficiency function:

Y = 683.002 lm/W

∫
λ

Φ(λ)ȳ(λ) dλ . (2.6)

where Y is the absolute luminance (cd/m2) of a light spectrum with spectral radiance Φ(λ)

per wavelength λ; ȳ(λ) is the photopic luminous efficiency function, as shown in Figure 2.4,
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Figure 2.3: The gamut of natural colour in the CIELUV [24] colour space, where (u′, v′) is
the chromaticity coordinate and L is a perceptual measurement of luminance.

corresponding to a weighted sum of the three cone responsivity functions according to

their relative population on the retina.

The dynamic range of a scene, natural or displayed, refers to the ratio of its largest and

smallest luminance value: Ymax/Ymin. The largest dynamic range that a display device

can reproduce is also known as its contrast ratio. A more perceptually uniform measure

of dynamic range is given by the difference of log luminance, log10(Ymax) − log10(Ymin).

In natural scenes, the dynamic range spans approximately 12 to 14 orders of magnitude.

While human eyes do not perceive such a large dynamic range simultaneously [186],

they can adapt dynamically to shift the effective range in response to varying lighting

conditions [114].

A closely related quantity to dynamic range and luminance is luminance contrast, the local

difference in luminance of an object from its surroundings. Contrast can be measured in

several ways subject to the spatial configuration of the stimuli. For example, the contrast

of a periodic pattern such as sinusoidal gratings can be measured by Michelson contrast :

CMichelson =
Ymax − Ymin

Ymax + Ymin

, (2.7)

where Ymax and Ymin are the maximum and minimum luminances in the grating. Alter-

natively, Weber contrast can be applied to measure the contrast of patches with small
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Figure 2.4: The CIE 1931 photopic luminous efficiency function [26].

foreground features superimposed on a large uniform background:

CWeber =
Yforeground − Ybackground

Ybackground

, (2.8)

where Yforeground and Ybackground are the luminances of the foreground and background

patches.

The HVS has limited sensitivity to contrast — if the contrast of a pattern is below a

certain threshold, it is not detectable by human eyes. Due to such limitations, we can

safely quantise the output of the plenoptic function to a certain level without resulting

in a perceptual difference. Contrast sensitivity is defined as the inverse of the threshold

detectable contrast. As contrast sensitivity varies with many factors such as the background

luminance, frequency, orientation, eccentricity, and size of the stimuli, ample literature

has attempted to experimentally establish a contrast sensitivity function (CSF) to model

such variations [118]. Due to the inherent complexity of the CSF, it is typical to use

Gabor patches — sinusoidal gratings modulated by a Gaussian envelope — as the stimuli

to measure the CSF. For Gabor patches, Michelson contrast and Weber contrast are

equivalent. However, although the CSF provides a reasonably accurate measurement of

contrast sensitivity for Gabor patches, the detection threshold is in general higher for real

images composed of numerous texture patterns that can reduce the visibility of the main

feature. This phenomenon is referred to as contrast masking [93].
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2.1.3 Temporal considerations

We also consider the temporal parameter (t) of the plenoptic function (Equation 2.1).

There is a consensus that a high display refresh rate is essential to maintain a high visual

quality for higher velocities of motion [87, 113]. Motion artefacts such as judder, ghosting,

motion blur, and flicker can all be reduced with a higher refresh rate. However, it is

difficult to determine a single threshold refresh rate above which any motion artefacts are

not perceivable, as it depends on a multitude of factors such as the persistence and spatial

resolution of the display, and the velocity, luminance, and contrast of the stimuli. For

example, most AR/VR displays present images with low persistence, where an image is

displayed at a higher intensity for a fraction of a frame duration and the display remains

blank for the rest of the frame. Low persistence significantly reduces the motion blur

caused by eye gaze moving over a discretely moving image, which is stationary on the

display over the duration of a frame for a fixed refresh rate. However, while low persistence

attenuates the required refresh rate to prohibit motion blur, it can introduce visible flicker

artefacts — the perception of visual fluctuations in intensity and unsteadiness in the

presence of a light stimulus — if the refresh rate is under a certain threshold [64]. Critical

flicker frequency (CFF) measures the frequency at which an intermittent light stimulus

appears to be steady without flicker artefacts. Low persistence requires a higher CFF

for a steady flicker fusion. Therefore, it is difficult to determine a threshold refresh rate

required for perceptually realistic motion quality for an average scenario, although studies

showed that the marginal gain with a higher refresh rate significantly drops as the refresh

rate rises to 300 frames per second and beyond [113].

In this dissertation, we do not prioritise temporal considerations and focus on improving

realism for static scenes.
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2.2 High-fidelity 3D scene acquisition

3D scene acquisition is the process of sampling the plenoptic function Φ = F (x, y, z, θ, φ, c)

(Equation 2.5) of a 3D scene. Since perceptual realism requires the highest quality of

acquisition, we focus on scene acquisition using digital single-lens reflex cameras (DSLR

cameras) or mirror-less cameras which provide better control and quality compared to

other types of capture devices (such as light-field cameras, web cameras, and phone

cameras), although some can be jointly employed with a mirror-less or DSLR camera to

facilitate the acquisition process. For instance, time-of-flight cameras (ToF cameras) [75]

can facilitate 3D reconstruction by applying time-of-flight techniques to resolve the distance

between the camera and the scene.

Similar to Section 2.1, we consider the geometric (Section 2.2.1) and photometric (Sec-

tion 2.2.2) aspects of scene acquisition, each pertaining to the parameters (x, y, z, θ, φ)

and (c) of the plenoptic function (Equation 2.5) of the reduced form.

2.2.1 Geometric image formation

Geometric image formation establishes the geometric relationship between pixels and their

sampled rays in 3D. In this subsection, we provide an overview of the geometric image

formation for three camera models: pinhole, thin-lens, and realistic cameras.

Image plane Image plane

d1d2

aperture
op

Figure 2.5: Geometric image formation for a pinhole (left) and a thin-lens (right) camera
model. For a pinhole model, each infinitesimal point p on the image plane corresponds to
the sampling of a single ray −→op traversing the camera origin o.

A pinhole camera model assumes an infinitesimal aperture that only allows for rays

traversing a single point. As shown in Figure 2.5 (left), each infinitesimal pixel on the

image plane corresponds to a single ray traversing the camera origin (aperture). The

mapping of such a ray to its projection onto the image plane can be modelled by a camera

matrix [161]. The pinhole model is the simplest form of geometric image formation for
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an ideal situation. In the real world, an infinitesimal aperture is not physically realisable.

Real cameras apply lenses to converge rays to form a sharp image with a nonzero aperture

size. A thin-lens camera is composed of a lens with assumedly negligible thickness, as

shown in Figure 2.5 (right). The lens converges rays emitting from a surface point of

distance d1 in front of the lens to a point of distance d2 behind. According to the lens law,

the relationship between d1 and d2 can be modelled by a thin lens equation:

1

d1
+

1

d2
=

1

f
, (2.9)

where f is the focal length of the lens. For a thin-lens model, an infinitesimal pixel on the

image plane no longer corresponds to a single ray but the irradiance of multiple incoming

rays from a nonzero solid angle. When the object is in focus, as shown in Figure 2.5

(right), all incoming rays are emitted from a single surface point. If the object is out of

focus, an infinitesimal pixel corresponds to the irradiance of rays originating from a patch

of the object’s surface rather than a point, resulting in defocus blur. A pinhole camera

can be approximated by a thin-lens camera by reducing the aperture size, which reduces

blur and increases the depth of field (DoF). Yet, a small aperture may add noise (due to a

deficiency of photons) and diffraction patterns to the image. A pinhole camera can also be

approximated by capturing multiple images at various focal depths with thin-lens cameras

and merging them to form a sharp image at all depths [88].

Both pinhole and thin-lens models characterise the major principles of geometric image

formation of a camera, with assumptions on their optics in ideal cases. However, real

cameras are not perfect. For example, real lenses are not infinitely thin and therefore suffer

from geometric aberrations, including spherical aberration, coma, astigmatism, curvature of

field, and distortion (radial and tangential), unless compound elements are used to correct

for them. Images taken with wide-angle lenses often require proper modelling of distortion.

Chromatic aberrations occur when rays of different wavelengths diverge from their point

of intersection with the lens due to different refractive indices of different wavelengths.

Another property of real-world cameras is vignetting, the tendency of darkening pixel

values towards the periphery of the image. Vignetting can be caused due to natural and

mechanical reasons. Natural vignetting results from the foreshortening in the object surface,

projected pixel, and lens aperture, which is also present with an ideal thin lens. Mechanical

vignetting is attributed to the internal blockage of rays by external objects in a lens

system such as filters or secondary lenses. Finally, the pixel sensors are not infinitesimal

or continuously tiled. The raw pixel value corresponds to the radiant flux received by

a non-zero pixel area rather than radiance or irradiance. This requires compensation in

photometric calibration, as will be explained in Section 2.2.2. Camera geometric calibration

is the process of establishing the geometric correspondence between the 3D scene and the
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2D image. This involves estimating the camera matrix and distortion, and potentially

more parameters [148].

2.2.2 Photometric image formation

Section 2.2.1 explains the principles of geometric image formation which establish the

geometric relationship between a pixel and its corresponding sampled rays. However, the

recorded pixel value does not directly reflect the true radiance or irradiance of sampled

rays. The calculation of true radiance values from raw pixel values requires compensation

for exposure, aperture, noise, pixel size, and dynamic range. In this subsection, we provide

a background of photometric image formation, establishing the photometric relationship

between raw pixel values and radiance.

Lens systerm3D scene CFA Image sensor Analog gain

IN ADC OUT

A / D Raw image

Figure 2.6: Conversion from photons to image raw pixel values in a typical photometric
image formation process.

As shown in Figure 2.6, photons of a scene first traverse the camera lens system that

controls the exposure time and aperture size to adjust the number of photons passing

through. Before being captured by an imaging sensor, photons are filtered by a colour

filter array (CFA) to acquire the colour information. The imaging sensor converts incident

photons to electrons which is proportional to the number of registered photons. The

electrons yield a voltage as an analogue signal, which can be amplified based on the

settings of the camera gain. Finally, an analogue-to-digital converter (ADC) digitises the

signal into discrete raw pixel intensities. Modern digital cameras provide access to this

uncompressed, minimally processed data directly from the electronic imaging sensor in

the form of RAW images.

As mentioned in Section 2.2.1 and above, due to a non-perfect camera lens, nonzero pixel

size, and various exposure times and gain, a pixel does not directly record the radiance of

a single ray but the digital signal that is linearly proportional to the total radiant energy

(J) of photons carried by multiple rays received by the sensor. Since radiance measures

watt per steradian per square metre (W sr−1 m−3), the recorded raw pixel values should

be compensated for that. Let Yi(p) represent the raw pixel value of the i-th colour channel

of the camera native space after CFA filtering at the p-th pixel, captured with exposure
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time t, gain g, aperture f-number a, and focal length f , assuming no presence of noise or

vignetting, the mean radiance of the radiant energy received by the p-th pixel sensor at

the i-th colour channel can be calculated as:

Xi(p) = k
Yi(p)

t g π ( f
2a

)2 s
, (2.10)

where s denotes the area of the pixel sensor and k denotes the conversion factor from the

digital signal to the physical radiant energy (J/1).

Equation 2.10 did not account for noise and dynamic range. The real recorded raw pixel

value Yi(p) contains multiple sources of noise and thus Equation 2.10 is only an estimation

of the true mean radiance. Sources of noise include photon noise from the inherent

randomness of incoming photons which can be modelled by a Poisson distribution, readout

noise from the voltage fluctuations while accumulating electrons, and ADC noise from the

quantisation error in the analogue-to-digital conversion. Meanwhile, real-world scenes often

span a wide dynamic range that is not possible to be captured with a single exposure, as

the pixel sensor has a limited capacity for registering photons. Large exposure can result in

saturated pixels while low exposure increases noise. Therefore, repeated capture is essential

not only to reduce noise and the percentage error but also to account for a large dynamic

range for radiance estimation. Most proposed radiance estimators from a high-dynamic-

range exposure stack require an accurate calibration of noise parameters to minimise

the variance of noise [31, 58, 62]. A Poisson-based estimator has been demonstrated to

perform with comparable variance without the need for knowledge about sensor-specific

noise parameters [61]. Finally, Equation 2.10 only models the mean radiance of registered

photons after complex interactions with the lens system. Acquiring the radiance of the raw

light rays described by the plenoptic function of the 3D scene requires further compensation

for defocus blur, vignetting, and geometric and chromatic aberrations, as discussed in

Section 2.2.1. Camera photometric calibration involves both radiance estimation and

colourimetric calibration. Radiance estimation is usually performed per colour channel

of the CFA, which can be further converted into a device-independent tristimulus colour

space from the native camera RGB space via a colourimetric calibration [47]. However,

camera colourimetric calibration is never 100% reliable, as the camera’s RGB spectral

sensitivity is different from LMS.
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2.3 3D scene representation for perceptually-realistic

view synthesis

In Section 2.2, we discussed the sampling of the plenoptic function using DSLR cameras.

Unfortunately, the high dimensionality of the plenoptic function and the high precision

required to match the limits of human vision make it unrealistic to directly sample the

entire plenoptic function to the precision of perceptual realism. Insufficient input views of

the captured light fields necessitate interpolation or extrapolation of the plenoptic function

to unseen views, which is prone to artefacts.

A scene representation is a data structure that encodes the intrinsic geometric and

photometric information about a 3D scene. It is a fundamental concept in graphics, upon

which many algorithms and downstream applications are developed. For the purpose

of this dissertation, we formulate a scene representation as a compact variant of the

plenoptic function, exploiting certain known or assumed properties of the scene to reduce

its dimensionality (although this is not necessarily the main consideration for the design of

a representation). In photorealistic graphics, designing a scene representation to effectively

and efficiently synthesise the plenoptic function at an arbitrary viewing position from a

sparse sampling of the light fields has been extensively studied in view synthesis. Methods

for photorealistic view synthesis can be extended to perceptually realistic view synthesis,

where the synthesised view is rendered and evaluated on a 3D display rather than a regular

2D screen. As shown in Figure 2.7, the scene representation is an integral component

of the PRG pipeline bridging acquisition and reproduction. In the pipeline, parameters

of the representation are learned from images captured in acquisition. This process is

known as 3D reconstruction. The reconstructed scene is later rendered on a 3D display to

reproduce a virtual light field that perceptually matches the real scene. For reconstruction,

the representation is expected to be sufficiently robust to arbitrary scene complexity in

geometry, topology, illumination, and materials. It should also be efficacious in retrieving

the high-frequency details of the scene geometry and appearance with possibly few captures.

With the emerging differentiable graphics (Section 2.3.2), the representation should also

provide meaningful gradients directing the optimisation to fast and valid convergence. For

reproduction, the representation is desired to be efficient in rendering and integrable with

the 3D display architecture of choice.

In this section, we provide an overview of various scene representations employed for

photorealistic view synthesis and discuss their extension to perceptually realistic graphics.

It should be noted that for graphics in general, view synthesis is not the only application

of a scene representation. There is no single representation that excels at all downstream
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Figure 2.7: Illustration of the perceptually realistic graphics pipeline assuming a static
scene. The scene representation is learned from the 3D scene acquisition and reconstruction,
which can be rendered on a 3D display to reproduce a virtual light field that perceptually
matches the real scene.

tasks. For example, tasks such as digital sculpture, animation, appearance editing, scene

composition, and relighting require the expressiveness of a representation in geometry,

materials, and lighting to perform such manipulations. However, expressiveness is not

an essential ingredient for the purpose of this dissertation where realism is the foremost

concern.

We structure this section with a short taxonomy of scene representations (Section 2.3.1)

and their reconstruction with differentiable graphics (Section 2.3.2) for view synthesis,

followed by a highlighted discussion on aspects crucial to extending photorealistic view

synthesis to perceptually realistic graphics.

2.3.1 Taxonomy

A scene representation can be roughly categorised as either describing a volume or a

surface, as shown in Figure 2.8.

A volumetric representation specifies the radiance information of every spatial location

(continuous or discrete) in a 3D volume. While the plenoptic function is a proper volumetric

representation, its high dimensionality makes it extremely difficult to directly reconstruct
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Figure 2.8: Visual illustration of common surface and volumetric representations.

it for view synthesis without dense input, or strong priors and constraints [153, 98, 4, 157].

Along with the high dimensionality is the redundancy where a large space of the scene

is not occupied by any physical matter and thus does not emit or reflect light. Such

redundancy can be alleviated by specifying an occupancy or density value for every discrete

(voxel grids [101]) or continuous (occupancy/density fields [105, 128]) 3D position. For such

representations, only space of nonzero occupancy contributes to the final accumulation of

radiance, enforcing a form of multi-view consistency hardly guaranteed by an arbitrarily

fitted plenoptic function. Each occupied 3D position can be additionally associated with a

radiance field [128, 179, 147, 60, 164] to simulate a view-dependent appearance. Volumetric

representation is the most general form characterising a 3D scene and is robust in modelling

complex scene geometry and topology such as hair, fabric, and smoke. Therefore, it has

been most widely adopted for view synthesis, especially with the recent advancement of

using neural fields [188] to represent spatially-varying occupancy and directionally-varying

radiance. Variants of volume representation with special data structures such as multi-

plane images [204, 48, 127, 179], octrees [195], and sparse voxel grids [147] have also been

proposed to reduce the computational cost of volume rendering.

In contrast to volumetric representations, a surface representation explicitly or implicitly

specifies a 2-manifold embedded in a 3D volume as a surface. Explicit surface repre-
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sentations specify a surface by an explicit mapping from a discrete (e.g. mesh [132],

point clouds [193]) or continuous (e.g. parametric surface [59]) set of indices to all the

surface points, while implicit approaches specify a surface by identifying the level set of

an implicit field (a trivariate function such as signed distance function [190, 168, 191]).

The implicit field and volume density can be mutually induced [133, 168, 191]. Similar to

volumes, a surface point can also be additionally associated with an appearance model

(e.g. bidirectional reflectance distribution function (BRDF) [190, 199], lumigraph [12, 81],

view-dependent texture map [30], surface light fields [183, 20], radiance fields [168, 191]) to

simulate view-dependent effects. Compared to volumetric representations, surface repre-

sentation is less commonly adopted for pure view synthesis where surface reconstruction

is not an essential intermediate step, especially for scenes containing complex geometry

and topology. However, for scenes containing simple or known shapes where accurate

surface reconstruction is feasible, a surface representation can potentially achieve a higher

rendering speed while maintaining a high synthesis quality.

2.3.2 Differentiable graphics

In the PRG pipeline, as indicated in Figure 2.7, the parameters of a specified scene

representation must be optimised to align with the input views before a novel view can be

synthesised:

arg min
s

∑
i

∥R(s, ci) − Ii∥ , (2.11)

where s indicates the unknown parameters of a specified 3D scene representation; ci

indicates the camera parameters of the i-th input view. Note that ci can be estimated via

this optimisation process as well if it is unknown. Ii indicates the input image captured at

the i-th view; and R represents a rendering operator.

Equation 2.11 is an inverse rendering problem, i.e. inferring information about the

intrinsic properties of the 3D scene from 2D images [95]. Traditionally, solving the

inverse problem has been extremely difficult as the simulation of light transport by R is a

complex process often involving non-differentiable steps, leaving efficient gradient-based

optimisation methods unemployable. For example, sharp changes in visibility due to object

silhouettes, occlusion, and illumination introduce discontinuities that are not differentiable.

Emerging differentiable rendering (DR) techniques attempt to derive effective gradients for

the traditionally non-differentiable operations in rendering to facilitate solving the inverse

problem. Example differentiable surface renderers include soft rasterisation [103, 143],

differentiable surface splatting [193], differentiable physically-based rendering [97, 106, 198],
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and differentiable spherical tracing [102, 77]. In contrast to surfaces, volumetric ray

tracing which is suitable for rendering volumes such as voxel grids or neural radiance

fields [128] is inherently differentiable as visibility is encoded into continuously-varying

probabilistic density values in such representations. While this dissertation is primarily

focused on applying differentiable rendering to view synthesis, differentiable rendering has

profoundly wider applications in physical inference, optimal control, scene understanding,

computational design, manufacturing, autonomous vehicles, and robotics.

While view synthesis has been extensively studied in the literature, it has been mostly

evaluated for photorealism [46, 162] rather than perceptual realism [121, 17], i.e. evaluation

on a 3D display against the view of a real-world scene. As will be discussed in Chapter 4,

perceptual realism poses a lower tolerance to artefacts (such as blur, noise, and distortion)

and inaccuracies in colour and appearance. Therefore, it requires a higher capacity of a

scene representation to converge to i) high-dynamic-range [129] and high-resolution [130]

images, and ii) scenes containing complex view-dependent appearances (such as specular

reflections) [179, 164, 60]. For differentiable graphics, perceptual realism also requires the

scene and rendering parameters to be optimised with respect to the real-world scene and

human eyes, rather than merely images. This involves integrating accurate simulation of

cameras, displays, and human eyes into the differentiable graphics pipeline [16].
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2.4 3D scene reproduction with computational 3D

displays

In Sections 2.2 and 2.3, we discussed the sampling and representation of the light fields,

which constitute the first two stages of the perceptually realistic graphics pipeline. The

last stage of the pipeline is to reproduce a virtual light field on a 3D display, aiming for a

perceptual match with the real scene, as shown in Figure 2.7. While 3D scene acquisition

and representation inherit techniques from photorealistic graphics, computational 3D

displays are a unique constituent part of perceptually realistic graphics.

