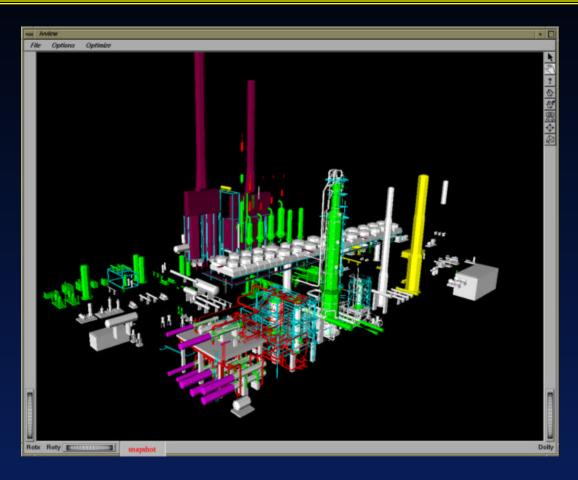
A million pixels, a million polygons. Which is heavier?

François X. Sillion

iMAGIS*
Grenoble, France


*A joint research project of CNRS, INRIA, INPG and UJF

i MAGIS

Why this question?

- ✓ Evolution of processing power and architectures
- ✓ New applications, demands and markets
 - -Giant databases (digital mock up)
 - -virtual reality, games...
- ✓ Image-based graphics:
 - -current state and trends
 - –potentialities

A million polygons

Who needs a million polygons?

- ✓ Assemblies of CAD models
- ✓ Integrated design/manufacturing
- ✓ Digital mock-ups

A million pixels

© François Sillion, **iMAGIS 1997**

Rendering in Computer Graphics

- ✓ Models for 3D geometry, light reflection
- ✓ Global illumination simulation
- ✓ Real-time rendering

All of these requirements present difficult challenges!

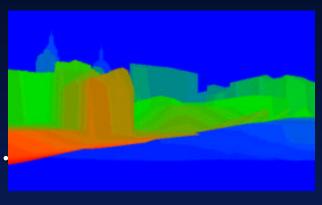
Subtle illumination effects

© François Sillion, **iMAGIS 1997**

Real-time rendering for dynamic scenes

Image-based rendering (IBR)

- ✓ Avoid expensive/difficult 3D model
- ✓ Start from a set of images
- ✓ Manipulate pixels to create new image
- ✓ With real images, elaborate lighting effects are "free"
- ✓ QuicktimeVR [Chen95], [Laveau], [McMillan95,97],...

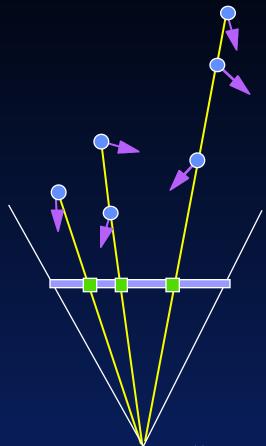

What's an image?

✓ array of RGB () samples

✓ add depth sample

✓ add multiple depths, normals..(Layered Depth Image, LDI)

Tour into the picture [Horry 97]

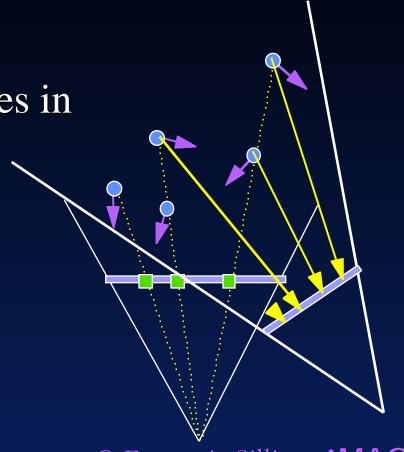

- ✓ Use a single image
- ✓ Manually define simple perspective
- ✓ Manually create layers with selected portions of the image © François Sillion, iMAGIS 1997

See http://www-syntim.inria.fr/~horry/images/s97slide.html

Layered depth images [Gortler97]

See http://www.research.microsoft.com/research/graphics/cohen/SIG_97_IBR/index.htm

✓ Gather multiple depth samples for each pixel


© François Sillion, iMAGIS 1997

Layered depth images

✓ Reproject all samples in new image

-no need for depth comparisons

-splatting technique

© François Sillion, iMAGIS 1997

Rendering from a million polygons?

✓ Transform 1-3M vertices

20 M flop

✓ Lighting

10 M flop

✓ Texturing

15 M flop

Memory bandwidth

100 Mb

✓ Raster engine, z-buffering

?

Rendering from a million pixels?