A distinguishing feature of 3D displays is that they reproduce additional depth cues

compared to regular 2D screens. In the past decades, while 3D display technologies have

become increasingly accessible — from stereo movies to personal head-mounted VR/AR

displays, the quality and experience are still far from perceptual realism. For instance,

the wide FoV of a head-mounted display (HMDs) causes an insufficient spatial resolution

(measured as ppd - pixels per degree), resulting in pixelation artefacts. Optics such as

Fresnel or biconvex lenses introduce noticeable lens distortions on the retinal image as

well as degradation in contrast and colour. The conventional design of VR headsets by

combining a stereoscope with fixed screen planes causes vergence-accommodation conflicts

(VA conflict) that often lead to fatigue and sickness. On the other hand, established

2D display technologies can produce 2D imagery with a quality that fulfils many other

visual requirements for perceptual realism in the absence of 3D depth cues. For example,

organic light-emitting diode (OLED) displays can deliver high resolution that matches or

exceeds the acuity of the human eye [119]. Dual-modulated HDR displays can achieve

high dynamic range and contrast [150]. Wide, accurate colour gamut can be achieved

by using more saturated primaries, or multiplexing (temporal or spatial) with more than

three primaries [78, 70].

In this section, we provide an overview of 3D display systems. We categorise their

architectures into stereoscopic displays, where the use of special headgear, glasses, or

visual separators for eyes is essential to support stereo cues (disparity and vergence), and

volumetric displays, where 3D images are created in a volume, allowing for stereo cues

and true 3D viewing to naked eyes. For each display type, we explain the mechanisms

they employ for depth reproduction. We also discuss the associated rendering algorithms

and scene representations compatible with the display system. While certain architectures

require specific representations and algorithms for rendering, many can extend existing

techniques from photorealistic graphics. Finally, we analyse the performance and limitations

of these display techniques by evaluating the virtual light field they produce and the visual
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requirements they fulfil for perceptual realism. In general, it is a great challenge for a

display system to render a virtual 3D scene that collectively meets all the essential visual

requirements for perceptual realism without artefacts and trade-offs. We will discuss how

various 3D display architectures take advantage of the limits of the HVS in this process.

We will also discuss how well-established display technologies for 2D displays can be

adopted to address the unnatural experiences created by existing 3D display techniques.

2.4.1 Volumetric displays

Volumetric displays create 3D images by emitting light approximating a true light field.

They can reproduce stereo cues without the need for special headgear, glasses, or any

type of visual separator for the eyes. In this section, we introduce three main types of

volumetric displays, distinguished by the mechanisms they employ to reproduce the light

field. Digital holographic displays aim to reproduce the entire distribution of light waves,

including phase, amplitude, and wavelength, based on the principles of light diffraction and

interference. Light field displays are a close alternative to holographic displays in terms of

recreation of the original light distribution in a 3D volume. The distinction is that light

created by a holographic display is formed by phase-conjugated rays from each hologram

point, while a light field display controls the directional intensity of beams expanding from

a 2D panel (usually composed of pixel cells). Voxel-based displays reduce the light field to

a 3D volume composed of voxels.

Holographic displays

In principle, all depth cues can be automatically and simultaneously achieved by repro-

ducing the entire light distribution of a 3D scene. This is the ultimate objective of a

holographic display. Invented by Dennis Gabor [53], hologram works on the principles of

light diffraction and interference. In acquisition, the object beam of a 3D scene interferes

coherently with a reference beam, resulting in interference fringes going through a recording

medium that records all the characteristics of light (phase, amplitude, and wavelength).

In rendering, the object beam is reconstructed in a reverse manner. The reference beam is

usually delivered by a single monochromatic laser. Coloured holograms can be generated

by rendering three separate holograms of different wavelengths (e.g., red, green and blue)

and incoherently superimposing them on one another [8]. Conventional analogue holograms

are recorded and reconstructed using non-reconfigurable mediums, such as photographic

emulsion. Modern computer-generated holography (CGH) generates holographic interfer-

ence patterns using spatial light modulators (SLMs) and digital technologies [154], which
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enables the rendering of holographic videos [7].

Although an ideal holographic display has been regarded as the ultimate form of 3D

display, it faces challenges in both hardware and software. For example, SLMs have limited

spatial resolution. Based on a 400 nm blue light, a 127 000 ppi SLM with a 200 nm pixel

size is required to display a fringe width of half the wavelength of the light [21]. Current

commercial SLMs can only reach 7000 ppi [22]. Even if a dense SLM is physically realisable,

displaying a static 3D scene as large as a phone screen would require processing billions

of pixels, placing a huge burden on computation and data transmission. For dynamic

holograms, the amount of data rises to tens or hundreds of billion pixels per second.

Moreover, interference of coherent wavefronts results in speckle noise that undermines the

image quality in contrast and colour, despite recent progress showing that machine learning

techniques can be applied to reduce the artefacts of holographic displays, including speckle

noise [140, 15, 23].

Light field displays

In Equation 2.1, we use five spatial parameters to specify the starting position and direction

of a ray. If we assume a constant radiance along a ray, we only need to denote where the

ray hits the xy (z = 0) plane and can remove z from the parameterisation in Equation 2.1,

reducing it to:

Φ = F (x, y, θ, φ, λ, t). (2.12)

A generic light field display generates a four-dimensional (x, y, θ, φ) distribution of light

rays from a planar light source and an optical transmission medium. This way, both

positional and directional light can be recreated and modulated. The simplest method to

modulate directional rays is to redistribute pixels into N horizontal views. This can be

achieved by parallax barrier [74, 71] — an interlace of transparent and opaque stripes, or

lenticular sheet [178] — a cylindrical micro-lens array that redirects diffused rays from

pixels into specific directions. Of course, both of these approaches prohibit vertical parallax.

One advantage of the lenticular sheet over the parallax barrier is that the lenticular sheet

does not reduce the display luminance, since the lenticular sheet is comprised of lenses,

while the parallax barrier blocks light paths. The concept of the lenticular sheet can be

generalised to present both horizontal and vertical perspectives and potentially focus cues

by replacing it with a 2D micro-lens array. This is the mechanism behind the integral

imaging [99], where the light fields of a 3D object are recorded by a 2D micro-lens array

and reconstructed reversely when viewed at the same distance of the object through the

same lens array. One fundamental issue of these approaches, as with many other light

field display architectures, is the inherent trade-off between spatial and angular resolution
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(number of distinguishable views). For a display of a finite number of pixels to generate

N2 views, the spatial resolution reduces to 1/N2 of its full resolution. However, a too-low

number of views can cause discontinuous parallax or break focus cues. Focus cues can

only be achieved with a highly dense layout of angular views, as it requires at least two

rays to enter the pupil. Another drawback of lenticular lenses is that they only permit a

fixed number of viewing zones, limiting the view box (the range of positions from which

the display can be viewed). An incorrect viewing position can cause cross-talk and other

cues to be wrongly presented. To tackle these issues, such displays can be integrated with

a head-tracking system [72], allowing for a dynamic adjustment of the display content to

align with the viewing position. This can reduce the essential number of distinguishable

views for a fixed head position to maintain a higher spatial resolution and broaden the

viewing zone. The drawback is that this is usually limited to a single viewer and requires

a highly accurate synchronisation between head tracking and rendering to avoid visual

artefacts. Directional light rays can also be controlled by time multiplexing, designed to

overcome the trade-off between spatial and angular resolution by superimposing each view

time-sequentially [82, 91, 169]. The downside of time multiplexing is that it requires an

overall refresh rate and a scanning rate of the directional device to be the product of the

perceived refresh rate of each view and the number of views [21].

The fundamental issue of a light field display in trading off the spatial and angular

resolution is inherently rooted in the large information bandwidth required to express a full

light field. Although Equation 2.12 has one less parameter than the full expression, it still

carries a redundancy of information, since 1) the change of surface colour with the viewing

direction is highly correlated, and is constant for diffuse surfaces; 2) regions of uniform

colours or textures exhibit small variance. Compressive light field displays were introduced

to leverage computational methods and compressive optics to adaptively maximise the

quality of the virtual light field for the displayed content [175]. They are referred to as

being compressive because the number of emitted light rays can transcend the number

of representing pixels, which are computationally optimised to direct the resulting rays

to best approximate the target light field and minimise redundancy. Compressive optics

usually consists of a backlight (uniform or directional) and multiplicative optical layers

(e.g. LCDs). Examples of compressive light field displays include tomographic image

synthesis [174], polarisation fields [92], and tensor displays [176]. One challenge of these

displays is that the multiple-layer architecture introduces scattering and inter-reflections,

resulting in approximation error and thus compromising the display contrast and colour.

Another challenge is that compressive light field displays require a scene-based optimisation

for each frame, causing a high computational cost.
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Voxel-based displays

Voxel-based displays produce light originating from voxels in a 3D volume, typically by

time multiplexing with image slices emitted or illuminated from switching or mechanically

moving surfaces. Examples of voxel-based displays include the use of rotating display

screens [45], stacks of switchable diffusers [158], the spin of a cylindrical parallax barrier

and LED arrays [192], and sweeping diffusers [165]. It is possible to create strong 3D

cues including stereo, parallax, and focus cues with these displays. However, the physical

realisation of a voxel-based display makes it difficult to show occlusions as each voxel is semi-

transparent. Those displays also cannot reproduce view-dependent surface appearance,

such as specular reflections, since light rays are uniformly emitted or reflected from each

voxel in all directions. Compared to a holographic or light field display, they have a

confined depth range of the scene within the physical display volume, but they permit a

much larger viewing zone.

2.4.2 Stereoscopic displays

The quality of a volumetric display is highly confined by its resolution, dynamic range,

contrast, colour accuracy, field of view, and computational cost. After all, reproducing a

full light field of sufficient size and quality requires control over billions of rays, which is

currently infeasible. However, if the number of viewers is limited to a single person and

the eye position can be tracked or stabilised, the subspace of a light field required to be

reproduced becomes much smaller. This is one of the advantages of stereoscopic displays.

In contrast to volumetric displays, stereoscopic displays stabilise the eye position relative

to the display screens2 with special headgear or glasses, making it possible to render a

3D scene through a significantly smaller number of required rays. Moreover, existing

imaging and rendering techniques (or with slight variations) for photorealistic graphics

can be seamlessly integrated with stereoscopic displays. Therefore, stereoscopic 3D display

products have been commercially available long before volumetric or autostereoscopic

ones. The most basic design of a stereo display works by showing a separate planar image

to each eye to create a stereo vision. This is for instance the case of many commercial

head-mounted displays such as Oculus Quest 2 [125] and HTC Vive Flow [67]. However,

such a design lacks proper focus cues. As detailed in Section 2.1.1, rays traversing each

eye originate from a single planar screen at which the depth is fixed and may differ from

that of the virtual object in focus. This forces the observer’s accommodation mechanism

2This is with exceptions, such as shutter glasses and polarisation glasses. However, they cannot achieve
correct accommodation cues.
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to be decoupled from vergence. In this section, we introduce two variants of stereoscopic

displays that support proper focus cues (i.e. accommodation and defocus blur).

Vari-focal displays

Vari-focal displays are a variant of standard stereo displays with active adjustment of

the focal distance of the image plane seen by each eye via active optics such as liquid

lenses [36, 1, 134]. The adjustment of the focal distance is in accordance with the observer’s

gaze to show a varying depth-of-field (DoF) effect. Albeit in support of focus cues, these

types of displays introduce undesirable lens distortions caused by the active optics (e.g.

deformable membrane mirror [36]). They also require an accurate synchronisation of the

lens optics and depth-of-field rendering with the tracking of the gaze location. Inaccuracy

in the optics, rendering, and the gaze of the observers leads to errors on the reproduced

focal plane. The mechanisms of a vari-focal display also require its defocus blur to be

synthesised in rendering [187] rather than optically reproduced since they only allow for a

uniform focal depth throughout the scene for a fixed gaze.

Multi-focal displays

Multi-focal displays can be regarded as a variant of volumetric displays with a fixed viewing

position. For each eye, a stack of images is rendered at a fixed number of focal planes

at various distances, each plane adding a certain amount of light. Thus, a viewer can

accommodate appropriately at the desired depth. These focal image planes can consist of

superimposed virtual images on beam-splitters [2] or time-multiplexed image slices that

sweep a 3D volume with high-speed switchable lenses [107, 18, 197]. In contrast with

vari-focal displays, multifocal displays do not require a strict synchronisation of the optics

and rendering with the gaze location, but maintain a high resolution and contrast as they

can adopt well-established 2D display techniques [68, 203]. Architectures with fixed focal

planes also prohibit optical aberrations. However, the quality of a multifocal display is

especially sensitive to the accuracy of the alignment of the focal planes with the eye position,

as misalignment immediately breaks sharp edges and realism. Differences in eye positions

of individual observers can be compensated for with a homography correction [124] or a

physical calibration [203].

Despite the aforementioned improvements, edges near depth occlusions are particularly

difficult for a multi-focal display to reproduce. This is due to the additive nature of focal

planes, which cannot subtract light transmission to simulate physically-correct occlusion
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cues for finite pupil size. They also cannot create physically-correct accommodation cues

in between the focal planes. Therefore, compensation in rendering at each focal plane is

crucial for multi-focal displays to ensure a smooth perception of depth and texture. The

algorithm that drives the rendering for multi-focal displays is referred to as multi-focal

decomposition. It approximates the true light field of a 3D scene by distributing its content

on a discrete number of focal planes. The simplest form of multi-focal decomposition

is nearest neighbour, assigning the rendered object to its nearest focal plane. However,

the nearest neighbour can result in sharp discontinuities for surfaces spanning the depth

of multiple focal planes and artefacts at occlusion boundaries. It also drives the eye to

accommodate at inaccurate depth. Alternatively, light can be distributed across focal

planes via a dioptre-based linear depth filtering [2, 107]. Linear depth filtering can drive

accommodation to correct depth with focal plane separations up to one dioptre [111],

but may also produce visible artefacts at occlusion boundaries and for non-Lambertian

surfaces. Another approach is retinal optimisation [131, 124], which approximates the

retinal image of the displayed scene to be close to its real-world counterpart, especially

in terms of defocus blur. It performs better at occlusion boundaries at the expense of a

higher computational cost and less accurate accommodation cues [124]. Additionally, a

perception-driven hybrid decomposition strategy selects the best existing decomposition

method contingent on the scene content [196]. They show that in regions without occlusion

boundaries, linear depth filtering typically achieves the best result among all the multi-focal

decomposition algorithms.
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Chapter 3

Apparent Enhancement Rendering

In Chapter 2, we established the visual cues that are most relevant for perceptual realism,

including retinal image, spatial resolution, depth perception, dynamic range, contrast,

colour, and temporal resolution. Although these visual cues can be physically measured,

the perceived quality of such cues may vary under various viewing conditions while the

physical measurement of such cues remains unchanged. This is because the perception

of visual cues is a combined result of the physical light distribution of the scene and the

latent processing of it by the human visual system. Therefore, we may exploit particular

characteristics of the HVS to enhance the salience of visual cues that transcend the limits

of display devices. Such approaches are referred to as apparent enhancement techniques.

For example, apparent super-resolution that exceeds the display resolution can be achieved

by rapid temporal pixel variations [32]. Apparent image contrast can be altered with

Cornsweet illusion [142].

In this chapter, we present two rendering algorithms that can be applied to binocular

stereoscopic displays to boost the perceived quality of contrast and depth. Specifically, we

propose DiCE, a dichoptic contrast enhancing algorithm that exploits the binocular fusion

mechanism of the HVS to improve the perceived contrast without having to expand the

display contrast ratio (Section 3.1). We also introduce Dark Stereo, a depth-enhancing

algorithm employing a proposed model of stereo constancy to improve the precision of

depth perception from stereo cues under low luminance without having to manipulate

depth or disparity (Section 3.2). Both algorithms have been experimentally demonstrated

to be effective in improving realism and overall visual quality, and can be readily integrated

with any existing VR rendering pipeline with their real-time performance.
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3.1 Improving perceived contrast with binocular fu-

sion

DiCE DiCE

Figure 3.1: Comparison of standard stereo images and the images with enhanced perceived
contrast using DiCE. The images can be cross-fused with the assistance of the dots above
the images. Notice the enhanced contrast in the shadows and highlights of the scene. The
stereo images are from Big Buck Bunny by Blender Foundation.
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As discussed in Chapter 2, contrast is a crucial factor that influences realism. Images

with higher contrast have been demonstrated to be perceived as more realistic and three-

dimensional [163]. Bright, high-dynamic-range displays can achieve high contrast, but may

cause flicker in low-persistence VR/AR systems, as discussed in Section 2.1.3, and consume

more power. Local tone-mapping operators can be effective at enhancing local contrast, but

may lead to unnatural-looking images and artefacts in videos such as temporal incoherence

[40]. They are also computationally expensive, making their use prohibitive, especially

in time-critical VR/AR applications, in which every GPU cycle matters and dropping

frames is not an option. As opposed to these approaches, we capitalise on the human

visual system’s binocular fusion mechanisms to enhance contrast and improve realism.

We exploit an inherent property of the binocular fusion mechanism to enhance perceived

contrast. We introduce DiCE, a dichoptic contrast enhancement method that selectively

applies lower or higher tone curve slopes to improve image contrast. However, a naive

implementation of this approach may cause binocular rivalry : an unstable percept that

switches between the image of one or the other eye. We empirically established the main

factors causing rivalry and tune the parameters of our method accordingly. We found

that the ratio of contrasts presented to both eyes is the main factor that can explain and

quantify rivalry. This allows us to tune our method to maximise contrast enhancement

while maintaining low rivalry. Since the dominant cause of rivalry is mostly independent of

image content, our method can be implemented as a fixed set of tone curves, which have

negligible computational cost and can be directly used in real-time VR rendering for any

stereo displays. We evaluated our method by comparing it with previous work, showing

that our solution is more successful at enhancing contrast and at the same time much

more efficient. We also evaluated our method in a VR setup where users indicated that

our approach improves contrast and depth compared to the baseline. Our methodology

and results suggest that rendering for the binocular domain is both a computationally

cheap and effective means to increase contrast in binocular displays.

We start this section with a review of preliminary concepts and related work in contrast-

enhancing tone mapping (Section 3.1.1) and binocular vision (Section 3.1.2). Next, we

explain our proposed binocular contrast enhancement method (Section 3.1.3) and experi-

mentally establish the main factor that causes rivalry in enhanced images (Section 3.1.4).

This lets us find the best parameters for our tone curve generation method (Section 3.1.6).

Finally, we demonstrate the strengths and shortcomings of our method compared with

existing dichoptic presentation techniques (Section 3.1.7).
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3.1.1 Tone mapping and contrast enhancement

Tone mapping is an image-processing operation performed to convert an image from a

scene-referred colour space into a display-referred colour space. Tone mapping spans

a range of techniques that can vary in their goals. Some techniques simulate specific

phenomena of the visual system (glare, night vision). Others attempt to achieve the best

subjective quality (colour grading, enhancement) or possibly faithful reproduction of image

appearance [39]. Because scene-referred colours often exceed the dynamic range of the

target display, a common goal of all tone-mapping methods is the reduction of dynamic

range.

One of the most common techniques used in tone mapping is a global tone curve: a

monotonic function that maps input colour/luminance values to the displayed colour/lumi-

nance values. Such a curve can be fixed and, for example, can mimic the response of a

photographic film [144], or can adapt to image content [171] and a display [115]. A tone

curve is typically designed to enhance contrast in visually relevant parts of the scene and

compress or clip contrast in less relevant parts, which are dark or noisy [41], or contain

bright highlights or light sources that cannot be easily reproduced on a display.

To revert the loss of small contrast details caused by compressive tone curves, many

tone-mapping techniques involve local contrast enhancement. Such enhancement could

be achieved by unsharp masking combined with edge-stopping filters [38, 41], which can

avoid ringing or halo artefacts. Stronger enhancement could be achieved by operating in

the gradient domain [44]. This, however, requires computationally expensive optimization.

Contrast at multiple scales can be more efficiently edited using local Laplacian pyramids

[137]. The main drawback of all these enhancement techniques is that they introduce a

substantial computational overhead, which is unacceptable in real-time applications. Our

technique replaces computationally expensive local contrast enhancement with fixed tone

curves, which have negligible computational cost.

3.1.2 Binocular fusion

3.1.2.1 Tone mapping exploiting the binocular domain

Binocular fusion was exploited before in a number of tone-mapping methods for binocular

displays [189, 200, 201]. We will refer to these methods as binocular tone mapping operators

(BTMO). The goal of these techniques is to produce two tone-mapped images that are

maximally different, yet comfortable to fuse. This is achieved by adjusting the parameters
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of an existing [189] or newly proposed tone-mapping operator [200] in an optimization loop.

The loss function is designed to maximise the difference between left- and right-eye images,

leading to “richer” fused images. To ensure acceptable levels of rivalry, a binocular viewing

comfort predictor is used to reject image pairs that are deemed too rivalrous. Neural

networks can also be leveraged to generate tone-mapped images without assumptions about

monocular tone operators. In concurrent work, deep binocular tone mapping [201] employs

CNNs to generate an end-to-end binocular tone mapping operator that outputs the desired

LDR pair from an HDR image. Similar to previous BTMO techniques, the loss function is

designed to optimise the visual content distribution to maximise the perception of local

detail and global contrast, while maintaining visual comfort. Real-time computation can

be achieved with a GPU acceleration.

In contrast to BTMO techniques, our method explicitly enhances contrast based on

psychophysical models and findings, rather than making images different. In Section 3.1.7,

we demonstrate that this leads to much more consistent and predictable enhancement.

Instead of a complex viewing comfort predictor, which combines multiple heuristics, we

find a simple yet effective rivalry indicator based on new experimental findings. Our

technique does not restrict the choice of tone-mapping operator and can be used with

stereoscopic content. Most importantly, our technique has negligible computational cost

compared to the BTMO methods, and thus can process an image pair in milliseconds

rather than seconds without relying on GPUs.

3.1.2.2 Perception in dichoptic presentation

In a binocular display, dichoptic presentation is the presentation of different images to

the two eyes and dioptic is the presentation of identical images to the two eyes. If the

dichoptically viewed images are synthesised or photographed from two offset viewpoints

at a distance approximately equal to the human interpupillary distance, they contain

image disparities that elicit the illusion of depth by exploiting binocular vision. This is a

stereoscopic image pair and always requires dichoptic presentation. Dioptic presentation

cannot elicit the illusion of depth from disparities — as images for left and right eyes are

identical — and thus can only show monoscopic images. To avoid confusion, we will refer

to images without dichoptic enhancement as standard, regardless of whether these are

monoscopic or stereoscopic images.

When the dichoptic stimuli are too dissimilar to be fused into one stable percept, the

viewer experiences binocular rivalry. Binocular rivalry refers to a state of competition

between the eyes, with one eye inhibiting the perception of the image in the other eye
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Figure 3.2: For each level of standard (dioptic) contrast (c = 0.1 .. 0.5), the colour
lines show the combination of the left and right eye contrast (dichoptic contrast) that
produces the match. The lines are plotted according to the contrast matching model from
Equation 3.2 and assuming β = 3. The black-dashed line represents standard contrast. The
grey-dashed lines illustrate the range of contrast combinations that result in an unstable
percept and rivalry. The colour dashed lines illustrate the same relation but according to
the late summation model (Equation 3.3), and the dotted colour lines show the relation in
terms of logarithmic contrast (Equation 3.4).

causing alternation between perceived images [9]. Rivalry is caused primarily by geometric

differences in the two eyes’ images. A special case is lustre, which occurs when luminance

or contrast differences exist in corresponding image areas. It creates a shiny appearance

in such areas.

Fusion of luminance. When a uniform patch of luminance Ll is shown to the left eye,

and a patch of luminance Lr to the right eye, the fused patch can be matched to the

luminance that is the (weighted) average of those:

Lfused = aLl + (1 − a)Lr , (3.1)

where Lfused is the matching luminance (presented to both eyes) and a compensates for

the dominant eye [96] (a≈0.5).
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Fusion of contrast. Legge and Rubin [94] investigated perceived contrast when two

stimuli of the same spatial configuration but different contrasts are presented to the two

eyes. Two stimuli were presented: The standard in which the same contrast is presented

to the two eyes and the test in which a different contrast is presented to each eye. The

subject adjusted the contrast of the test in one eye to create the same perceived contrast

for the standard and test. They found that a generalised mean best describes their data.

If we present contrast cL to the left eye and contrast cR to the right eye, the magnitude of

the perceived, matched standard/dioptic contrast cm is:

cm =

(
cβL + cβR

2

) 1
β

. (3.2)

β tends to be close to 3. It is the same across spatial frequencies and increases slightly

with contrast. The matching contrast obtained by the above formula is illustrated as

colour curves in Figure 3.2. The curves show that the fused contrast is dominated by the

eye with the stronger contrast, in a manner that is close to the winner-take-all strategy.

Kingdom and Libenson [84] further show that the contrast fusion can be explained by the

late summation model in which the signals from both eyes contribute to the response, R,

of a contrast transducer function:

R(cL, cR) =
cpL + cpR

z + cqL + cqR
, (3.3)

where z, p, and q are the parameters controlling the shape of the contrast transducer [93].

Curves of matching contrast resulting from the late summation model are shown as dashed

colour curves in Figure 3.2. Because both models are comparable in the range where

inter-ocular contrast differences are small (and the rivalry is low), we will rely on the

simpler form in Equation 3.2 in further analysis.

3.1.3 Dichoptic contrast enhancement

In this section, we explain how the contrast of images seen binocularly can be enhanced

beyond what can be reproduced on a typical display significantly improving image quality

and realism in VR headsets and stereo displays. Our method was inspired by the observation

of Legge and Rubin that the fused contrast is dominated by the image of higher contrast

(Equation 3.2). We take advantage of stereoscopic displays, which can present a different

image to each eye and therefore offer a separate dynamic range budget for the left and

right eye. This lets us selectively use lower or higher tone curve slopes to improve image
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Figure 3.3: An example tone curve mapping input image log luminance to output image
log luminance. The slope of the tone curve corresponds to the reduction or increase in
contrast in the given tonal range of an image.

contrast. When binocularly fused, the images convey more fine detail in the shadows and

highlights compared to standard tone-mapped images.

3.1.3.1 Tone curves and contrast enhancement

We define a tone curve as a function mapping the logarithmic luminance (base-10 logarithm)

of the input image to the physical logarithmic luminance of the display device, as shown in

Figure 3.3. Representing luminance in the logarithmic domain makes it more perceptually

uniform (see Sec 2.4 in [117]) but also has the property that the slope of the tone curve in

the log-log domain modulates the contrast of the corresponding tonal range. Altering the

slope corresponds to multiplying log-luminance values: i.e., raising linear luminance values

to a power (commonly known as gamma).

A well-selected tone curve can achieve high contrast in any relevant tonal range while

mapping all pixel values to the available dynamic range. Assigning a steeper slope in one

part of the tone curve boosts contrast in that range, however, a larger proportion of the

output dynamic range budget is spent, necessitating contrast compression in another part

of the input range. The output log-luminance is restricted by the peak luminance of the

display (dmax) and its black level (dmin).

To ensure that we can rely on the contrast fusion rule when manipulating tone curves, we

need to address the discrepancy in contrast units. The contrast fusion rule in Equation 3.2

is defined in terms of Michelson contrast, which we denote as c. The slope of the tone curve

directly alters logarithmic contrast, which we denote as g. Logarithmic contrast is defined
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Figure 3.4: The relation between logarithmic and Michelson contrast.

as half of the logarithm of the luminance ratio, as illustrated in Figure 3.4. Logarithmic

contrast is not equivalent to Michelson contrast. However, for small and medium contrasts

(c < 0.5) that dominate natural or computer-generated imagery, both contrast measures

are linearly related, as shown in Figure 3.4. Thus, the contrast fusion can be expressed in

terms of logarithmic contrast:

gm =

(
gβL + gβR

2

) 1
β

. (3.4)

The new contrast matching formula, plotted as dotted lines in Figure 3.2, predicts contrast

match that lies between the predictions of Equations 3.2 and 3.3.

3.1.3.2 Interleaved dichoptic tone curves

Let us consider how we can design a tone curve that would maximise contrast enhancement

within the given budget of the dynamic range. A simple approach would be to create two

tone curves, like those in Figure 3.5, consisting of two piece-wise linear segments. For a

given tone curve segment, the slope in one eye can be increased while reduced in the other

62



Figure 3.5: When a separate tone curve is used for each eye (dichoptic presentation)
the slope of one of the curves can be up to twice as high as that for a standard dioptic
presentation. The perceived contrast for the dichopic images will be 10%–50% higher (see
Figure 3.6). However, such a strong separation of the tone curves will result in an image
that is very uncomfortable to view.

without exceeding the dynamic range budget. If the base tone curve (black dashed line in

Figure 3.5) has the slope sb, we set the slope for one eye to sl and the slope for the other

eye to sh = 2 sb − sl so that sl + sh = 2 sb. We will use indices l and h to denote low and

high slopes (rather than left and right eyes) as the slopes will be assigned interchangeably

to each eye for each segment of the tone curve. From Equation 3.2, we can find that the

gain in fused contrast for the original contrast g is:

Γ =
1

g sb

(
(g sl)

β + (g sh)β

2

) 1
β

=
1

sb

(
sβl + sβh

2

) 1
β

. (3.5)

The gain as the function of the slope on the left and right eye is plotted in Figure 3.6.

The curves clearly show that the gain in perceived contrast is greatest when the slope is

maximised in one eye and minimised in another. However, such a large luminance and

contrast difference could result in strong binocular rivalry.

To reduce the luminance difference and thus the potential cause of rivalry, we want the

left- and right-eye tone curves to be more similar to each other. This can be achieved

with an interleaved tone curve with a higher number of piece-wise linear segments, such as

the one in Figure 3.7. It should be noted that increasing the number of segments does

not affect the slopes of the curves in the left and right eyes and therefore does not affect

contrast enhancement. However, the number of segments restricts the highest contrast

that can be manipulated by the tone curve: if the contrast between two pixels is large

enough to span two segments of the tone curve (i.e. be larger than ∆in), it is not going to
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Figure 3.6: The gain in contrast due to fusing left and right eye images which are processed
by the tone curves with the slopes sl and sh (x-axis). As the tone curve slope is reduced
on the left eye (sl), it is increased on the right eye (sh). Such a change in slope does not
reduce the dynamic range budget allocated to both eyes, but it boosts fused contrast.

be enhanced (or reduced) as intended. Finding the right number of segments and their

slopes is a challenging problem and we address this problem in a series of experiments

in Section 3.1.4. But first, we explain why we need to ensure the smoothness of the tone

curves.

3.1.3.3 Smooth tone curves

In preliminary experiments, we observed that the piece-wise linear interleaved tone curves

may result in banding artefacts when an image contains large areas with smooth gra-

dients. These are caused by the C1 discontinuities in our tone curves, which translate

to similar discontinuities in the resulting image. The visual system is very sensitive to

such discontinuities, which are interpreted as spurious contours [83]. This problem can be

easily addressed by replacing the small intervals containing discontinuities in the piece-wise

linear curve with a cubic Bezier curve. We set the size of the interval to be 0.1 log10 units.

The three control points of this Bezier curve are the two endpoints on the interval and

the slope-transition point, as shown in 3.7-(b). This ensures that our tone curves are C1

continuous in the entire domain.

64



Input log luminance

O
ut

pu
t l

og
 lu

m
in

an
ce

(b)

(a)

d

d

Figure 3.7: Binocular tone curves may introduce less rivalry if they are constructed so
that resulting luminance values in each eye are possibly similar. The interleaved low- and
high-slope segments could be used to produce such curves. Inset (a) shows the notation we
use. We denote the lower slope as sl = l/∆in and the higher slope as sh = h/∆in. We also
denote the number of linear segments in the tone curve as N . For example, the segment
that spans ∆in is what we mean by one segment. Inset (b) shows smoothing using Bezier
curves. The black circles denote the control points.

3.1.4 The predictor of rivalry

The interleaved dichoptic tone curves are controlled by two parameters: the number of

segments and the slope of the interleaved tone curves. To determine the optimal choice of

these parameters that would produce the strongest enhancement and acceptable level of

rivalry, we conducted a perceptual experiment. The experiment was intended to test two

hypotheses, each proposing a different indicator of binocular rivalry:

Hypothesis 1 If rivalry is induced by the luminance difference between the left and

right eyes, a good predictor would be the maximum log-luminance difference, or h − l

using the notation from Figure 3.7. Note that h− l = (sh − sl) ∆in.

Hypothesis 2 Rivalry may also be caused by the contrast difference between the left

and right eyes. A good predictor in this case would be the ratio of contrasts presented to

the two eyes sl/sh = l/h.

Apparatus and participants The experiment was performed on a 24-inch NEC

PA241W colourimetrically calibrated display with an attached stereoscope in a dark

room (Figure 3.8). The optical path to the display was 36 cm (2.77 D). Eight volunteers
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Figure 3.8: LCD display with a stereoscope used in the experiments.

participated (8 males, mean age 27.3, SD 4.2 years). Before the experiment, each participant

read and signed the consent form. We also demonstrated to each participant what rivalrous

and non-rivalrous stimuli look like.

Stimuli and procedure We selected 16 HDR images, which were tone mapped based

on the smooth inter-leaved tone curves with N equal segments as explained in Section 3.1.3.

The end-points of the tone curve were set to be at the 1st and 99th percentiles of image

luminance. The dynamic range of the target display was 2.7 log-10 units (500:1 contrast).

The participants were asked to adjust the deviation d (shown in Figure 3.7) from the

straight tone curve so that “the image looks sharp and comfortable to view” (exact

wording on the briefing form). The critical values of d were measured using the method-of-

adjustment procedure with three repetitions per image. Then, the two proposed predictors

were computed accordingly as:

h− l = 2d (3.6)

l

h
=

∆out − d

∆out + d
(3.7)

The experiment consisted of six sessions. The same HDR images were used in all of them.

Four of the sessions had N = 2, 4, 10, and 20 interleaved segments spanning the entire
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N=2    l/h=0.63    h-l=0.6 N=2    l/h=0.63    h-l=0.6 

N=2    l/h=0.33    h-l=0.36 N=2    l/h=0.33    h-l=0.36 

N=20    l/h=0.33    h-l=0.136 N=20    l/h=0.33    h-l=0.136 

Figure 3.9: Examples of DiCE-enhanced monoscopic images from Experiment 3.1.4, with
different strengths of enhancement (the enhancement is stronger at a low l/h ratio), and a
different number of segments of interleaved tone curves (N). The images are suitable for
cross-fusion.

dynamic range of the display, 2.7 log-10 units. The two remaining sessions had N = 10

segments spanning half of the display’s dynamic range, 1.35 log-10 units, so that one

session spanned the darker half and one the brighter half of the dynamic range. Examples

of images rendered with a different number of segments and slopes are shown in Figure 3.9.

The order of sessions and images was randomised.

Results The plots for the two proposed predictors and for eight participants are shown in

Figure 3.10. It is evident that the ratio of contrast l/h is a much more consistent predictor

than the log-luminance difference across different test conditions (number of segments,

output display dynamic range). This was further tested in a leave-one-out cross-validation,

where we used 7 out of 8 of the measured images to calculate a fixed value of the predictor,

which was then used to predict the sl values of the remaining images. The procedure was

repeated eight times. The prediction error was computed as RMSE between the true and
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Table 3.1: Each row represents the prediction errors (RMSE) for each participant using
the corresponding predictors.

Participant Log-luminance difference Ratio of contrast
1 0.4182 0.0870
2 0.3793 0.0971
3 0.2880 0.0795
4 0.2062 0.0576
5 0.3811 0.0895
6 0.5217 0.1541
7 0.2824 0.0892
8 0.3148 0.0981

predicted sl and is shown in Table 3.1. The results suggest that the ratio of contrast l/h

is indeed the better predictor for sl.

Discussion The results demonstrate that the magnitude of rivalry is determined by the

contrast difference between the eyes (Hypothesis 2) rather than by the luminance difference

(Hypothesis 1). This finding confirms the importance of contrast in visual processing [84].

There is ample evidence suggesting that low-level visual mechanisms attempt to preserve

contrast but they do not encode information about absolute luminance. For example,

Weber’s law states that we are sensitive to ratios (contrast) rather than absolute levels.

Contrast constancy preserves the appearance of supra-threshold contrast across spatial

frequency and to some extent across luminance range [55, 86]. Furthermore, light-/dark-

adaptation is attributed to a large extent to the retina (photoreceptors and bipolar cells)

[37] and can be controlled individually per eye. This means that a per-eye luminance

difference can be partially compensated by the adaptation mechanism. Therefore, it is not

surprising that conflicting contrast signals evoke more rivalry than conflicting luminance

signals. This finding also shows that some degree of rivalry is unavoidable as we need

to introduce contrast differences for contrast enhancement. However, many observers

reported that they can adapt to a moderate level of rivalry a few seconds after switching

from standard to dichoptic presentation.

It should be also noted that the ratio of contrast l/h as a predictor of rivalry is independent

of image content. As shown in Figure 3.10, we cannot observe a pattern for images that

would be consistent across the participants. The differences in the means between observers

are also small given the within-observer variance. Therefore, the high variance is likely to

be due to the measurement noise, rather than systematic effects.
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Figure 3.10: The two proposed predictors of binocular rivalry (columns) collected from
Experiment 3.1.4, for eight participants (rows). The colours denote different numbers of
segments N and different output display dynamic ranges (d* and b* indicate half of the
display’s dynamic range, with d* representing the darker half and b* representing the
brighter half). The error bars represent the expected value of the standard deviation for
the given set of conditions. It is evident that the ratio of contrast l/h is distributed more
uniformly than the log-luminance difference.
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Figure 3.11: An example binocularly-fused sinusoid stimulus used in Experiment 3.1.5.
The left and right stimuli were shown with different luminance.

3.1.5 Rivalry due to luminance difference

Although contrast seems to be the dominant factor in dichoptic rivalry, we cannot fully

discount the effect of luminance. If we did so, we would need to assume that two images

of the same contrast but very different luminance are always comfortable to fuse. To

determine the maximum luminance difference that can be regarded as acceptable, we

conducted one additional experiment using the same protocol as in Experiment 3.1.4.

Apparatus and Participants This experiment shares the same setup as Experi-

ment 3.1.4. Five volunteers participated (5 males, mean age 25.2, SD 2.2 years). Before

the actual experiment, they read the consent and briefing forms. In a short demo, they

were shown examples of rivalrous and non-rivalrous stimuli.

Stimuli and Procedure We used sinusoid gratings as the stimuli, as shown in Fig-

ure 3.11. The gratings shown to each eye had the same contrast and frequency, but differed

in luminance. Participants were asked to adjust the difference of luminance given the

same criteria as in Experiment 3.1.4. Six sinusoidal gratings were generated: a factorial

combination of 2 contrasts (0.2 or 0.4) and 3 frequencies (1, 3 or 5 cpd). Each condition

was measured three times and the order of all trials was randomised.

Results The results indicated that most observers can tolerate the luminance difference

(h− l) up to 0.66 log-10 units (50th percentile). The 25th, 50th, and 75th percentiles of

the data for the threshold of luminance difference are 0.51, 0.66 and 0.80 in log-10 units.

We use these results to determine the best number of segments in Section 3.1.6.1.
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Figure 3.12: DiCE as part of a tone-mapping pipeline. The dynamic range of HDR input
frames (in linear RGB colour space) can be reduced with any tone mapping operator.
Alternatively, a standard SDR frame can be used. The luminance is separated from
two colour-opponent channels. The per-eye interleaved tone curves are applied to the
luminance channel, separately for each eye and then colour is added back. Finally, the
pixel values are display-encoded into SDR (sRGB) or HDR (rec.2100) display-referred
space.

3.1.6 Implementation

Experiment 3.1.4 demonstrated that binocular rivalry is mostly induced by the contrast

difference between the eyes. The variance in the perceived rivalry between the images is

relatively small, therefore, we can make our enhancement method independent of image

content. Our interleaved tone curves can be precomputed, and applied to an image after

tone mapping (but before display coding). This is a significant advantage of our DiCE

method, letting us use it with any existing tone-mapping operator, or directly with SDR

images.

Figure 3.12 shows the diagram of a tone-mapping pipeline with DiCE. First, any existing

tone-mapping operator can be used to reduce the dynamic range of an HDR frame and

generate a display-referred frame. Alternatively, an SDR frame, decoded into a linear RGB
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Figure 3.13: The shape of the dichoptic tone-curves at different l/h ratios. The ratios
were selected to represent the 1st, 25th, 50th, 75th and 99th percentile of the data (across
all images and observers) from Experiment 3.1.4.

space, can be used as input to our method. We then separate a luminance channel from

CIE u′v′ chromaticities and apply the interleaved tone curves to the luminance channel

alone. The colour is added back using an inverse colour transformation. Finally, the

colours are displayed encoded and stored in a raster buffer. Depending on the target

display, they can be encoded into the sRGB space for SDR displays, or one of the colour

spaces from the ITU BT.2100 recommendation for HDR displays.