- ✓ Transform 1M points (coherence)
 - 6 M flop

- ✓ No lighting
- ✓ No z-buffering
- Memory bandwith (coherent access)

8 Mb

Rendering performance considerations

- ✓ 3D rendering reaches the consumer market
 - -thousands of lit, textured polygons / second.
 - -specialized boards require careful design for efficient integration.
- Image processing subsystems
 - -video (analog/digital),
 - -texture (games),
 - multimedia extensions

Generating and obtaining IBR models

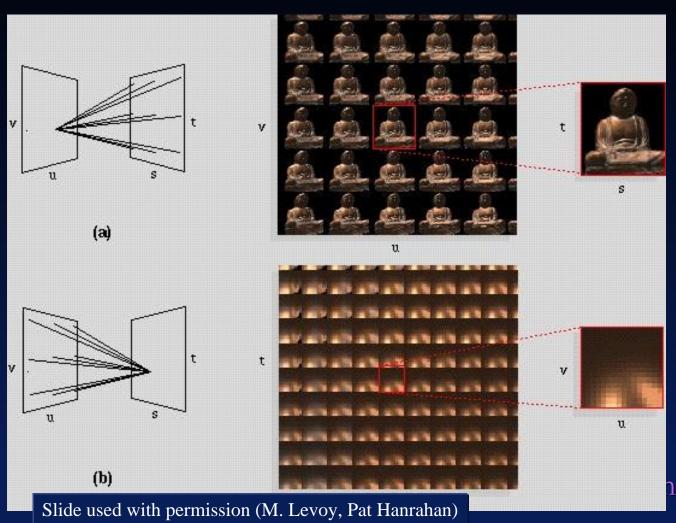
- ✓ From synthetic images
 - -Ray tracing
 - -Range images, LDIs, Lumigraphs
- ✓ From real images
 - -use panoramic views, vision techniques
 - -feature matching (difficult)
 - -Lumigraphs (no depth)


Link with vision

- ✓ Image based modeling (IBM...)
- ✓ Use images + parameters
 - -avoid WYSIAYG
 - object class information
 - -interactive modeling (facade)

IBR = sampling + reconstruction

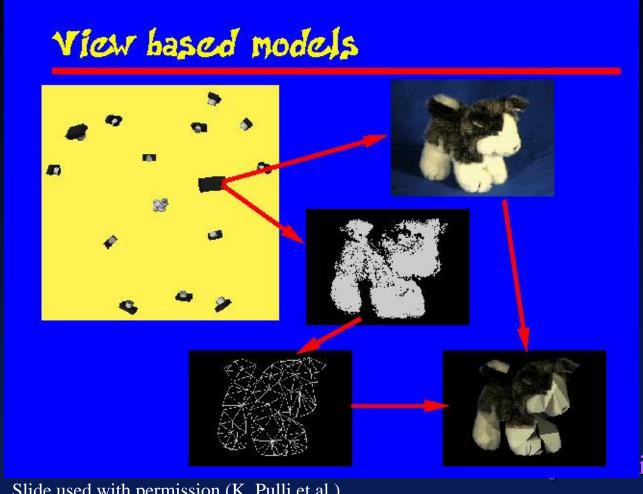
- ✓ Operate without geometry
- ✓ More complete representations (higher dimensionality)
- ✓ Simplified representations (adding simplified 3D model)


Light field - Lumigraph

Slide used with permission (M. Levoy, Pat Hanrahan)
See http://www-graphics.stanford.edu/projects/lightfield

© François Sillion, iMAGIS 1997

Light field - Lumigraph sampling



1, iMAGIS 1997

Impostors

- ✓ Create textured 3D model from images
 - -simplified representation
 - -rendered as 3D geometry
- ✓ Planar polygons [Maciel95, Schaufler96, Shade96]
- ✓ 3D meshes from range images [Pulli 97, Darsa 97, Sillion 97]

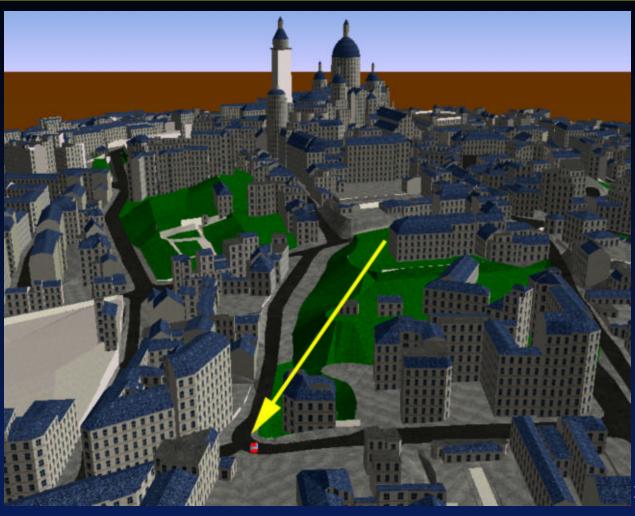
Textured 3D mesh from a range image

Pulli 97

ion, **iMAGIS 1997**

Slide used with permission (K. Pulli et al.)