3.1.6.1 Selecting interleaved tone-curve parameters

Our experimental results indicate that l/h determines both contrast enhancement and

the magnitude of rivalry. The l/h is also independent of the number of segments. Given

that, we opt for the smallest number of segments for two reasons: a) wider segments let

us enhance a broader range of spatial frequencies (as discussed in Section 3.1.3.2); and b)

there is a smaller chance for banding artefacts in the region where the tone curve switches

from low to the high slope (as discussed in Section 3.1.3.3). However, a small number

of segments increases the maximum luminance difference, which could be another cause

of rivalry, as discussed in Section 3.1.5. Therefore, in Figure 3.14 we plot the maximum

luminance difference (h− l) as a function of the display dynamic range and the number of

segments. The plots show that N = 2 is the right choice for most SDR displays up to 2.8

log-10 units of the dynamic range, including OLED displays used in HTC Vive and Oculus

Rift. The number of segments, however, may need to be increased to 4 for high-contrast

HDR displays.

Slope selection for the interleaved tone curves creates a trade-off between contrast enhance-

72



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Display dynamic range (in log-10 units)

0

0.5

1

1.5

M
ax

 lo
g-

lu
m

in
an

ce
 d

iff
er

en
ce

 (
h-

l)

N=2

N=4

N=6
N=8N=10

Rivalry threshold

Figure 3.14: The maximum log-10-luminance difference (h− l) for a given display dynamic
range (x-axis) and the number of segments (N , colours). The plots are drawn assuming
l/h = 0.63 (50th percentile). The dashed line represents the rivalry threshold (50th
percentile) for log-luminance difference (Experiment 3.1.5). The plot shows that for most
SDR displays (dynamic range less than 2.8 log-10 units), we do not need more than 2
segments.

ment and binocular rivalry. Figure 3.4 shows that contrast enhancement is maximised

for small ratios l/h, but, as found in the rivalry experiment, such small ratios increase

binocular rivalry. Therefore, the ratio l/h should be set as a parameter, adjusted per user,

ranging from about 0.5–0.75. The family of interleaved tone curves for the range of l/h

ratios and two segments is shown in Figure 3.13.

3.1.6.2 DiCE for partial overlap HMDs

As discussed in Section 2.1.1, binocular human vision is achieved via two monocular visual

fields of around 160◦ of horizontal visual angle each; their total horizontal field of view is

approximately 200◦. The combined FoV consists of three regions: an overlapping 120◦

central binocular region where stereopsis is achieved and two flanking monocular regions

of approx. 40◦ each [136].

Older HMDs employed a full overlap design, in which both eyes saw the same part of the

scene. This resulted in a smaller FoV as the optical design was limited by the human

binocular region. Modern commercial HMDs have a partial overlap design, mimicking the

human visual system. This allows for physically smaller displays while both increasing the

FoV and thus immersion, and supporting wider aspect ratios [52]. In such HMDs, binocular

overlap refers to the visible overlapping portion between the two eyes (see Fig. 3.15) in
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the headset and describes how much of the virtual scene can be seen by both eyes, which

is crucial for depth perception. In partial overlap binocular displays, only a central region

of the scene is shown to both eyes, and areas to either side are seen by only one eye. This

often creates interocular differences in the monocular regions [138] which often induce

a perceptual effect known as luning which is the subjective darkening in the monocular

regions or, for other users, it is experienced as a visual fragmentation of the field-of-view

into three distinct regions (left, middle, right) [85].

200o

160o 160o
75o

100o
50o

120o

75o

Figure 3.15: Arcs denote angles for viewing in the real world: each eye sees a field of
view of about 160◦. This results in a 200◦ combined horizontal field of view, 120◦ of
which are overlapping and thus binocular processing or stereopsis is possible. Two-headed
arrows denote angles in a modern VR headset: each eye sees a horizontal FoV of about
75◦, leading to a 100◦ combined FoV, only 50◦ of which are overlapping and available for
binocular processing or stereopsis.

For partial overlap HMDs (most commercial headsets) we cannot apply the interleaved

tone curves to the entire FoV. If the monocular flanking regions (magenta and blue lobes

in Fig. 3.15) are processed by the interleaved DiCE curves, they remain unfused and show

spurious contrast modulation. This is magnified with head motion in VR, which causes

the contrast appearance to change in the flanked regions. To avoid this problem, we

employ a piece-wise linear blending function that ensures a gradual transition between the

dichoptically tone-mapped area of the image that is viewed binocularly, to the monocularly

tone-mapped flanking lobes. The binocular overlap area depends on the fixed headset

optical setup and the eye relief, i.e., the distance of the eye from the lens, which itself

depends both on how deep-set the eyes are in the face and how pronounced the brow is.
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Figure 3.16: Example of two images used in Experiment 3.1.7.1 in a format suitable for
cross-fusion.

3.1.7 Evaluation

We compare our method with the standard presentation and BTMO technique on the

stereoscope in Experiment 3.1.7.1, and then evaluate in VR rendering in Experiment 3.1.7.2.

3.1.7.1 Validation with a stereo display

In this experiment, we compare our technique with the standard presentation (no dichoptic

enhancement) and previous work (BTMO [200]) on a stereo display.

Apparatus and participants We used the same display and stereoscope as in the first

experiment. 16 volunteers participated (5 females, mean age 26.8, SD 4.3 years).

Stimuli 17 monoscopic images and 2 stereoscopic images were processed with our DiCE

technique and BTMO [200]. The images were kindly processed by the authors of the

BTMO paper. It should be noted that both techniques serve a different purpose: BTMO

is a tone-mapping operator that requires an HDR image as input. Our DiCE technique

expects as input an image that has already been tone-mapped. Therefore, to reduce

differences between the methods due to different tone-mapping operators, we used one

of the images generated by BTMO as the standard/dioptic condition (no enhancement)

and also as the input to our technique. When selecting an image, we chose the one from
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the pair (left- and right-eye image) which contained fewer under- or over-exposed pixels.

We used a l/h ratio of 0.63 for all DiCE-enhanced images, which was the median from

Experiment 3.1.4. We selected a median rather than a higher percentile as we noted

that the participants are more conservative when they are asked to self-report the rivalry

threshold and can tolerate higher rivalry over time. Two images used in the experiment

are shown in Figure 3.16 for cross-fusion. All other images are shown in Figure 3.17.

Procedure We used a full-design pairwise comparison experiment in which all unique

combinations of conditions are compared: DiCE vs. standard/dioptic, BTMO vs. stan-

dard/dioptic, and DiCE vs. BTMO. The participants were asked two questions regarding

each image pair that they saw: which image has a higher contrast? and which image looks

better? The participants could switch between one and the other image in the pair using

the arrow keys and they confirmed the image of higher contrast with the space key and

the image they preferred with the return key. Each pair was compared three times by each

observer. The order of image pairs was randomised.

Data analysis The results of the pairwise comparison experiments were scaled using

publicly available software1 under Thurstone Model V assumptions in just-objectionable

differences (JODs), which quantify the relative quality differences between the techniques.

A difference of 1 JOD means that 75% of the population can spot a difference between two

conditions. The details of the scaling procedure can be found in [141]. Since JOD values

are relative, the bioptic (baseline) condition was fixed at 0 JOD for easier interpretation.

Results Results in Figure 3.18-a show that our DiCE method produces images of higher

perceived contrast compared to their standard/dioptic counterparts, demonstrating that

the contrast fusion model is effective in complex images. The BTMO results are mixed,

sometimes producing images of higher, but sometimes also of lower contrast compared

to the standard/dioptic condition and DiCE. It is difficult to compare DiCE and BTMO

techniques in terms of contrast enhancement, as each technique can produce images of

even higher contrast if the binocular rivalry metric is relaxed. This, however, will result in

images that are uncomfortable to view. The main strength of DiCE over BTMO is that the

enhancement is consistent across the images, demonstrating that the direct manipulation

of contrast in DiCE offers better control over resulting images than the optimization used

in the BTMO method.

The preference results, shown in Figure 3.18-b, are less conclusive as large subjective

1pwcmp — https://github.com/mantiuk/pwcmp
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(a) Lone rock (b) Mountain view (c) Mountain view

(d) Brick wall (e) Locomotive (f) Weaving machine

(g) Menai bridge (h) Moelfre (i) Snowdonia torrent

(j) Steam engine (k) Desk and lamp (l) Church door

(m) Illuminated statue
(n) Memorial church

(o) Oxford church

(p) Pooh and Tiger (q) McKees pub (r) Landscape

(s) Poker scene

Figure 3.17: Test images used in Experiment 3.1.7.1
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variations made most differences statistically insignificant. For the DiCE method, we

could measure the preference difference only for the 2 (Poker scene and Moelfre) out of

19 images. These differences could still be accidental as the test does not correct for

multiple comparisons. For 8 out of 10 comparisons that are statistically significant, the

BTMO method produced less preferred results than standard (dioptic) presentation and

only in two cases the preference was higher. This is in contrast to findings from [200],

where the authors showed a strong preference for BTMO over standard presentation. We

can only speculate that the effect could be due to the training of the participants; in our

experiments, the participants with more exposure to dichoptic images also indicated a

stronger preference for them. This could be compared to the experience of wearing new

glasses, when it takes some time to get fully comfortable and used to the new correction.

This result could be also explained by the broad meaning of the “preference” criterion,

which could combine many factors, such as comfort, familiarity, visual quality, wow-effect,

etc. The results suggest that single-dimensional “preference” may not be the best measure

for the dichoptic contrast enhancement techniques.

Figure 3.16 shows an example of two images produced by each method: the one for which

BTMO produces a higher contrast image (Poker scene) and the one for which DiCE

produces a higher contrast image (McKees Pub).

3.1.7.2 Validation in VR

Experiment 3.1.7.1 was performed in a stereoscope, which provides high resolution and

image quality, but it is less suitable for testing real-time rendering. Therefore, in the final

experiment, we compare DiCE with standard presentation in VR environments. This

experiment is also more relevant for the application of our method in real-time rendering.

Note that we could not include BTMO in this experiment as that method is unsuitable

for real-time rendering of 3D environments with 6DoF free viewing.

Apparatus and participants The VR environments were presented on an HTC Vive

VR headset. Ten volunteers participated (2 females, mean age 25.8, SD 3.2 years).

Stimuli and procedure The stimuli consisted of three VR scenes shown in Figure 3.20,

each seen from three different viewpoints. The participants could freely look around the

scenes while seated on a swivel chair. To switch between DiCE and standard presentation,

the participants pressed the trigger on the Vive controller. We used a l/h ratio of

0.55 for the DiCE method for similar reasons as in Experiment 3.1.7.1: to avoid overly
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All

Figure 3.18: The results of the validation experiment, comparing perceived contrast (a)
and preference (b). The results are reported for each scene and for the aggregated results
across all the scenes. The bars indicate the quality improvement relative to the standard
presentation (no dichoptic enhancement) in JOD units (the higher the better). +1 JOD
in that scale means that 75% of observers select the given condition over the standard
presentation. The negative values mean that the standard condition is selected more often.
The grayed bars indicate that we have no statistical evidence that a given condition is
different (with respect to contrast or preference) from the standard presentation. The
statistical test does not include the correction for multiple comparisons.
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conservative threshold adjustment and to make the method more different from the

standard presentation. For each stimulus, they were asked three questions: 1) which scene

appears to be higher in contrast?, 2) which scene appears to have more depth?, and 3) in

which scene the materials and textures look more realistic?. The questions were motivated

by our own observation that DiCE-enhanced images have different quality and appear

more three-dimensional. We did not ask about their preference as the question did not

give conclusive answers in Experiment 3.1.7.1. Before the experiment, each participant

read and signed the briefing and consent forms. As part of a training session, each

participant was presented with three pairs of images with examples of low/high contrast,

three-dimensional/flat shading, and natural/unnatural looking textures (Figure 3.19).

None of the participants reported symptoms of VR sickness after a 10-15 minute session

(no formal questionnaire was used).

Results The results of Experiment 3.1.7.2 are presented in Figure 3.21 as percentages of

participants who voted for DiCE when asked each of the three questions. It shows that our

DiCE method produces higher contrast perception than standard presentation for all VR

environments. The results also confirmed that the observers could perceive more depth

with the DiCE enhancement. The effect can have a number of explanations. Ichihara

et al. [73] showed that increased contrast can give an impression of depth. Binocular

lustre may be causing lustrous features to pop out [181], giving the impression of false

depth. Another possible explanation is that artificial disparity stemming from the different

monocular images (luminance dichopticities) could give rise to a depth sensation [180].

The results for realistic-looking textures were less conclusive with only one environment,

with the simplest textures and lowest complexity, showing a moderate preference for DiCE.

3.1.8 Discussion

The results of Experiment 3.1.7.1 and 3.1.7.2 confirmed that our DiCE technique can

effectively enhance contrast not only for simplified stimuli, used in psychophysical models,

but also for complex images. Experiment 3.1.7.2 indicated that our technique can also

improve the impression of depth in images. This question emerged when we were inspecting

the results of our method and noticed that they look different from typical monoscopic

images because of an apparent impression of depth, even if such depth is false. We also

noticed that materials change their appearance when processed with our technique. Glossy

objects appear shinier, giving them a more realistic appearance. Full understanding of

appearance changes caused by dichoptic presentation would require further research.
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Three-dimensional Flat

Natural texture Unnatural texture

High contrast Low contrast

Figure 3.19: Training images for Experiment 3.1.7.2

Figure 3.20: Three VR scenes in Experiment 3.1.7.2: Road, Rock, Woods (from left to
right).
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Figure 3.21: The percentages of votes for DiCE when compared to the standard presenta-
tion. The results are reported for each VR environment and for the aggregated results
across all the environments. The error bars denote the confidence intervals.

Contrary to previous BTMO techniques [189, 200] that venture to make images look

different to the eyes but may or may not result in contrast enhancement, our method

always enhances contrast in a principled manner. BTMO methods require very expensive

optimization; for the 800×600 image the authors report 22.24 seconds per single iteration

for the 2012 technique and 2.36 seconds for the 2018 technique. As most rendering pipelines

include a tone curve, they can be customised per eye using our interleaved tone curves

at no additional cost. The simple lookup table implementation of DiCE tone curves

causes zero drops in frame rates. Binocular rivalry can be controlled without the need

for complex predictors, by simply changing a single parameter. We test our technique on

both monoscopic and stereoscopic images, the latter being more relevant to the intended

application.

One aspect of binocular fusion that our method does not directly address is the ocular

dominance of the user. The visual system has a preference for one of the eyes, especially

in the presence of strong rivalry. Since our method attempts to reduce rivalry, ocular

dominance is less relevant than image contrast. Legge & Rubin [94] and Kingdom &

Libenson [84] showed that the eye receiving the higher contrast image dictates whether it

contributes more to the fused image and the effect of eye dominance is not clearly visible

in their data.

The main limitation of our technique is the inherent trade-off between contrast enhancement

and binocular rivalry. Stronger levels of enhancement result in more rivalry, which is

perfectly acceptable for some observers (two in eight) but not for others. This was

evidenced in the preference results of Experiment 3.1.7.1, where the answers were mixed

even though average observers reported seeing higher contrast (Figure 3.18). Clearly, more
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factors than perceived contrast contributed to the preference judgments. We suspect that

the nature of the dichoptic enhancement requires some period of ‘wearing-in’, similar to

getting used to a new pair of glasses. We did not observe any symptoms of VR sickness

but such symptoms can be only revealed in a longer, purpose-designed experiment that

has a control condition.

3.1.9 Summary

We propose a contrast enhancement technique for stereoscopic presentation, which is

derived in a principled manner from a contrast fusion model. The main challenge of our

approach is striking the right balance between contrast enhancement and visual discomfort

caused by binocular rivalry. To address this challenge, we conducted a psychophysical

experiment to test how content, observer, and tone curve parameters can influence binocular

rivalry stemming from the dichoptic presentation. We found that the ratio of tone curve

slopes can predict binocular rivalry letting us easily control the shape of the dichoptic tone

curves. We validate the effectiveness of our technique in the evaluation study, in which we

compare our technique with standard/dioptic presentation and previous techniques, for

both monoscopic and stereoscopic images. We observed marked visual improvement in

both perceived contrast and depth. In addition, glossy objects show increased shininess

and are thus perceived as more realistic. The technique has a negligible computational

cost (a lookup table) and only requires applying a separate tone curve for each eye. The

single parameter of the curve generation may be needed to be adjusted per observer but

it is content-independent so it does not require any analysis of the input images content,

which is a costly operation in real-time rendering. As tone mapping is usually a part of the

rendering pipeline, our technique can be easily combined with existing VR/AR rendering

at no additional cost.
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3.2 Improving depth perception under low luminance

Standard rendering Proposed stereo constancy method

Standard rendering Proposed stereo constancy method

Figure 3.22: Stereoscopic image pairs that can be crossed-fused, demonstrating the stereo
preservation under low luminance using Dark Stereo. The images should be viewed on a
dimmed display (below 5 cd/m2).

As discussed in Chapter 2, depth perception from various depth cues, especially stereo

cues, is a significant visual requirement for perceptual realism and a distinguishing feature

that separates 3D displays from conventional 2D ones. However, binocular depth cues are
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less reliable at low luminance because the global stereopsis mechanism requires a certain

level of suprathreshold contrast to detect a binocular disparity signal [49], and the contrast

detection thresholds are much higher at low luminance. On the other hand, it is often

preferable to display VR content at low brightness as it brings a number of benefits in

other aspects. For example, low luminance significantly reduces power consumption, as

the display itself can be responsible for half of the power usage in a stand-alone, battery-

powered headset. For perceptual realism, the most important benefit of keeping a low level

of luminance is improved motion quality. As discussed in Section 2.1.3, low persistence is

essential to reduce motion blur, but may cause flicker artefacts for a limited refresh rate.

Lowering display luminance can reduce the visibility of such flickering without the need to

increase the refresh rate [19].

In this section, we resolve the deterioration of depth perception under low luminance,

while keeping the aforementioned other benefits by compensation for contrast to maintain

a stereoscopic constancy and without manipulation of depth or disparity. In general,

the undesirable effects introduced by a dimmed display include reduction of perceived

contrast [6, 167], less colourful images [14, 151, 89], and undermined depth judgements

based on stereoscopic depth cues. While the former two effects have been well studied

and addressed in the literature, the effect of absolute luminance on depth judgements has

received relatively less attention.

We measure, demonstrate, and quantify the effect of display luminance and contrast

on depth judgements from binocular disparity cues, and propose an image contrast

enhancement technique that can enhance depth perception on dimmed stereoscopic displays.

We start this section with a review of the effects of display dimming (Section 3.2.1) and

methods for depth enhancement (Section 3.2.2). Based on a series of psychophysical

measurements on a prototype stereoscopic high-dynamic-range display (Chapter 4), we

propose a model of stereoscopic constancy (Sections 3.2.3 and 3.2.4), which predicts the

amount of physical contrast needed to maintain the same precision of binocular disparity

depth cues across the luminance range of 0.1 cd/m2 to 1000 cd/m2. The model is then

used to develop a multi-scale contrast compensation method (Section 3.2.5) that attempts

to preserve the precision of binocular depth cues at different display luminance levels. The

method has been implemented in GPU shaders and it can be used in real-time applications.

Finally, we test our algorithm in a low-brightness VR rendering application, in which

our method is both preferred and gives a better impression of depth than non-processed

rendering and existing methods (Section 3.2.6).
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0301. doi: 10.1145/3528223.3530136. URL https://doi.org/10.1145/3528223.
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Author’s note in collaborative work Section 3.2 contains collaborative work with

other parties for the completeness of the presentation. The author contributed to the

display calibration and data analysis for the 3D shape perception experiment (Section 3.2.3);

the modelling of stereo consistency (Section 3.2.4); and partially the data analysis of the

validation experiment (Section 3.2.6). Others were included for the completeness of the

presentation.
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3.2.1 Display dimming

In this subsection, we discuss the advantages and disadvantages of dimming a display and

the studies on the functioning of the human visual system and colour appearance in dark

and bright conditions.

Effect of display dimming on user experience Several works have studied the

impact of display brightness on user experience and power consumption. Schuchhardt

et al. [149] proposed an optimal dimming scheme to reduce mobile display brightness

while ensuring good legibility on the screen. Erickson et al. [43] investigated the effect

of colour mode on visual acuity and fatigue with VR head-mounted displays. They

found that a dark background used in dark mode can reduce visual fatigue and increase

visual acuity in a dim VR environment. Mantiuk et al. [116] argued for using amber

and red colours on dark displays as they induce the least amount of disability glare or

photophobia. They also found that the preferred display brightness was between 20 and

40 cd/m2 in a dark environment. Chapiro et al. [19] reported that, in low luminance

conditions, judder is less visible, leading to better-perceived motion quality. These works

provide solid ground for the merit of dimming VR displays. However, it is well recognised

that the visual performance, including contrast and depth perception, is substantially

degraded at low luminance. Although the visual system can preserve the appearance of

contrast through a range of conditions [54], the contrast appears weaker and eventually

disappears as the luminance is reduced, particularly the contrast that is close to the

threshold [86, 139]. Lower luminance levels cause the pupil to dilate. This could result

in a larger defocus blur in fixed-focus displays. Singh et al. [152] found that matching

the brightness of the displayed and real object on an AR display results in more accurate

depth estimation when focus cues are consistent (no vergence-accommodation conflict) or

when focused on the mid-point of the tested depth range. No absolute luminance levels

were reported so we cannot compare their finding with ours. According to Frisby et al.

[49], the global stereopsis mechanism requires a certain level of suprathreshold contrast

to detect a binocular disparity signal. Since the contrast detection thresholds are much

higher at low luminance, our ability to see depth in low contrast content is greatly reduced

[104]. Our work focuses on solving this issue.

Colour appearance on dimmed displays Despite the ability of our visual system to

maintain colour perception across a very wide range of illumination (colour constancy),

some changes in appearance are inevitable when light levels are low, in particular when the

visual system transitions from cone-mediated vision (photopic) to cone- and rod-mediated
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vision (mesopic) [6]. Indeed, colour appearance in mesopic vision (0.01 - 3 cd/m2) can

be influenced by the change in rod activity [156]. As a consequence, luminance levels

alter the perception attributes such as hue, chroma, and lightness [89, 151]. Brightness

and colourfulness also reduce with decreasing luminance [51]. Several models explaining

the changes in colour appearance at mesopic light levels have been proposed [151, 14],

including an extension of CIECAM02 colour appearance model [110].

Simulation and compensation of night vision Some works tried to simulate and

compensate for changes between day and night visions. Wanat et al. [167] proposed a

luminance re-targeting method to match the appearance of different luminance levels by

altering perceived contrast and modelling hue and saturation shifts of an image. Kellnhofer

et al. [79] argued that for stereoscopic displays, such changes are not sufficient to fully

simulate dark conditions. Their proposed solution involves the manipulation of binocular

disparity so that a scotopic stereo content displayed on a photopic monitor is perceived

as the scene was scotopic. Contrary to the mentioned studies, instead of improving or

simulating the appearance of a dark screen, our work focuses on improving stereo vision

in low-luminance conditions.

3.2.2 Depth enhancement

In this subsection, we outline the works that manipulate image content to improve stereo

vision.

Disparity manipulation Several works have proposed techniques for altering image

disparity, mostly intending to reduce vergence-accommodation conflict and make images

more comfortable to view. Oskam et al. [135] described a method that controls the camera

convergence and interaxial separation over time to optimally map a dynamically changing

scene to the desired depth range, which improves comfort. Lang et al. [90] proposed a

method that controls and re-targets the depth of a stereoscopic scene in a nonlinear and

locally adaptive fashion. The solution employs computed disparity and saliency estimates

to compute a deformation of the input views so that they meet the desired disparities. To

avoid undesirable distortions from disparity manipulation, Didyk et al. [33] introduced

a perceptual model of disparity which provides a metric to evaluate perceived disparity

change for stereo images. The follow-up work [35] studies the interplay of contrast and

disparity on the depth discrimination. Based on their disparity-perception model, they

jointly manipulate luminance contrast and disparity to reduce depth in stereoscopic images.
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However, these models ignore the impact of display luminance, which is central to our

work. Didyk et al. [34] also proposed a depth-enhancement technique that relies on the

Cornsweet illusion in the disparity domain. While all these methods show the potential of

manipulating disparity to improve the perception of depth in a displayed image, we argue

that manipulating disparity in VR content might affect visual feedback to egomotion and

contribute to an intensified VR sickness [76].

Depth enhancement by image content manipulation It has been shown that

certain image manipulations can enhance the apparent depth. Luft et al. [109] proposed

a technique that enhances contrast and colour near depth discontinuities to improve the

perceptual quality of monoscopic images. Our intention is to preserve the perception of

depth in stereoscopic content across different luminance levels rather than to enhance it.

3.2.3 3D shape perception

As discussed in Section 2.1.1, binocular disparity is one of the most important depth

cues [28] and is commonly employed in stereoscopic displays to evoke stereo 3D scene

appearance. In this section, we develop a computational model of the precision of binocular

disparity cues as a function of image contrast and luminance. To this end, we designed

an experiment in which observers were asked to judge the angle of a 3D hinge-like shape

(Figure 3.23, left), reproduced on the display using only disparity depth cues (Figure 3.23,

right). Our 3D shape perception experiment was inspired by the study of Watt et al. [172],

where a similar hinge-like shape was used to examine whether focus cues have an indirect

effect on depth interpretation.

Apparatus The experiment was conducted on a custom-built HDR stereo display,

which shares the same architecture as the HDR multi-focal display apparatus presented

in Chapter 4, except that we only used the near focal plane for this experiment. The

apparatus allows a single observer to view a pair of HDR images (from 0.01 cd/m2 to

3000 cd/m2) through an optical arrangement similar to the Wheatstone mirror stereoscope,

as illustrated in Figure 4.3. Further details on the display design, control software and its

colourimetric and geometric calibration are explained in Chapter 4. We used HDR rather

than a standard display as it can reproduce both very low and very high luminance while

maintaining sufficient colour accuracy (bit-depth). The virtual images of the HDR content

were placed 45 cm in front of the observers, with a resolution of 82 pixels per visual degree.
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background stimuli observer

min angle

65°
max angle

115°

45 cm

Figure 3.23: Left: The stimulus used in Experiment 3.2.3. The observer is presented with
a hinge-like concave shape. The angle is changed by moving the hinge part towards or
away from the observer (depicted by the arrows). Right: Procedural organic pattern on a
uniform background. The superimposed grid depicts the three-dimensional shape of the
stimuli. Note that the superimposed grid was only added to this figure to facilitate its 3D
interpretation, while originally the hinge shape was reproduced only by the disparity cue.

Stimuli To study the influence of low luminance on binocular depth perception, we

designed a stimulus that contained a controlled binocular disparity cue while minimizing

the effect of other depth cues. The observers were presented with a concave, hinge-like

shape on a uniform grey background. The stimuli were textured with a procedurally

generated pattern (Figure 3.23, right) with only two shades of grey. To isolate only the

disparity cue, the texture was projected on a surface from a position of a cyclopean eye,

thus eliminating the perspective projection cue (the texture density did not change with

the distance). It was also rendered without a reflection model to remove shading cues.

During the experiment, observers were asked to use a chinrest to prevent head movements.

The stimuli and setup are presented in Figure 3.23.

The stimuli were presented at five luminance levels: 0.1, 1, 10, 100, and 1 000 cd/m2. For

each luminance level, four contrast levels, measured as Weber contrast (Equation 2.8), of

the texture were measured: 0.05, 0.1, 0.2, or 0.4. As in the pilot experiment observers

were not able to see the stimuli at 0.1 cd/m2 and Weber contrast of 0.05, we removed this

condition from the main experiment. The order of conditions was randomised for each

observer. If the luminance decreased between two conditions, we displayed a uniform field

with the target luminance for a minute to ensure the observer was adapted to the new

luminance level.

Experimental procedure The task was to assess whether the angle was greater or

smaller than 90 degrees and confirm the decision by pressing a corresponding key on
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the keyboard. For each of the 19 conditions, we used the method of constant stimuli

to estimate the probability of judging the angle as acute or obtuse. The tested angles

were: 65◦, 75◦, 85◦, 95◦, 105◦, and 115◦. Six trials were collected for each angle and each

observer. We changed the angle by moving the hinge part towards and away from the

observer while keeping the side edges stationary (Figure 3.23). This was done to avoid

additional depth cues. The tested angles were randomised between the trials.

Each observer was asked to complete a training session at 10 cd/m2, in which they were

given feedback on whether their answer was correct. Such feedback was not given in the

main experiment. The training session helped the observers to familiarise themselves with

the task and become accustomed to disparity-only stimuli. The session was also used to

screen observers. We excluded three observers who were unable to properly complete the

training session2 from further experiments. The entire experiment took each participant

around two hours and was split into 3–5 short sessions.

Observers Eleven volunteers (four females and seven males, mean age 31, SD 4.5 years,

including three authors3), who passed the training session, participated in the experiment.

Nine of them completed trials for all luminance levels, while two completed only the trials

for luminance levels from 0.1 cd/m2 to 10 cd/m2. All observers had normal or corrected-to-

normal visual acuity. All passed the Titmus stereoacuity test. All observers except the

authors were naive to the purpose of the experiment. Before the experiment, each observer

read and signed the consent form. The observers were rewarded for their participation.

The experiment was approved by the departmental ethics board.

Results The experiment explained how well the observers could see a geometric angle at

several luminance and contrast levels. The data averaged over all observers, plotted as the

probability that an observer reports an obtuse angle, is shown in Figure 3.24 as red stars.

The first important observation is that the psychometric curves formed by the data points

cross the 50% probability point at around a 90-degree angle regardless of luminance and

contrast. This means that the perceived angles were not distorted by lower luminance and

contrast. However, the slopes of the psychometric functions differ substantially between

the conditions. The shallower slopes indicate that the observers more often mistook the

angle at low luminance and low contrast. This means that lower luminance does not

reduce the accuracy of the shape assessment task, but it reduces the precision of that task.

2giving purely random results as they cannot properly perceive stereo cues.
3The authors participated in this experiment as they did not have a preferred outcome, but rather

aimed to accurately measure the precision of stereo cues.
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Figure 3.24: The red stars are the original data points collected from the 3D shape percep-
tion experiment (Section 3.2.3). They represent the frequency at which the participants
assessed the angle as obtuse under various luminance and contrast conditions. The error
bars denote the 99% confidence intervals. The blue curves represent our fitted psychometric
model (Section 3.2.4). The top-left plot has no data points as it was impossible to see the
stimuli in this condition.

3.2.4 Stereo constancy model

In this section, we propose a model that can predict how contrast needs to be altered to

preserve the same precision of the stereo task across different luminance levels. As the first

step, we assume the collected data can be explained by a psychometric function that follows

the Weibull cumulative distribution function [177]. We used this psychometric function to

describe the probability p of an observer perceiving the hinge-like shape (Figure 3.23) as

an obtuse angle given the actual angle α, represented in degrees:

p(α, β) = 1 − exp
(
log(0.5)10β(α−αthr)

)
(3.8)

where αthr is the angle at which the probability of detection p is 0.5, which we assumed to

be 90 degrees. The value of β controls the steepness of the function, which reflects the

precision of the user performance in this task. A higher value of β means that the observer

is more sensitive to the variations in the perceived angle and also that the task is easier.

Our goal is to find a model of β as a function of contrast and luminance, such that the

92



likelihood of the data observed in the 3D shape perception experiment is maximised. We

found that β can be explained by a quadratic function of contrast and log-luminance:

β(c, L;w) = w1L + w2c + w3L
2 + w4c

2 + w5 (3.9)

where L is the logarithm of luminance (L = log10(Y )), c is logarithmic contrast, and

w = [w1, ..., w5] denote unknown free parameters. Note that contrast was recorded as

Weber contrast Cw (Equation 2.8) in our experiment. However, our contrast enhancement

method (Section 3.2.5) can be implemented more efficiently if it operates on logarithmic

contrast. The Weber contrast Cw can be converted into logarithmic contrast c with the

formula:

c = log10(Cw + 1). (3.10)

To have better control over free parameters, and to ensure that the function is monotonic,

we used the maximum a posteriori (MAP) estimation to find the values of w. We assume

w ∼ N(µ, diag(σ)2) for some µ and σ, where µi and σ2
i are the mean and the variance of

wi respectively.

The likelihood of observing k out of n trials (of selecting an obtuse angle) can be explained

by a binomial distribution, with a latent probability of p of perceiving the angle as obtuse.

As indicated by Equation 3.8, the value of p is dependent on the presented angle α and

detection sensitivity β, which is then parameterised by contrast c, luminance L, and w in

Equation 3.9. Under the MAP framework, free parameters w can be found by minimizing

the negated log-likelihood of the binomial distribution:

arg min
w

−
∑
s

∑
d

log

((
ns,d

ks,d

)
p
ks,d
d

(
1 − p

(ns,d−ks,d)

d

))
+
∑
i=3,4

1

2σ2
i

(wi − µi)
2 (3.11)

where s is the index of the observer, d = [α, c, L] are the parameters of each condition, and

pd = p(α, β(c, L;w)) is given by Equations 3.8 and 3.9. ns,d in the binomial coefficient

is the total number of measurements collected for observer s and condition d and ks,d

is the number of measurements in which obtuse angle was selected. Table 3.2 shows the

final estimated parameters we found for w, and our choices for µ and σ. Under the

MAP framework, 1
2σ2

i
becomes the weights on the regularization terms. Note that we only

regularize 2nd-order terms w3 and w4 to ensure monotonicity. With these parameters, we

plot the corresponding fitted psychometric functions parameterised by β under various

luminance and contrast conditions on top of the original data points in Figure 3.24 as blue

curves. The plots demonstrate that the model explains well most conditions. The worse

fit for some conditions (e.g. 0.1 cd/m2, CW = 0.4) is due to the regularization, which was

necessary to make the model monotonic and thus invertible.
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Table 3.2: Estimated values of free parameters of Equation 3.9 and the priors for the
Maximum a Posteriori (MAP) estimation. Symbol / indicates that no prior was used.

1 2 3 4 5
w 0.0050 0.1849 -0.0010 0.3994 0.0263
µ / / -0.4 0.4 /
σ2 / / 0.001 0.001 /

Next, we use the fitted model to find the lines of equal precision of the task (constant

β). Such lines are plotted as continuous lines in Figure 3.25. The figure shows that to

maintain the same precision of the task (the same β), we need to increase the contrast at

low luminance and that such an increase should be smaller for higher contrast. We will

refer to this model as a stereo constancy model and use it in the next section to derive our

contrast enhancement technique for dark stereo displays. To demonstrate that the effect

cannot be predicted by a contrast constancy model, we plot in the same figure the contrast

constancy model of Kulikowski [86] (used in [167]). The comparison shows that stereo

constancy requires stronger contrast enhancement between 0.1 and 10 cd/m2 (mesopic and

photopic range) than contrast constancy. The difference between both models is further

corroborated in our validation experiments in Section 3.2.6.

3.2.5 Stereo-preserving contrast enhancement method

We use our model to design a local contrast enhancement method that preserves the

precision and difficulty of stereo perception at low luminance. We follow a similar contrast

retargeting algorithm as used by Wanat et al. [167] to manipulate the local contrast

according to the stereo constancy model. We also improve a few processing steps for better

real-time performance and temporal stability. The following subsections explain each step

of the algorithm.

3.2.5.1 Colour space transformation

Since our stereo constancy model is defined in terms of physical (linear) luminance units,

we first convert the rendered frame from a gamma-encoded to a linear colour space.

Assuming ITU-R BT.709-6 RGB primaries and the standard gamma (γ = 2.2), the relative
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Figure 3.25: The solid lines, or equivalent-β lines, connect the contrast values that result
in the same precision of perceiving depth (the same β of the psychophysical function) as a
function of different display luminance levels. The lines are derived from our model of
stereo task difficulty. The dashed lines represent the equivalent perceived contrast for
three different spatial frequencies (2, 4, and 8 cpd) according to Kulikowski’s model.

luminance, yinput, is computed as:

yinput(x) =
3∑

k=1

vk I
′ γ
input(x, k) , (3.12)

where I ′(x, k) is the gamma-encoded input value at pixel x and in colour channel k (in

the range 0–1), while vk = [0.212656, 0.715158, 0.072186]. Note that we use lower-case y

for relative luminance to make it distinct from absolute luminance, Y .

3.2.5.2 Multi-scale decomposition

The proposed method compensates for the deteriorated depth perception by enhancing

local image contrast. In order to operate on local image contrast, we decompose an

image into frequency bands using the Laplacian pyramid. We use the classical Burt and

Adelson method [13] with the coefficient a = 0.4 used to construct the filters. In our
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implementation, we construct a Laplacian pyramid consisting of 3 levels: two band-pass

levels and one low-pass level (baseband). The two band-pass levels are sufficient because

of the limited effective resolution of VR headsets (in terms of pixels per degree). Such a

shallow decomposition also improves the performance in real-time applications.

For computational convenience, the decomposition is performed on logarithmic values of

luminance l = log10(yinput). This ensures that the coefficient of the pyramid represents

logarithmic contrast (they approximate the logarithm of ratios between two levels). The

Laplacian pyramid coefficient at level i is then computed as:

Pi(x) = (gi ∗ l)(x) − (gi+1 ∗ l)(x) , (3.13)

where gi is the kernel of a Gaussian pyramid at the level i and ∗ is the convolution operator.

3.2.5.3 Measure of local contrast

Our stereo constancy model requires an estimate of the local contrast to find a corresponding

equivalent contrast in the target image. Although the coefficients of the Laplacian pyramid

can be used for this purpose, it can result in over-enhancement and artefacts at sharp

contrast edges [167]. We follow the same approach as in [167] and compute a root-mean-

squared (RMS) measure of local contrast.

The localised root-mean-square (RMS) contrast can be computed as:

ci(x) =
√

(gσ ∗ l2)(x) − ((gσ ∗ l)(x))2 , (3.14)

where l is the logarithm of relative luminance and g is a Gaussian kernel with standard

deviation σ. We use the kernels with larger σ at the lower frequency pyramid levels. To

avoid computing additional convolutions, we can instead reuse the Gaussian pyramid and

estimate the local RMS contrast as:

ci(x) =
√

Hi(x) −G2
i (x) , (3.15)

where Gi is a Gaussian pyramid built from log-luminance l and Hi is a Gaussian pyramid

built from squared log-luminance l2. Computing a second pyramid H is inexpensive on

a GPU, as it can be done by operating on a 2-channel texture, where the first channel

contains log-luminance and the second channel contains squared log-luminance.
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Figure 3.26: Method of finding equivalent contrast that preserves the precision of binocular
disparity cues. Similar to Figure 3.25, for a given input contrast and source luminance,
our stereo constancy model gives the curves of equivalent contrast (constant β, blue line).
This lets us find the desired contrast for any target display luminance.

3.2.5.4 Contrast retargeting

Once the Laplacian pyramid and contrast magnitude are computed, we can map the contrast

for a given source luminance (Yin) to the contrast that provides the same stereoacuity

when seen at target luminance (Yout). This can be done by executing the following steps

for every frequency band except the low-pass band (baseband), which does not encode

contrast.

Finding contrast enhancement factor We need to find an equivalent contrast at

another (target) luminance level, which results in the same stereo precision (β) as the

original contrast. We can rearrange Equation 3.9 to compute the equivalent contrast ceq

for the desired logarithmic contrast c, source (Yin) and target (Yout) luminance:

ceq(c, Yin, Yout) =
−w2 +

√
w2

2 − 4w4t

2w4

, (3.16)

where

t = w1 Lout + w3 L
2
out + w5 − β(c, Lin)

Lin = log10 Yin Lout = log10 Yout

(3.17)

with the parameters w1, ..., w5 reported in Table 3.2. Function β(·) is given in Equa-

tion 3.9. The process of mapping contrast between luminance levels is further illustrated

in Figure 3.26.
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Instead of directly modifying contrast in the Laplacian pyramid, we compute a contrast

enhancement factor:

mi(x) =
ceq

(
ci(x), Yin(x), Yout(x)

)
ci(x)

, (3.18)

where ci is an input RMS contrast computed according to Equation 3.15 and ceq() is

the equivalent contrast function from Equation 3.16. Yin and Yout are source and target

luminance which are computed as:

Yin(x) = 10GN (x) · Ypeak,src ,

Yout(x) = 10GN (x) · Ypeak,trg ,
(3.19)

where GN is the base band of the Gaussian pyramid (as explained in Section 3.2.5.2).

Ypeak,src is the peak luminance of the source display (before dimming) and Ypeak,trg is the

peak luminance of the target (dimmed) display. We use Ypeak,src = 80 cd/m2 in all our

experiments.

Contrast enhancement Given the local contrast estimate computed in Section 3.2.5.2,

we retarget it, enhancing locally the Laplacian pyramid:

P̃i(x) = Pi(x) ·mi(x), (3.20)

where Pi is the i-th level of Laplacian pyramid (i = 1, ..., N − 1, excluding the base-band)

and mi is a corresponding enhancement factor from Equation 3.18.

We reconstruct the resulting enhanced luminance channel yenh by summing all N levels of

pyramid P̃ including the base band:

yenh(x) = 10
∑N

i=1 P̃i(x). (3.21)

3.2.5.5 Reconstructing colour image

The enhanced colour image Ienh is produced by multiplying input colour (RGB) image in

linear space Iinput by the ratio of enhanced and input luminances:

Ienh(x, k) = Iinput(x, k)
yenh(x)

yinput(x)
, (3.22)

where k is the index of the colour channel (k ∈ {1, 2, 3}). Such an approach may, however,

result in out-of-gamut colours (one of the colour channels values greater than 1) and
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distorted or desaturated colours. To prevent this, we compute how much a particular pixel

can be enhanced until the pixel exceeds the gamut:

mmax(x) =
1

maxk

{
Iinput(x, k)

} . (3.23)

Next, we introduce this term into the previous grey to colour conversion equation:

Ienh(x, k) = Iinput(x, k) · min

{
yenh(x)

yinput(x)
,mmax(x)

}
. (3.24)

As the last step, we convert the linear colour channels to display-ready gamma-encoded

ones with a gamma function: I ′(x, k) = I1/γ(x, k).