Blending required to combine views


without blending (z-buffer)

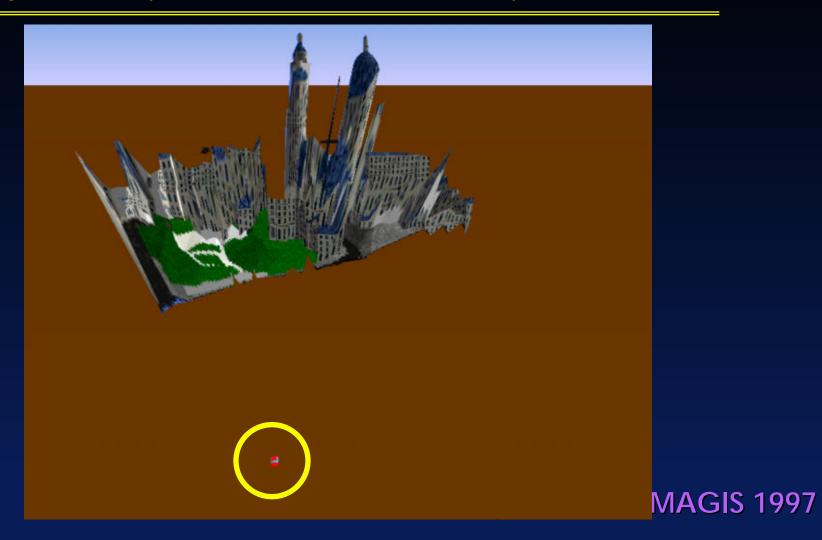
with blending [Pulli 97]

François Sillion, **iMAGIS 1997**

Images used with permission (K. Pulli et al.) See http://www.cs.washington.edu/homes/kapu

Principles of our approach: example

iMAGIS 1997


Local model (3D objects)

Distant model (3D objects)

Impostor (Textured 3D mesh)

Combined model (local+impostor)


Combined model (local+impostor)

iMAGIS 1997

Deforming impostors

- ✓ Talisman [Torborg 96]
 - -Render sprites
 - -Layered model
 - Affine transforms[Lengyel97]
- ✓ Impostor transition

Slide used with permission (J. Lengyel et al, Microsoft research.)
See http://research.microsoft.com/~jedl

© François Sillion, iMAGIS 1997

Applications for IBR

- ✓ Walkthrough / view synthesis
- ✓ Stereo synthesis
- ✓ Interpolation/extrapolation
 - -Latency compensation
 - -Frame rate equalization
 - -Network transmission
 - -Leverage expensive rendering

Polygons

Pixels

- ✓ Continuous
- ✓ Modeling
- ✓ Animation
- ✓ Level of detail

- ✓ Discrete
- ✓ Capture
- ✓ Video streams
- ✓ Filtering

Pixels

- ✓ Discrete, regular nature
 - –easy to filter: adaptation to user perceptual limitations
- ✓ Work with real images
 - -Easy to capture
 - -Let nature do the modeling/lighting
 - -Work from existing images (historical, legal, forensic applications...)
- ✓ WYSIAYG

Polygons

- ✓ Complete 3D model
 - -solid modeling
 - -global illumination
 - –path planning, assembly checking, collision detection
- ✓ Common denominator for many modeling systems
- ✓ Can be simplified but it's hard to keep the model consistent rançois Sillion, iMAGIS 1997

Extended notion of image-based models

- ✓ Use *both* images and 3D data
- ✓ Combine a simplified model with images
- ✓ model can be extracted from images or other information

IBR and availability of 3D models

- ✓ Complete 3D model
 - -IBR as graphics subsystem
- ✓ No 3D model
 - -QTVR, plenoptic rendering
 - -The model is the image(s)
- Range data available
 - -Scanned data is huge: need to simplify

Problems with current algorithms

- ✓ Holes in reconstructed images
- ✓ Image deformation (impostors)
- ✓ Volume of data
- ✓ Sampling/filtering artifacts

Can we expect hardware advances?

- ✓ view interpolator
- ✓ soft z-buffering and blending
- ✓ multiple or view-dependent textures
- ✓ decompression
- memory bandwith

Limitations of IBR

- Specularities
- ✓ Lighting/geometry/reflectance changes are hard
- ✓ Computer Vision issues: model building
- ✓ Images may not be available!

Marketability

- ✓ QTVR, panoramic images
- ✓ Image-based modeling
- ✓ Image-based rendering architectures
- ✓ Image caching, impostors
- ✓ Network applications (QoS)
- ✓ Light field

...and now?

- ✓ Simulation of global illumination
- ✓ Visibility calculations
- ✓ View-dependent texture mapping
 - -disparity/depth
 - -specularity/shading
 - -re-lighting
- ✓ Compression of depth values

Computer-augmented reality

Drettakis 97

computed solution /IAGIS 1997

Conclusions

- ✓ IBR offers useful advances
 - –leverage cost of high-quality rendering
 - -fast extension via specialized subsystem
- ✓ Vision issues limit applicability of "pure" IBR for real images
- ✓ Use combined 3D models and images
- ✓ Polygons are still useful!

Acknowledgements

- ✓ Yann Argotti, George Drettakis, Frédo Durand, Peter Kipfer, Céline Loscos, Stéphane Moreau, Cyril Soler
- ✓ Michael F. Cohen, Steven Gortler
- ✓ Marc Levoy, Pat Hanrahan, Kari Pulli, Jed Lengyel, Youichi Horry, Ken-ichi Anjyo, Kiyoshi Arai