3.2.6 Validation

We evaluated the effectiveness of our method in a validation experiment in which we

compared the proposed enhancement algorithm with the most closely related method of

Wanat et al. [167] and standard rendering. The methods were compared in terms of the

impression of three-dimensionality and the appearance of the presented scene.

VR headset The experiments were prepared for the Valve Index VR headset. We chose

Valve Index because it offers a relatively high display resolution of a maximum of 16

pixels per visual degree and its drivers allow the user to dim its display. We set the peak

luminance to be 5 cd/m2.

Stimuli The test scene was built from stylised assets that provided a good balance

between good quality content, similar to those found in most VR experiences, and

performance (no complex geometry). An example screenshot from the scene is shown

in Figure 3.27. Figure 3.28 shows three rendering modes used in the experiment: the

proposed stereo-constancy model (top), standard rendering (middle), and Wanat’s method

(bottom).

Procedure During the experiment, we placed the observers in the virtual environment

and teleported them to five different locations. They were allowed to look around freely

and switch between two rendering methods using the trackpad on the right controller. In

each trial, they compared our method with either standard rendering (no post-processing)
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Figure 3.27: Preview of the scene presented to the observer in the preference experiment.
The assets are a part of the POLYGON series prepared by Synty Store. The images show
a non-enhanced (standard) rendering of the scene.
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or the method of Wanat et al. [167].

The experiment was split into two parts. In each part, the observers visited the same

locations (in random order), regardless of the question being asked. In the first part, the

observers were asked to select the rendering mode that looks more three dimensional and

in the second part they were asked to select the rendering mode that looks better. The

observers gave the answer by pressing the right trigger while the selected rendering method

was active. The participants were allowed to make a selection only after viewing both

rendering modes. For both questions and every condition, each location was shown to

the participant five times, each time using a different direction of the camera (random

rotation around the up vector). The order of trials and parts was randomised. We also

displayed information about the current progress of the experiment and the assessment

criterion (depth or preference) at the bottom of the viewport.

Observers Nine observers (one female and eight males, mean age 26.7, SD 3.2 years)

were recruited among students and researchers. All observers had a normal or corrected-to-

normal vision and were also näıve to the purpose of the experiment. Before the experiment,

each participant read and signed the consent form. The participants were screened for

stereoacuity in a test performed in VR, in which they had to choose a closer square from

a pair (akin to the Titmus fly test).

Results The bars in Figure 3.29 show the percentage of trials in which our method

was chosen over the alternative method. The yellow circles indicate per-observer results.

Eight out of nine observers agreed that the image modified with our method looks more

three-dimensional and also better than the image enhanced with Wanat et al.’s method

and standard rendering. We further validated these results with a one-sided binomial

test and a null hypothesis of random selection for both preference and impression of

three-dimensionality. The tests confirmed that the results were significant and our contrast

enhancement for stereo-constancy improves the perception of 3D shapes and produces

more preferred images. In a post-experimental survey, we asked the observers whether

the colour seen in the VR headset appeared natural. None of the observers reported an

artefact in colour appearance.

3.2.7 Discussion

No distortion of depth The most important conclusion from our 3D shape perception

experiment (Section 3.2.3) is that low luminance levels (0.1–10 cd/m2) do not distort depth.
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Standard rendering

Wanat’s method

Proposed stereo constancy method

Figure 3.28: Three rendering methods used in the preference experiment: image enhanced
with the proposed stereo-constancy model (top), standard rendering with no enhancement
(middle), and image enhanced with Wanat’s method (bottom). The insets show close-ups
of the selected image areas. It can be observed that Wanat’s and the proposed stereo
constancy methods increase local contrast and result in a sharper image, but for different
purposes.
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Figure 3.29: Results of Experiment 3.2.6, assessing the preference and the impression of
three-dimensionality. The yellow circles represent the per-observer results and the empty
circles denote observers who failed the stereoacuity test. The height of the bars presents
the percentage of trials in which our method was chosen over the method given below
(excluding disqualified observers). Standard stands for a no enhancement and Wanat for
the method proposed by Wanat et al. The error bars present a 95% confidence interval
and the red dashed horizontal line indicates the guess rate.

This is in contrast to the observations of Kellnhofer et al. [79], who reported compression

of depth at low luminance. Our experiment showed that, even at 0.1 cd/m2, observers

could correctly assess the angle without bias (high accuracy), however with larger variance

in their responses (lower precision). Had the perceived depth been compressed at low

luminance, the results would have been biased towards obtuse angles, as the observers

compensated for the reduced disparity. However, we did not experiment with light levels

below 0.1 cd/m2, so we cannot confirm whether the perception of 3D shapes is affected at

these luminance levels.

Contrast vs. disparity manipulation Several works [33, 35, 80] manipulate disparity

to improve depth perception. While such an approach is practical for 3D cinema content,

it is unsuitable for VR environments, in which depth must be faithfully reproduced to give

accurate visual feedback to egomotion. Disparity manipulation in VR is likely to result in

conflicting visual and vestibular sensations leading to VR-sickness [76].

Colour appearance in mesopic vision Degradation in stereoacuity is not the only

issue of showing VR content at low brightness. It is well-established that colour appearance
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also degrades as luminance decreases to mesopic vision [6, 51]. Those models could be

incorporated into our enhancement technique, as was done in [167], however, we did

not find the changes in colour to be substantial enough to require additional processing.

None of the experiment participants reported an unnatural colour appearance in our

post-experiment questionnaire (Section 3.2.6). Our observation is also supported by the

results of Kwak et al. [89, Fig. 6,7] who reported negligible changes in colourfulness and

hue, measured using magnitude estimation, when the reference white was reduced to

only 1 cd/m2. Larger changes in colour appearance can be observed when two luminance

conditions are presented to the observer simultaneously in an asymmetric (haploscopic)

matching experiment [151]. Such artificial presentation, however, is not representative of

viewing content on a dimmed VR headset.

Limitations Our model was fitted to the data collected in the luminance range between

0.1 cd/m2 and 1 000 cd/m2, which may limit the ability of our model to generalize to very

low luminance levels. We cannot generalize our model to the scotopic levels much below

0.1 cd/m2, but we argue that such low luminance is less relevant for displays. We also

do not consider the influence of tone mapping on depth perception. Since tone mapping

often involves contrast compression, we expect increased difficulty in inferring depth from

tone-mapped stereo images.

3.2.8 Summary

Dimming a display can be beneficial for VR experience as it reduces the visibility of flicker,

saves power, prolongs battery life, and reduces the cost of the device. The major downside

of this approach is the reduced sensitivity to stereoscopic depth cues, which are major

visual cues for perceptually realistic graphics that differs from photorealistic graphics.

Contrary to previous works [79], we do not find the distortion of 3D depth at low luminance

(0.1-1 cd/m2), but instead, we find increased difficulty and lower precision (larger variance)

of assessing 3D shapes based on binocular cues. This motivates our method for enhancing

contrast at low luminance levels, intended at improving the reliability of stereoscopic

depth cues. We demonstrate that such contrast enhancement can be implemented in the

real-time rendering of VR environments. We further show the effectiveness of such depth

enhancement in a perceptual experiment asking about qualitative aspects of preference

and impression of depth. The experiment demonstrates that depth perception can be

effectively restored by contrast enhancement and overall visual quality can be improved.

The proposed method can improve the user experience for VR headsets that need to

operate at low power or those that cannot achieve high refresh rates.

104



Chapter 4

Reproducing Reality

(a) (b)

(c) (d)

Figure 4.1: We built a High-Dynamic-Range Multi-Focal Stereo display (a) which allows
for a direct comparison with a physical scene located in front of the observer (b). The
display can reproduce real-world 3D objects with accurate colour, contrast, disparity, and
a range of focal depth, making it hard to distinguish between real and virtual scenes (c, d).

Imagine a black box that contains either a physical 3D object or one virtually rendered

by a 3D display, with a naive observer tasked to distinguish between the two scenarios.

This is the notion of a visual Turing test [5] - an extension of the Turing test to the visual
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domain to evaluate perceptual realism. Passing a visual Turing test for arbitrarily complex

scenes is the holy grail of perceptually realistic graphics. Among all the possible quality

metrics, the visual Turing test is also one of the most efficacious and indicative methods for

evaluating perceptual realism, as physically measuring perceived quality can be nontrivial.

In Chapter 3, we presented two rendering algorithms for stereoscopic displays to boost

the perceived quality of contrast and depth. Nonetheless, only improving rendering for

contrast and depth is not sufficient to meet all the visual requirements for perceptual

realism and pass a visual Turing test. The overall fidelity of a typical stereoscopic VR

display is confined by limited dynamic range, low spatial resolution, lens distortions, and

vergence-accommodation conflicts. To push the limits of overall fidelity and challenge the

visual Turing test, we present a High-Dynamic-Range Multi-Focal Stereo display (HDR-

MF-S display) with an end-to-end imaging and rendering system aimed to maximise the

quality of all the essential visual cues for perceptual realism, as shown in Figure 4.1.

Passing a visual Turing test puts very strict requirements on the quality of reproduction.

To make the task feasible, we aim for a visual reproduction of a static scene encompassing

a moderate field of view (27◦ ×21.8◦) and seen from a fixed viewing position (no motion

parallax). As analysed in Chapter 2, such a scene can in principle be reproduced with

perceptually-realistic fidelity if sufficient quality and accuracy can be achieved in terms of

the retinal image, spatial resolution, depth cues, dynamic range, contrast, and colour. The

fact that human perception integrates across different cues, creating a ‘holistic’ percept,

raises the possibility that almost inevitable small differences to the real world in terms of

individual attributes may not be noticeable provided the other visual cues are collectively

presented with sufficient quality.

The first objective of this work is to build a display apparatus and a 3D scene acquisition and

rendering system that combines high spatial resolution with accurate colours, luminance

levels, and cues to 3D structure (including focal distance). Our display apparatus combines

four custom-built HDR displays into a single-viewer two-focal plane stereoscopic display. It

can deliver a brightness level up to 3000 cd/m2 and below 0.01 cd/m2, a spatial resolution

of at least 85 pixels per degree1 at a viewing distance of 462 mm, a colour gamut of BT.709,

correct disparity, and variations in focal depth from 462 mm (2.16 D/dioptres) to 740 mm

(1.35 D). These capabilities are sufficient to reproduce a small scene inside a box of size

200 mm × 160 mm × 300 mm (width × height × depth) with levels of realism that exceed

what existing display technologies can offer. Furthermore, the display is constructed in

such a way that a viewer can simultaneously, or selectively, see a physical box containing

1Although our display resolution does not reach the peak resolving power at the fovea (240 ppds [120],
see Section 2.1.1), it is sufficient for the majority of the population who do not normally have a 20/20
vision, as tested by our VTT experiment (Section 4.5).
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real objects and compare them with displayed ones in the same spatial position. This

enables a set of new perceptual experiments that have not been possible before. To deliver

high-quality content for such a display, we create a system for acquiring, reconstructing,

and rendering 3D scenes with a surface lumigraph [12] (light field with a proxy mesh). The

system involves the capture of multi-exposure image stacks from multiple viewpoints with

a high-resolution mirror-less camera, camera pose estimation with photogrammetry, colour

calibration with a spectrometer, proxy mesh registration with differentiable rasterization,

lumigraph view synthesis with view-dependent UV maps, multi-focal rendering with linear

depth filtering, and a custom-designed focal plane calibration to compensate for different

viewing positions of observers.

The second objective of this work is to apply this system to visually reproduce a moderate-

size stationary object at a close distance to the observer (0.5 m) with a high fidelity such

that it can be confused with a physical 3D object. The fidelity of reproduction should

be confirmed by a visual Turing test with a strict criterion: the virtual scene must not

be visually different in any respect from the real scene. To this end, we propose and

performed a visual Turing test in a three-interval-forced-choice (3IFC) experiment where

we asked naive observers to choose a scene that appears different when presented with two

real and one virtual scenes, or one real and two virtual scenes. In this way, as opposed to a

regular 2IFC test, we evaluate realism objectively and eliminate subjective interpretations

of realism from prior experiences. The experiment results show that naive observers can

only discriminate between real and displayed 3D objects with a probability of 0.44. To our

knowledge, this is the first work that achieves a close perceptual match between a real-world

3D object and its displayed counterpart in both geometry and appearance. In contrast to

previous work [126, 10, 119], we achieved this with a near-eye and binocular presentation

of the stimuli and a much more challenging 3IFC test, and without any optical degradation

of the real scene. The attempt at this challenge provides insights to better understand

the conditions necessary to achieve perceptual realism. In the long term, we foresee this

approach as an important step in the study of future display technologies, including AR

and VR, to determine what display capabilities are most critical in achieving perceptual

realism. Our display apparatus can also be useful in further studies of essential visual

cues for realism such as material perception, colour appearance, and depth perception, in

which realistic objects and scenes need to be faithfully reproduced.

We start this chapter with a review of early attempts at the visual Turing test (Section 4.1).

Next, we introduce the architecture and hardware setup (Section 4.2), and the imaging

and rendering pipeline (Section 4.3) of our HDR-MF-S display apparatus. We include

several visual demonstrations to show the characteristic capabilities of our display system

and performed a qualitative evaluation of its limitations (Section 4.4). Finally, we explain
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the procedure of our 3IFC visual Turing test and discuss the results (Section 4.5).

The work presented in Chapter 4 produced the following publication:

• Fangcheng Zhong, Akshay Jindal, Ali Özgür Yöntem, Param Hanji, Simon J. Watt,

and Rafa l K. Mantiuk. Reproducing reality with a high-dynamic-range multi-focal

stereo display. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH Asia 2021,

Journal Track), 40(6), dec 2021. ISSN 0730-0301. doi: 10.1145/3478513.3480513.

URL https://doi.org/10.1145/3478513.3480513

Author’s note in collaborative work Chapter 4 contains collaborative work with

other parties for the completeness of the presentation. The author contributed to the overall

design and implementation of the HDR-MF-S imaging and rendering pipeline (Section 4.3),

including the light-field acquisition, lumigraph reconstruction, differentiable rendering,

and multi-focal calibration and rendering; the qualitative evaluation (Section 4.4); the

design of the VTT experiment (Section 4.5) and its data collection and analysis; and the

geometric and photometric calibration of the data camera and the HDR-MF-S display

apparatus (Section 4.2).
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4.1 Early attempts of visual Turing test

Obtaining realistic results has been one of the main pursuits of computer graphics and

particularly rendering. Global illumination and physically based rendering allowed for

accurate simulation of light [56]. When combined with tone mapping methods [39],

simulation of lens glare [145], and camera response [144], these techniques can produce

photorealistic images, indistinguishable from photographs of real-world scenes. However,

since the focus of our work lies beyond photorealism, we review the studies that attempted

to achieve perceptual realism by matching a virtual scene with a physical one.

Meyer [126] was the first to compare rendering shown on a display with a real scene in an

experiment. The participants saw the real scene and a CRT screen with its reproduction

side by side, via viewfinders of two cameras with telephoto lenses. Additional Fresnel

lenses were added to enlarge the viewfinder images so that they could be seen from

112 cm. Despite the lack of binocular depth cues and the low resolution of the CRT

screen, the authors reported that neither naive observers nor experts could tell which

image was computer generated. Although this was an impressive result, it was helped

by the degradation of the real-scene images, due to lens distortions, and their small size

(9.2×9.2 cm seen from 112 cm, or 4.7◦).

Borg et al. [10] reported a graphics Turing test experiment, in which they successfully

reproduced the result of Meyer without the need to see the stimuli via a viewfinder. The

participants viewed either a real object (a pyramid or a sphere), or a display seen through

a small aperture in a 2 m long box. The stimuli were viewed with one eye. Also, because

the authors could not achieve the required dynamic range on their display they asked the

participants to view the images from 10 cm away from the box in a non-dark room (50 lux)

so that the display black level was masked by glare in the eye and adaptation.

Masaoka et al. [119] measured how the impression of realism is degraded with the reduction

of resolution. The authors conducted a pairwise comparison experiment, in which one of

the conditions was a real scene and the other conditions were images of gradually reduced

resolution. The results of comparisons were scaled using a Bradley-Terry model to give a

measure of the sense of realness, proportional to JND units. The images and the real scene

were seen through a synopter so there were no binocular disparities, and the distance was

480 cm to ensure sufficient angular resolution and minimise the influence of variations in

focal distance. The study found that a resolution between 60 and 120 cycles per degree is

required to achieve the perceived realism of a real scene.

None of the above studies attempted to reproduce binocular depth cues but instead reduced
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their influence by using large viewing distances and optics. These studies also reported

difficulties in reproducing the real-world dynamic range. Both of these aspects were

addressed in the study of Vangorp et al. [163], in which the virtual scene was reproduced

on an HDR display (SIM2 HDR47E) seen through a stereoscope, albeit at low resolution

(30 ppd). The goal of the study was to measure how binocular disparity and contrast

contribute to realism, in a manner similar to Masaoka et al.’s study of resolution. The

task was to compare two displayed scenes, each with a certain amount of both contrast

and disparity modification, and choose the one closer to the real scene. The participants

could look at the real scene at their discretion, but it was not included in the compared

conditions, so the experiment could not test for a perceptual match. The authors found

that the participants were more sensitive to changes in contrast than in disparity, and

selected as more realistic either natural or moderately enhanced contrast.

In addition to the above-mentioned visual Turing-test experiments, a comparison with a

real scene has also been used to evaluate the reproduction of brightness [122] and tone

mapping [194], but these studies did not attempt to achieve a perceptual match with a

real scene.

Although the studies of Meyer, Borg et al., and Masaoka et al. reported a perceptual

match of the display and real scenes, they were achieved only in monocular view or using

optics that degraded the visual quality of the real scene. Our work aims to go beyond

these efforts. We reproduce all visual cues, including depth and dynamic range, and match

a real object seen at a small viewing distance, and with no optical aberrations.

4.2 HDR-MF-S display

The main objective of the design of our HDR-MF-S display is to maximise the visual

quality and realism of the displayed images for all the following capability dimensions:

physical luminance, dynamic range (contrast), colour gamut, binocular and focal depth

cues. The goal is to deliver all these capabilities altogether with sufficient qualities rather

than focusing on maximising a single one. While there are several fundamentally distinct

approaches to 3D display architectures as discussed in Section 2.4, not all of them meet

the requirements for our objective. For example, accurate depth cues, matching light

distributions in the real world, can be potentially achieved with holographic [108] or light

field [159] displays. However, the current state-of-the-art of these technologies does not

allow us to achieve the field of view, colour accuracy, resolution, or dynamic range required

for perceptual realism. Reproducing a four-dimensional light field of sufficient size and

quality with these technologies requires control over billions of pixels, which is currently
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Figure 4.2: The front view of the display.

infeasible. However, if we can either stabilise or track the viewing position, the subspace

of a light field that we need to reproduce is much smaller, making it possible to build a

display of required capabilities.

One approach to producing the required light distribution, given either fixed or known eye

position, is to use a stereoscopic multi-focal display [2]. In such displays, the eye sees the

sum of light from multiple superimposed planes at different focal distances. Such displays

can effectively drive accommodation to any point between the planes if the plane separation

is small enough (∼0.6 D to ∼0.9 D) [111, 112], while retaining desirable capabilities of

conventional displays (resolution, colour gamut). Moreover, this uncomplicated design,

without any refractive or diffractive optical components in the viewing path, generates

images without additional optical distortions. This is in contrast with vari-focal displays

[36] or near-eye light field displays [69], which are likely to introduce noticeable aberrations.

One important limitation of a multi-focal display is that the addition of focal planes

reduces dynamic range. The additive nature of the beam splitters elevates the black

level, and their transmission limits the peak brightness of each plane. We address this

problem by combining a multi-focal stereoscopic display design with high-dynamic-range

displays, making a high-dynamic-range multi-focal stereoscopic (HDR-MF-S) display. In

the following subsections, we explain the details of the design of our HDR-MF-S display

and how it achieves the capability dimensions that we desire.
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Figure 4.3: Schematic of the high-dynamic-range multi-focal stereo display apparatus.
(Note that to simplify the schematic, not all the folding mirrors and beam splitters are
shown.) The apparatus creates two image planes (green and blue dashed lines inside the
real-scene box) per eye and the observer sees respective images via beam splitters. The
real-scene box is observed through the same beam splitters. The real-scene box is on a
manually rotating platform moving toward a fixed capturing position or a fixed display
position. The camera gantry is on another manually movable platform (not shown in the
figure) which can move towards or away from the real-scene box allowing coarse adjustment
of the field of view.

4.2.1 Apparatus overview

Figure 4.2 shows a photograph of the front view of our display apparatus. The apparatus

comprises three main components as shown in Figure 4.3: a Wheatstone stereoscope with

four high-dynamic-range displays and two focal planes; a real-scene box in front of the

observer that is seen through a pair of beam splitters; and a motorised camera slider

capable of capturing dense horizontal light fields of the real-scene box. In this setup,

a small physical scene is arranged in the real-scene box. This box normally faces the

observer, but can be rotated to face the camera rig in order to capture its light field as

shown in Figure 4.3. When facing the observer, the real scene and its rendered counterpart

are spatially superimposed. We can instantly switch between the real and displayed scenes

by controlling the light in the real-scene box and the display. We discuss the details of

each component in the following subsections.
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Figure 4.4: Each HDR display comprises a projector acting as a backlight for an LCD panel
with factory backlighting removed. A Fresnel lens sandwiched between two narrow-angle
diffusers, with scattering angles of 10 and 5 degrees. An image from the projector is
formed on the first diffuser acting as the backlighting of the LCD. The Fresnel lens helps
to steer the backlighting toward the eye uniformly. The second diffuser prevents reflections
between LCD glass and the Fresnel lens substrate.

4.2.2 HDR displays

The key feature of our display is the capability of reproducing a high dynamic range,

with a peak luminance of 3000 cd/m2 and the black level much below 0.01 cd/m2. Such

a low black level practically eliminates any stray light in areas of an image that should

remain black. The HDR reproduction is delivered by four projector-based dual-modulation

displays, similar in design to those used in one of the first HDR displays [150]2.

The software for controlling each display implemented the standard two-spatial-modulator

factorization algorithm [150] running on a GPU. However, we took special care to achieve

accurate geometric alignment and high colour accuracy. The geometric alignment was

achieved by taking images with a DSLR camera of a calibration pattern (a grid of points)

displayed separately on the LCD and the DLP and then aligning them using homography

and mesh-based warping. The point-spread function of the DLP was measured for the same

grid of points and approximated with a Gaussian function. The colourimetric calibration

was achieved by measuring the colour ramps with a spectro-radiometer (Specbos 1211)

and fitting a gamma-offset-gain model to the LCD panel and using a dense look-up table

for the DLP. The dense look-up table was necessary as the response of the projector was

non-monotonic after removing the colour wheel. The effective bit-depth of both displays

2More details of the HDR display hardware and our improvements over [150] can be found in [203]
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Figure 4.5: The schematic showing the light paths from two display focal planes (green
and purple dashed lines) and from the real-scene box, for the right eye. The red dashed
line shows the viewing direction of the observer towards the real-scene box. The line
colours are consistent with Figure 4.3.

was increased to 10 bits by bit-stealing (DLP) and spatio-temporal dithering (both DLP

and LCD). The uniformity of the display was compensated by taking an image with a

DSLR camera and using it for compensation of the DLP image.

4.2.3 Focal planes and optics

To vary the focal distance, similar to a multi-focal display [2], our display can generate

images at two focal planes, at the distances of 462 mm (2.16 D) and 740 mm (1.35 D) from

the viewer, providing a 0.81 diopter separation between the planes. The separation was

selected to ensure that the images shown on two planes provide cues for accommodation

for any distance between the two planes [111]. Such distances also ensure a resolution of

at least 85 pixels per degree for the observer. These distances are adjustable by moving

the HDR displays on their mounting rails.
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Figure 4.6: Frames of the glasses with an IR
LED. The participants were asked to wear
these frames to track their head position.

Figure 4.5 shows the optical paths for near and far virtual images on the right-hand

side. The image of the far plane is formed by reflecting the real image of the top right

HDR display through a mirror, and two beam splitters. The purple dashed line in the

figure indicates its optical path. The near-plane image is formed by reflecting the real

image of the bottom HDR display from a single beam-splitter, depicted by the green

dashed lines. This is symmetrical for the left-hand side of the setup. We opted for

this simple optical design without any refractive [111] or varifocal [18] optics to avoid

aberrations, which would introduce detectable imperfections and also reduce the dynamic

range due to scattering of the light. The real-scene box is observed through 70R/30T

(reflection/transmittance, Edmund Optics, 64-409) beam splitters, located in front of the

observer’s eyes. The red dashed line shows the viewing direction through these beam

splitters. This reflection/transmittance ratio was selected to achieve a higher brightness of

the display. The second beam-splitter 50R/50T (weidner-glas.de) on the side is used to

combine the images from far and near planes. Since the system has several optical paths

crossing each other, we enclosed all the image-delivering paths separately to avoid cross-talk

images. At the optical exit where the observer views the scene and the displays, we placed

a chinrest and forehead rest to fix the viewing direction and limit head movements. We

also placed blinders on either side of the chinrest posts to prevent a direct line of sight of

the near-plane LCD screens.

Multi-focal plane displays are very sensitive to misalignment due to head movement and

often require either bite-bars [111] to eliminate such movements or active correction in

rendering through eye tracking [124]. We aimed to build a setup similar to the latter using

an IR LED fixed onto a glasses frame without lenses (Figure 4.6). The observers were

asked to wear the frame while viewing, and the LED was tracked using a high frame rate

machine vision camera (iDS UI-3140CP), with 25 mm C-mount lens (Fujinon HF25HA-1B)

and a visible light filter. This allowed us to track the observer’s head position in real time.

We later use the data from the head tracker in our experiment (Section 4.5) to determine

the invalid trials.
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Figure 4.7: The front and side view of the real-scene box and schematic of the calibration
target inside. The calibration target has a grid of four-by-six squares of the size 30 mm
x 30 mm, which defines a world coordinate system. The red, green, and blue arrows in
the figure represent the origin and orientations of the X, Y, and Z axes, respectively. We
define the upper-left corner of the grid as the origin for the X and Y axes and the target
placed at the front location as the Z = 0 plane.
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4.2.4 Real-scene box

The real-scene box has the inner dimensions of 200 mm × 160 mm × 300 mm (width ×
height × depth). It was made of black acrylic, which was covered on the inside with

high-absorption blackout material (Thorlabs: Black Flocked Self-Adhesive Paper). The

ceiling was fitted with an LED array light source with 225 individually addressable RGB

LEDs (WS2812B). The real-scene box was fixed on a platform, supported by ball transfer

units, allowing it to be freely rotated towards the observer for viewing, or towards the

camera for light-field capture, as shown in Figure 4.7. The real-scene box rotation was

fixed in either of the two positions using custom magnetic mounts.

To facilitate several calibration procedures for our imaging system (Section 4.3), we defined

world space coordinates for the real-scene box. We placed a removable calibration target

on a gantry plate inside the real-scene box, as shown in Figure 4.7. The gantry (Oozenest,

250 mm C-Beam Linear Actuator) can be controlled to move the target freely from the

entry of the real-scene box to its end. The calibration target had a grid of four-by-six

squares of the size 30 mm x 30 mm. We used the grid to define a world coordinate space,

as shown in Figure 4.7.

In addition to the calibration target, the real-scene box also included eight cross-shaped

calibration markers placed outside the box, as shown in Figure 4.7. The markers were

used as reference points to register the camera pose when the calibration target inside the

box had to be removed. The markers were carved on the two foamboards and illuminated

by an RGB LED (WS2812B) with a diffuser to improve their visibility.

4.2.5 Data camera for light field capture

To capture a horizontal light field of the real-scene box, we mounted a Sony α7R3 mirror-

less camera with a Sony G OSS zoom lens (focal length 24-105 mm) on a motorised camera

slider (Figure 4.8) at a distance of 415 mm from the real-scene box, similar to the distance

from the viewing position to the real-scene box. The camera slider traversed a baseline of

82.3 mm with an accuracy of 5 µm.

4.3 HDR-MF-S imaging & rendering system

To achieve a perceptual match between real and virtual scenes, we need not only a display

capable of reproducing all relevant cues, but also an imaging and rendering system, which
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Figure 4.8: The data camera and motorised slider for light field capture.

can capture a real scene and reproduce it with sufficient quality. Most importantly, the

rendered scene should match the viewpoint of the observer. Our system is currently limited

to processing scenes of relatively simple or known geometry, but can handle complex

non-Lambertian materials and high-dynamic-range illumination.

Figure 4.9 shows a diagram of our HDR-MF-S imaging and rendering system. We start

with the capture of a horizontal HDR light field, which is colour-calibrated for the spectra

of the scene illumination (Section 4.3.1). Next, we employ photogrammetry to perform a

3D reconstruction and estimate camera matrices (Section 4.3.2). After that, we apply a

differentiable rasterizer to register a proxy mesh of the main object with its silhouette in

each HDR light field image (Section 4.3.2), so we can project the fitted mesh to each light

field image to obtain a view-dependent UV map and texture. Before rendering, we find

the position of each focal plane of the display with respect to the eye position and the

calibration target in the real-scene box (Section 4.3.3). Finally, we integrate lumigraph

view synthesis with linear depth filtering [2] to render the final scene on our HDR-MF-S

display (Section 4.3.4).

We found lumigraph to be the most suitable 3D representation for our purpose as it models

non-Lambertian surfaces, is robust to processing high-resolution textures, and performs

rendering in real time. We have also experimented with dense light fields, either captured
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UV map generationProxy mesh registrationPhotogrammetry

HDR light field capture

Lumigraph reconstruction

Focal plane calibration and rendering

Figure 4.9: The process of capturing and rendering contents for our HDR-MF-S display.
Refer to Section 4.3 for the explanation.
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or reconstructed using neural radiance fields [128], but they did not match the quality

required for perceptual realism. For example, according to Equation 2.2, capturing our

real-scene box (at the viewing distance of 415 mm) up to the visual acuity at the fovea

requires a spatial resolution of 33.13 pixels per millimetre. This approximately corresponds

to an image in the size of 6629 × 5302 pixels given the size of the real-scene box (200 mm

× 160 mm). Training, convergence, and rendering with such image size for view synthesis

remains an actively studied problem, although significant improvements [130] have been

made subsequent to our work. Therefore, in this work, we combined photogrammetry

and differentiable rendering to align known geometry with the captured HDR images to

reconstruct a lumigraph.

4.3.1 HDR light field capture

Using our data camera discussed in Section 4.2.5, we first capture a high-resolution (7360

x 4912 pixels) light field consisting of 16 views with a separation of 5 mm between them.

For each camera view, we capture an HDR exposure stack consisting of up to five RAW

images spaced two stops apart in exposure time and ISO of 100. We merge the RAW

images to increase the dynamic range and reduce noise using a Poisson photon noise

estimator [61]. Next, we demosaic the merged images using the DDFAPD algorithm [123].

To calibrate for colours, we measure the spectra of a colour checker passport (X-Rite)

positioned inside the real-scene box with a spectroradiometer (Specbos 1211, Jeti). Then,

we compensate for the measured spectral transmission of the 70/30 beam-splitter and

recover trichromatic coordinates using the CIE XYZ 1931 colour-matching functions. The

XYZ colour coordinates are used to find the matrix that transforms from native camera

linear RGB space into CIE XYZ and which results in the smallest RMSE of DeltaE 2000

colour differences. The white patch in the colour checker is used for white balance. Finally,

we apply the matrix to convert the merged HDR images from their native camera linear

RGB space to the BT.709 space used by our display.

4.3.2 Lumigraph reconstruction

The objective of this stage is to construct a surface lumigraph [57, 12] (a light field

projected on a proxy geometry), represented by a proxy mesh and view-dependent UV

maps and textures [30], of the captured scene.
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Ground truth silhouetteInput texture Fitted silhouette

Figure 4.10: Results of the fitted silhouettes of the proxy mesh after registration optimised
by differentiable rasterization.

Photogrammetry We first use Meshroom [3], a photogrammetry software, to perform

a multi-view stereo reconstruction of the scene. We supply Meshroom with the HDR light

field images captured from the gantry and additional single-exposure images captured with

the camera mounted on a Magic Arm (Manfrotto) and positioned at multiple locations

around the front of the real-scene box. These additional images are necessary for the 3D

reconstruction but are not used for textures. After the reconstruction, Meshroom returns

a noisy scene mesh (including the main object, the real-scene box, the calibration markers,

etc.) with estimated camera extrinsic and intrinsic matrices. Note that at this stage, the

scene mesh is in an arbitrary local camera space. The camera matrices are also calculated

with respect to this space. We record the coordinates of each reconstructed calibration

marker in local space, which we later use for a coordinate transform.

Proxy mesh registration and UV map generation The mesh reconstructed from

photogrammetry does not meet the accuracy of perceptual match required by our experi-

ment. Hence, we choose to experiment with objects with simple or known geometry and

pre-generate the mesh files, as mesh reconstruction is not the main focus of this work.

However, we still need to register the mesh to the correct coordinates. It is crucial to ensure

that the projected silhouette of the registered mesh is near-identical to the ground truth.

Otherwise, the rendering would appear distorted once we project the mesh onto light

field images to construct the lumigraph. We employ SoftRas [103, 143], a differentiable

rasterizer, to find an optimal spatial transformation to align the mesh with the silhouettes

in captured images. Specifically, the optimal parameters of a spatial transformation T
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including scaling, rotation, and translation can be found by

arg min
T

∑
i

||R(T (M),Ci) − Ii||, (4.1)

where R is a differentiable renderer that rasterizes a grey-scale silhouette image, M is

the unregistered mesh, Ci is the i-th camera matrix, and Ii is the extracted ground-truth

silhouette from the i-th camera view. We apply the GrabCut algorithm [146] to extract the

ground-truth silhouettes of the main object. Figure 4.10 shows the results of the silhouette

fitting. After the registration of the proxy mesh, we generate the UV coordinates by

projecting the mesh vertices onto each HDR texture using the camera matrices obtained

from photogrammetry.

Local-to-world coordinate transformation To facilitate the following calibration

steps, it is convenient to have the scene geometry represented in world coordinates expressed

in physical units (meters). To do this, we determine the coordinates of the calibration

markers in both local space (Section 4.3.2) and world space (Section 4.2.4) and apply the

orthogonal Procrustes algorithm to find an optimal change-of-coordinates transformation

from the local to the world space.

4.3.3 View-dependent focal plane calibration

Both pairs of display focal planes must be well-aligned with the positions of the observer’s

eyes to correctly align the two focal planes and match the scene shown in the real-scene

box. To map the coordinates of each display to the world coordinates of the real-scene box,

we perform a manual focal plane calibration. As different observers have different inter-

pupillary distances (IPDs) and may put their heads at different positions, this calibration

needs to be performed per observer.

During the calibration, the observer is asked to put their head on the chin rest and press

against a rigid forehead rest. The forehead rest provides additional stability and limits

head movements. As shown in Figure 4.11, each eye is presented with four crosses on

one of the HDR displays. They move the four crosses to align them to the corresponding

specified crossings of the calibration target in the real-scene box. The observers perform

this alignment for each of the two focal planes per eye and for the calibration target

positioned at two different depths. The gantry inside the box moves the target to their

desired locations. After this calibration, we obtain a correspondence of eight points in

world space and in image space. They are used to find the transformation from the 2D
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Figure 4.11: (a) Schematic of the focal plane calibration. We use yellow and cyan to
indicate the view of the left and right eye. (b, c) Left-eye view of the focal plane calibration
interface. Observers drag the red (near plane) and pink dots (far plane) to align with the
corresponding positions on the calibration target. (d, e) Rendering of the calibration grids
at different gantry positions after calibration.
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Figure 4.12: The radiance computation for the near and far focal planes for the left eye.
c1, . . . , c4 are the positions of data cameras. eL is the viewing position of the left eye.

coordinates on each focal plane (an image shown on each HDR display) to the world

coordinates. We use the direct linear transformation algorithm (DLT) [160] to find a

rendering matrix M which maps the world coordinates to the clip space for each focal

plane. Finally, we apply an RQ decomposition to decompose the rendering matrix into a

view (extrinsic) matrix V and a projection (intrinsic) matrix P , i.e. M = P V . With the

view matrix, we are able to compute the observer’s view (eye) positions and orientations,

which is required for the lumigraph view synthesis and multi-focal decomposition in the

rendering stage.

4.3.4 Multi-focal lumigraph rendering

To find the value of each pixel of the near and far display focal planes, we use lumigraph

rendering [57], combined with linear depth filtering in the diopter space [2]. We choose

simple linear filtering as our test scene does not contain any occlusions, which would

require more advanced methods [131, 124, 196], as discussed in Section 2.4. Specifically,

the value of the pixel (x, y) on the j-th focal plane (1 – near, 2 – far) for the left eye (index

L) is computed by filtering across the focal planes and cameras (similarly for the right
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eye):

VL,j(x, y) =
|Dp −DL,j|

∆D︸ ︷︷ ︸
linear depth

filtering

K∑
k=1

Tk(uk, vk)wk ,︸ ︷︷ ︸
view synthesis across

K camera views

(4.2)

where the symbols are illustrated in Figure 4.12. We use lower case symbol d to represent

distances in meters and upper case symbol D to represent distances in diopters, so that

D = 1/d. In particular, DL,j is the diopter of the j-th focal plane from the viewing position

eL. Dp is the distance (in diopters) of the intersection point p of the ray r with the object,

where r originates from eL and passes through pixel (x, y). ∆D indicates the diopter

difference between the near and far focal planes. Tk(uk, vk) represents the value of the

HDR texture associated with the data camera k for the texture coordinate (uk, vk) at the

intersection point p. We calculate Tk by rasterising the texture-mapped registered mesh

(Section 4.3.2) with the rendering matrices generated during the focal plane calibration

(Section 4.3.3). The texture is filtered with standard mipmap. The value of wk is the

weight associated with each data camera. As we assume a static eye position, we always

select the nearest neighbour in our current implementation to avoid blur artefacts:

wk =

1, if ||eL − ck|| = minj ||eL − cj||,

0, otherwise,
(4.3)

where the values of e and c (data camera origins) are obtained from the focal plane

calibration (Section 4.3.3) and lumigraph reconstruction (Section 4.3.2) respectively.

4.4 Results

Although it is difficult to convey the three-dimensionality and color appearance of the scenes

shown on our display using photographs, in this section, we include a few to demonstrate

some of its characteristic capabilities. We captured images of several displayed and real

objects using a Sony α7R3 camera with a 55 mm lens (SEL55F18Z). We set the aperture

to F9.5 so that its diameter matched the expected pupil diameter for our scene (5.8 mm).

We also performed the focal plane calibration (Section 4.3.3) for the viewing position of

the camera.

Figure 4.13 demonstrates a close perceptual match between the real and virtual objects

achieved by our system. The accurate spatial alignment of the virtual object overlaying

the physical object demonstrates the perceptual match in geometry (Figure 4.13(a)). We

also achieved a close match in appearance and shading (see the overlapping shadows and
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Figure 4.13: (a) Photograph of a virtual object displayed on top of the real object. We
changed the hue of the texture to show a mixed-reality effect. (b) The real object can be
seen more clearly with the displayed object slightly shifted away. (c) Photograph of the
displayed object (right) next to the real object (left). The small white strip visible on the
bottom right corner of the right object is not a display artefact but a reflection from the
background.

specular reflections in Figure 4.13(a) and the side-by-side comparison in Figure 4.13(c)).

With such a level of precision, we are able to show many mixed-reality effects that would

not be possible otherwise such as changing the hue of the physical object without changing

the shadows or textures.

Figure 4.14 shows photographs of a rendered 3D-printed robot figure, displayed at three

distances while the camera was set to one of those three focal distances. As expected,

the display shows a desired defocus blur when the object is shown at a different focal

depth from that of the camera lens. However, since there is no display focal plane in the

mid-distance, the image shown at the centre is a superimposition of the two defocused

images from both focal planes, which results in a visually incorrect blur. The amount of

such blur can be reduced by bringing both focal planes closer.

To evaluate the resolution limit and the aforementioned incorrect defocus blur (when the

virtual object is placed between the two focal planes) of our display, we reproduced a 1951

USAF resolution test chart (ThorLabs, R3L3S1P, positive, 3”×3”) and photographed

it in comparison with the physical chart (Figure 4.15). We built a custom lightbox to

illuminate the chart from the back, producing a high-contrast resolution pattern. We

displayed either the real or rendered virtual chart at one of three distances3: 500 mm

(near), 577 mm (middle), and 654 mm (far). The camera focus was also set to one of these

distances. To reduce the Moiré pattern resulting from the interference of the LCD and

camera sensor pixel grids, we reduced the aperture to F16 and processed the images using

DxO PhotoLab 4.3.0 with only Moiré filtering enabled. Note that the Moiré pattern was

3For this evaluation, we moved the near focal plane close to the near distance and the far focal plane
close to the far distance.
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Figure 4.14: Photographs of an object rendered on our display at different depths (columns)
while the camera focus was set to one of the three fixed focal distances (rows). The
photographs demonstrate the performance of defocus blur due to the multi-focal plane
rendering. Note that the subpixel structure, seen in magnification, is not noticeable when
the object is seen by the eye. The position of the object changes in the field of view since
the camera optical axis was not aligned with the object depth axis.
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Figure 4.15: Photographs of a physical 2D resolution chart (top) in comparison with its
displayed counterpart (bottom) placed at different depths (columns).

Figure 4.16: The 3D CAD model of the object (left) and its photographs under the five
illumination patterns used in the experiment. The base of the wooden hemisphere had a
diameter of 47 mm. The photographs have been tone-mapped with γ = 2.2 to preserve
the original colours.

not visible to naked eyes. Assuming that the resolution limit is the point at which the

lines blend together and cannot be regarded as separate, our display can reproduce up

to 4.0 lp/mm at 500 mm (0.58 lp/arcmin), 2.83 lp/mm at 577 mm (0.48 lp/arcmin) and 4.0 lp/mm at

654 mm (0.76 lp/arcmin). This shows a dip for the middle distance, at which the displayed

image is a superimposition of two defocused focal planes (Figure 4.15, 2nd row, 2nd

column).

4.5 Visual Turing test

We designed an experiment to test whether participants can distinguish between real and

virtual objects shown by our system. The experiment is inspired by the early work of

Meyer et al. [126] and many follow-up studies, which attempted to create a system that
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passes a computer graphics Turing test or virtual reality visual Turing test. In contrast

to these studies, which have reproduced only 2D images of limited dynamic range, we

have created a capture-and-display system that can deliver all necessary visual cues. The

secondary objective of our experiment is to test the sensitivity of the visual system to the

degradation of different cues (contrast, in this experiment) when all other cues are present.

We hope that such data will facilitate understanding of what trade-offs are acceptable in

the fidelity of individual display properties, while still delivering highly realistic content —

valuable information for building practical display systems.

Stimuli Our test object was a wooden hemisphere (a prop used to teach geometry)

that was lightly sanded and stained, but retained the texture of wood and produced an

imperfect specular reflection of moderate intensity (refer to Figure 4.16). We chose to

work with a simple primitive shape as reconstructing geometry is not the main focus of

this project where we treated the ground-truth mesh as given. However, we still need to

perform a geometric registration using differentiable rendering and our pipeline can be

easily extended to reconstruct unknown shapes (see Section 4.6). As shown on the left

of Figure 4.16, the hemisphere was attached to a 3D printed holder (504 mm from the

viewer) on the flat side and had its spherical side directed toward the viewer so that it

appeared as a sphere to a participant. We selected this object for its simple geometry and

complex material and texture properties.

The sphere was illuminated by one of five different light patterns, produced by the RGB

LED array on the ceiling of the real-scene box. The patterns were created by switching on

a set of 2 LEDs at different positions in the LED array so that the object was illuminated

from a slightly different angle each time (while keeping overall brightness approximately

the same). To indirectly illuminate the object from the bottom, a piece of white cardboard

acting as a diffuse reflector was placed under the object. Different illumination patterns

are an important part of our experiment design as they vary the stimulus between the

trials so that the participants cannot memorise small differences in appearance across the

trials.

A rectangular aperture, made of black cardboard, was placed on the front side of the

real-scene box so that only the illuminated hemisphere can be seen. The illumination was

reduced to the point at which only the hemisphere can be seen but not any part of the

real-scene box (the peak luminance of the object was 2 cd/m2).

In addition to the standard condition, which was our best reproduction of the real object,

we created a distorted condition, in which we artificially reduced contrast. The contrast
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was reduced by modifying pixel values:

Imod(x, y, c) =

(
Iorg(x, y, c)

Imed

)γ

Imed , (4.4)

where Imed is the median luminance of the image, Iorg and Imod are the original and

modified images (in linear RGB colour space), and (x, y, c) are pixel and colour channel

indices. We determined in a pilot experiment that γ = 0.8 produced results that were

detectable but sufficiently challenging. Not only does this condition let us evaluate the

effects of reducing contrast per se, but it also plays important role in our experiment design

that it allows us to exclude the possibility that the task given to the participants was too

difficult to be feasible (or that they are not paying adequate attention). Consider the

case where we reduce presentation time, or luminance, such that none of the participants

can detect the real stimulus amongst rendered alternatives. This pattern of data would

resemble passing the visual Turing test, but for an entirely trivial reason. Showing that

people can detect small reductions in contrast with our chosen experiment parameters,

however, would demonstrate that they did perform the discrimination task satisfactorily,

and so a failure to discriminate in the standard condition can be interpreted at face value.

The object was rendered either on the near focal plane of our display using nearest-

neighbour rendering, or on both focal planes using linear depth filtering, as explained in

Section 4.3.4. We tested both conditions to understand the importance and challenges of

delivering correct focal depth.

Procedure We used a three-interval-forced-choice (3IFC), or odd-one-out, procedure. In

each trial, the participant was shown three intervals, for 2 seconds each, from which either

two were real and one virtual, or two were virtual and one real. The participant was given

the instruction: You will see three objects, one after another. Select the object that appears

different from the two others. We intentionally avoided asking a question about realism as

such a question would be open to subjective interpretations of what real looks like, and

may lead observers to attend to some aspects of the stimulus while ignoring others. With

an oddity task, the observer was instead free to use any aspect of the stimulus to make

their judgement, making it a true test of the ability to discriminate real from rendered

images. Indeed, the 3IFC task can be considered a very strict test of our display, given

that in practical use observers will often evaluate the realism of a rendered scene without

the presence of an equivalent real comparison. To avoid after-images causing identical

stimuli to appear differently between intervals, we showed a plane with a noise texture

of the same average luminance as the object and at the same distance. Our procedure

aims to objectively measure whether observers are able to distinguish a real object from a
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virtual one without being provided with any training, prior knowledge, or experience for

the given task.

The experimental session consisted of 120 trials, which took on average 40 minutes to

complete, split into two sessions with a short break. Each participant completed 30

repetitions of each condition. In each trial, we randomly selected either a standard

stimulus or one with reduced contrast condition, and presented it using either 2-focal plane

rendering, or only on the front focal plane (4 conditions in total). One of five illumination

patterns was randomly selected for each trial (the same pattern was used in all three

intervals). As the alignment of two focal planes is crucial for the reproduction of focal

distance, we displayed an alignment grid (similar to Figure 4.11) before each trial. The

participants pressed a key to continue only when a good alignment was achieved. They also

had an option to repeat the trial if they were distracted or accidentally moved their heads.

Finally, we asked the participants to wear glasses frames with an IR-LED (Figure 4.6),

which was used to track and record their head position before and after each interval. We

removed the measurements for the trials in which the movement reported by the head

tracking was above a certain threshold while multi-focal rendering was used (≈ 15% of the

measurements).

Participants 12 participants (3 females and 9 males, mean age 27.8, SD 4.1 years)

completed the experiment. Each participant was screened for normal stereo acuity with the

Titmus fly test and for normal colour vision with the Ishihara test. The participants were

instructed to wear their corrective optics. They were compensated for their participation.

Results The participants’ answers give us a measure of the probability of selecting the

correct interval, P (correct). Since the participants can select the correct answer by chance,

we need to correct for that by modelling:

P (correct) = P (chance ∪ detected)

= P (chance) + P (detected) − P (chance)P (detected) ,
(4.5)

where P (chance) = 1/3 in a 3IFC experiment. P (detected) does not depend on the protocol

(2IFC or 3IFC) and a zero P (detected) indicates a complete perceptual equivalence between

the real and virtual objects. The resulting probability of detecting the interval that appears

different, P (detected), is plotted in Figure 4.17 for all 12 participants. As expected, the

results show that the reduced contrast increases the probability of detecting the different

object, proving that the participants can perform the task. However, for most participants,

multi-focal rendering on both planes made it easier to perform the task compared to
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Figure 4.17: The probability of detecting the correct interval (compensated for the guess
rate) for each condition and participant.
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Table 4.1: The results of the post-experiment questionnaire in which the participants were
asked to tick one or more differences they could see between the real and virtual objects.

Options Votes

different colour 2
different sharpness 6
different brightness 4

different shape or size 0
different position or orientation 0

different illumination 1
one object or other objects appeared flatter 0

one object or other objects appeared less shiny 6
material appeared different 1

rendering only to the near plane4. We discuss potential factors that contribute to this

outcome in Section 3.2.7.

The results also show large individual differences in detection probabilities across partici-

pants. This is most likely because different participants tend to pay attention to different

aspects of the stimuli. Meanwhile, although our display resolution did not reach the peak

visual acuity (see Section 2.1.1) at the fovea, only participant #3 who reported a 20/20

vision was able to detect tiny differences in resolution and detail when comparing with

a physical object. We collected a post-experiment questionnaire to better understand

how the participants attempted to identify the different objects. In the questionnaire, we

asked: What made the selected object stand out from the other objects? and gave a set

of possible answers listed in Table 4.1. Table 4.1 shows that among the 12 participants,

six participants ticked sharpness, which could be a result of the incorrect defocus blur

discussed in Section 4.4 or the insufficient resolution (compared to human sensitivity) of our

display. The option one object or other objects appeared less shiny was also ticked by six

participants. This is potentially due to an inaccuracy of our lumigraph synthesis approach,

since the shininess of an object is attributed to specular reflections. Four participants

selected brightness while two selected colour, indicating room for improvements in our

photometric calibration and colour reproduction. We elaborate on the aforementioned

issues in Section 3.2.7. All participants reported that none of the virtual stimuli appeared

unnatural when viewed in isolation and if they had not been asked to look for differences

from a physical stimulus, they would have deemed the virtual stimuli to be real.

4This is with the exception of participant #1 and #9. However, participant #1 only had seven valid
trials for standard two-plane rendering, resulting in large confidence intervals. During a post-experiment
study, participant #9 indicated that the scene rendered on both focal planes better matched the real
scene in terms of colour and contrast. Participant #9 also reported not paying attention to the edges of
the object where defocus artefacts can be more salient with multi-focal rendering.
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We use our measurements across four conditions to further isolate the factors that con-

tributed to the detection. Assuming that all factors are independent but multiple factors

can trigger the detection, we can model the probability of detection as the probability

summation:

P (detected) = 1 − (1 − P (f1)) (1 − P (f2))(1 − P (contrast)) , (4.6)

where P (f1) is the probability of detecting the difference due to single focal plane rendering,

P (f2) is the probability of detecting the artefacts due to the limitations of two-focal plane

rendering (excluding all factors contributing to P (f1)) and P (contrast) is the probability

of detecting reduced contrast. We use maximum likelihood estimation to compute those

probabilities across all participants and get:

P (f1) = 0.44 P (f2) = 0.3 P (contrast) = 0.56 . (4.7)

This shows the observers have 44% chance of detecting the difference between real and

virtual objects shown by our display and that two-focal plane rendering increases that

chance by 30%5. The isolated probability of detecting the contrast reduction by 20%

(γ = 0.8) is 56%, which corresponds to about 1 JND unit (78% for a 2IFC protocol). The

reduced contrast conditions serve as an example of a procedure that can be used to scale

other relevant “distortions”, such as the change of luminance, disparity or black level.

4.6 Discussion

3IFC task The outcome of our experiment, showing that observers can detect the virtual

object in 44% of the cases may appear worse than the results reported in other works

[126, 10]. However, we need to consider that this is the first time a direct comparison was

made between a display and a 3D object seen from a short distance. We also used a much

more challenging 3IFC procedure, which removed the subjective assessment of “realism”

from our task, and made our test sensitive to very small differences between displayed

and real objects. Such differences in certain insignificant aspects (such as viewing angle,

object size, position, etc.) do not necessarily degrade the quality of realism for images

viewed in isolation.

5Note that the probability of detecting limitations of single-focal-plane or two-focal-plane rendering (or
both) is: P (f1 ∪ f2) = P (f1) + P (f2)− P (f1)P (f2) = 0.61.
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Distorted conditions Most visual experiments in graphics either test preference (does

A look better than B) or measure similarity to a “reference”, which is often obtained from

costly renderings, such as path tracing. Both approaches can only be used to determine

relative improvements with regard to another rendering method, which may or may not

capture the desired visual qualities. Our reduced contrast condition demonstrated how a

(simulated) rendering method (or a display limitation) can be directly compared against

the ultimate reference of a real-world object. Such absolute measures can tell us that a

certain percentage of observers across a population will not notice any observable difference

to the real-world object (P (contrast)), while discounting the existing imperfections of the

display (P (f1) and P (f2)). We plan to use such a methodology to quantify the importance

of various display capabilities, such as the dynamic range, absolute luminance, disparity,

focal distance, accommodation, and others.

Eye tracking Multi-focal rendering requires very precise alignment across the focal

planes. Effective alignment without uncomfortable restraining of the head position requires

active tracking and compensation for the head position. Our IR LED tracker was a first

step toward this goal. Latency of the tracking, and the limited refresh rate of the display,

did not let us implement active compensation for head movement yet. These are not

fundamental limitations of the approach, however.

Multi-focal rendering Our experiment showed a result that rendering on two planes

with linear depth filtering made it easier for most observers to detect discrepancies. One

explanation could be that while linear depth filtering with the current two-plane separation

distance can drive accommodation to the correct depth, it causes an increased defocus blur

compared to real scenes. Any multi-focal-plane display with a practical number of focal

planes necessarily samples focal depth coarsely, and so most scene points will not coincide

precisely with a focal plane. Accommodation can be driven to the appropriate inter-plane

distances by linear depth filtering (with plane separations up to and even exceeding that

used here, [111]). Yet, at least one image plane must be defocused (because two cannot be

focused on simultaneously), resulting in potentially detectable blur compared to a real

scene. The results suggest defocus blur plays a more important role in perceptual realism

than the accommodation response. As we are relatively insensitive to accommodation

state, and it is a weak depth cue, incorrect accommodation is likely to provide weaker

cues to realism than blur. Several steps can be taken, however, to reduce this defocus

blur compared to the present study. Due to light scattering inside the real-scene box, we

used dim illumination, which increased the pupil size, thereby increasing defocus blur.

In rendered scenes this problem can be reduced by using higher luminance (including
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HDR) scenes. Also, in this study, the far focal plane was far from the stimulus. Either

adding an additional intermediate focal plane, or moving the planes to optimal positions

with respect to the scene content, would reduce the focal depth inaccuracies that lead

to increased defocus blur. Finally, more advanced multi-focal decomposition algorithms

may be able to compensate for the loss of high spatial frequencies that characterizes

defocus blur [131, 124]. Since a correct stimulus to accommodation is necessary to avoid

vergence-accommodation conflicts [65], there is great value in attempting to optimise

multi-focal displays for reproducing realism. We hope that our display can be used to

explore the trade-offs involved in doing this. For example, does tolerance to incorrect focal

depth increase if other aspects of the scene are delivered with very high fidelity?

Reproducible stimuli Our system has several limitations in terms of the stimuli it

can reproduce. While our system can synthesize non-Lambertian materials with specular

reflections, the quality may not reach the level of perceptual equivalence, as indicated

by our post-experiment questionnaire. Specular highlights are sensitively dependent on

viewing positions, making them difficult to be reproduced as it is unlikely that our data

camera perfectly overlaps with the observer’s eye position. We anticipate that such

inaccuracies can be reduced by capturing more light field views or incorporating more

advanced neural scene representations [179, 164, 60]. We did not explore this direction as

training and convergence of scene-representation networks with large-size data (8k images

in our case) remained an actively studied problem at the time of our work. In the future,

we plan to evaluate various view synthesis approaches with our apparatus in terms of

perceptual realism, whereas existing works only focus on photorealism. Our system is also

currently limited to simple or known geometry. Nonetheless, this is not a fundamental

limitation of our approach — we can modify the loss function in Equation 4.1 such that

it not only optimises for a spatial transform but also for a per-vertex deformation to

fit an unknown geometry. However, this approach also requires capturing many more

views around the object. Since 3D reconstruction is not the main focus of this work, we

chose to work with known geometry and a horizontal light field. Our rendering method

is currently unable to reproduce edge occlusions of objects at different depths without

introducing visible artefacts. Our intention is to test more advanced multi-plane rendering

methods [131, 124, 196] in the future. Our display has an advantage over the previously

built multi-focal plane displays in that it can reproduce a much higher dynamic range,

which gives more flexibility in optimising for multi-plane decomposition (for example,

greater headroom for compensating for the loss of high spatial frequencies). In addition,

although the resolution of our display is much higher than that found in the previous

work [163], it is still lower than the levels required for a perceptual match, as reported by

Masaoka et al. [119]. Achieving the highest resolution reported in their paper (120 cpd)
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would require tripling the resolution of our LCD panels. This is currently impossible

when using off-the-shelf components. As above, it will be interesting to explore whether

tolerance to lower-than-optimal resolution is increased when other aspects of the scene are

delivered with high fidelity. Finally, our colour calibration currently relies on CIE XYZ

1931 colour matching functions, which are known to be inaccurate for short wavelengths

[27]. It also did not account for the contribution of rods to colour perception or individual

differences. Better colour matching may require capturing multispectral images and

individual corrections to compensate for the differences in cone sensitivities.

4.7 Summary

The main objective of our work is to build an end-to-end system that can acquire a small

3-dimensional object and reproduce it faithfully with all the necessary visual cues on a

display. Being able to do so is an important step for perceptually realistic graphics, in which

the depicted imagery is indistinguishable from the real world. A direct comparison with

real-world objects lets us better understand the limitations of not only the visual system

but also those of display technologies, 3D representations, and rendering techniques. For

example, we found that defocus blur could play a more important role than accommodation

response in perceptual realism, together with the need for accurate view-point tracking, as

one of the main limitations of multi-focal plane displays.

We demonstrate that the first iteration of our HDR-MF-S display can deliver virtual imagery

that is in only 44% of the cases detected as different from its real-world counterpart. This

result was obtained when asking the question is it different? rather than is it real?,

making the task more objective but also requiring higher accuracy from a display system.

This work is also the first attempt to reproduce a 3D object at a short distance, with

an essential set of visual cues. Finally, our experiment design with a “control” distorted

condition ensured that the participants were correctly completing the task.

The display is a platform for a wide range of experimental studies, in which both faithful

reproductions of all visual cues and comparison to reality are paramount. For example, it

can be used for studies on gloss and material perception, physics-based rendering, global

illumination, tone mapping, view synthesis, augmented & mixed reality, and many more.

All these studies can take advantage of full control over each display capability dimension,

such as dynamic range or luminance. The displays can also simulate a wide range of

see-through AR displays, by using a real-scene box as a real environment and offering

a much higher dynamic range and peak luminance than that of most head-mounted

displays.
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Chapter 5

Conclusion and Future Work

In this dissertation, we provide a comprehensive unified overview of perceptually realistic

graphics (PRG), an emerging field gaining increasing attention and impact within the

graphics community, along with several proposed advancements in the field. We demon-

strate that perceptual realism can be approached by maximising the quality of essential

visual cues rather than reproducing a physically correct distribution of light. From an

application perspective, we believe that PRG has the potential to revolutionise the way

people entertain and interact with the digital world. Although achieving this would require

further research on the interaction between digital and physical content, realism remains

an essential and enduring requirement for the experience of such applications. From a

research perspective, PRG opens the door to several new branches in the study of computer

graphics, as traditional graphics was primarily focused on photorealism and rendering on

a single image plane. As demonstrated by this dissertation, human perception must be

in the loop in the design of new approaches throughout the PRG pipeline. Traditional

algorithms for 3D scene acquisition, representation, and rendering must also be adapted to

meet more stringent visual requirements and accommodate novel 3D display architectures.

Given the nascent nature of perceptually realistic graphics, this dissertation represents

merely the beginning of our exploration of the field. We anticipate a multitude of

research questions to emerge in the future. To start, this dissertation primarily focused on

maximising the perceived quality of static 3D scenes, with limited exploration of visual

requirements related to temporal aspects. Acquisition, representation, and rendering of

dynamic scenes must meet stricter requirements to achieve perceptual realism in motion.

Meanwhile, as briefly discussed in Section 2.3, perceptual realism requires optimising scene

and rendering parameters with respect to real-world scenes and human vision, rather than

merely images. This requires integrating accurate simulation of cameras, displays, and

139



human vision into the differentiable graphics pipeline. For example, artefacts such as

aberration (geometric and chromatic) and blur introduced by the camera must be modelled

and corrected in the optimisation loop. Factors such as pupil size, lens, and chromatic

aberration of human eyes also influence the formation of the retinal image. Furthermore,

while traditional scene manipulation algorithms were designed to process scene content in

digital forms, new methods are required in PRG to directly manipulate the perception of

physical scenes and interactions between real and virtual objects. For example, in Chapter 4,

we demonstrate that our HDR-MF-S display is able to alter the colour and brightness of the

physical objects by superimposing a virtual mask. However, reducing light transmission in

additive displays to darken the physical objects or simulating a darkening effect remains a

longstanding challenge. More advanced effects such as relighting, recolouring, removal,

and occlusion of physical objects are also underdeveloped. Finally, an effective 3D quality

metric (parallel to image quality metrics such as SSIM [170] and PSNR) is needed to

quantitatively evaluate the qualities of virtual 3D scenes rendered on a 3D display, as

the visual Turing test can be laborious and unscalable. Such a metric may also consider

the tradeoffs associated with the importance of individual visual cues. In Chapter 2,

we provide a discussion on a mixture of qualitative and quantitative criteria to achieve

perceptual realism for the worst-case scenario, as we consider the best capabilities of

human vision in its limit. However, factors such as contrast sensitivity, visual acuity, and

motion perception can be scene-dependent. A desirable 3D quality metric is expected to

adapt to varying viewing conditions and scene content, enabling the identification of the

minimum requirements on individual visual cues for perceptual realism.
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