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Figure 1: We propose the design of a camera diffusion technique that generates diverse and realistic camera motions conditioned on cine-
matographic textual inputs and optional keyframe constraints (red camera icons on the left). The model provides users with a natural and
creative way to build camera motions and blend the motions while enabling precise control using keyframes.

Abstract
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite
an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through
cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place
and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous
techniques have been proposed in the literature (optimization-based solving, encoding of empirical rules, learning from real
examples,...), the results either lack variety or ease of control.
In this paper, we propose a cinematographic camera diffusion model using a transformer-based architecture to handle tempo-
rality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high-level
textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between mo-
tions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of
this text-to-camera motion approach through qualitative and quantitative experiments and gather feedback from professional
artists. The code and data are available at https://github.com/jianghd1996/Camera-control.

CCS Concepts
• Computing methodologies → Procedural animation; Artificial intelligence;

1. Introduction

"It’s only through writing scripts that you learn specifics about the
structure of film and what cinema is.” – Akira Kurosawa

† Corresponding author

Films are not only about moving pictures, but are also created us-
ing language. They are produced through the dialogues spoken by
the characters, the screenplays that depict the narrative, the shoot-
ing scripts that instruct the cinematographers, and, undeniably, the
guidance given by directors. During the filmmaking process, film-
makers communicate their inspiration through verbal or written lin-
guistic commands, instructing cinematographers to perform vari-
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ous artistic camera movements that help convey the story and ex-
press emotions within the image frames.

The language used to discuss cinematography is not confined
to a prestige language that serves only experts. With the rapid de-
velopment of realistic video games, cameras accessible on mobile
phones, and even unmanned photography robots such as drones,
the language of cinematography is becoming increasingly preva-
lent among the general public. However, converting such high-level
descriptions to specific camera placements and motions in real or
virtual worlds raises several challenges: i) the regular user may not
be able to position the camera with expertise, given the large im-
plicit knowledge in cinematography, e.g. confirming the possible
range of camera positions to well-established frame scales, angles,
compositions, and intended emotional and cinematic messages. For
instance, "pushing in to a close-up shot" typically refers to implicit
specific motions and camera velocities with ease-in and ease-out
effects, spatial distances, and on-screen framing properties with re-
spect to the character’s facial area on screen; ii) film language also
exhibits many ambiguities, as in every human spoken language and
the same linguistic input could refer to a range of different plausible
results. In the traditional filmmaking workflow, cinematographers
and directors of photography are responsible for dealing with such
ambiguities, interpreting operational camera motions from written
screenplays and camera shooting scripts (the language command
for the cinematographer).

On the computer science side, diffusion models have recently
demonstrated significant advancements in the quality, manipula-
tion, and versatility of AI-generated content (AIGC). Applications
encompass a wide range of topics, including image and video gen-
eration [RDN*22], human animation [TRG*23], and even 3D con-
tent generation [PJBM23]. Many of these approaches rely on CLIP
text embedding [RKH*21] as guiding information to condition
the output generation from human linguistic input. For instance,
DALLE [RDN*22] enables users to describe an image in terms of
content and style. Similar applications can be observed in the com-
puter animation field such as the Human Motion Diffusion Model
(MDM) [TRG*23], Speech Gesture Diffusion [AZL23], etc.

The question we address in this work is whether we can leverage
such diffusion models to build a script-to-camera-motion approach
for virtual cinematography that would enable the generation of di-
verse results while also encoding implicit cinematographic charac-
teristics. Unlike image and animation generation, the use of natural
language for cinematography poses unique challenges and the fol-
lowing demands should be addressed:

Cinematic paradigm vs. linguistic ambiguities: The gener-
ated results shall align with established cinematographic princi-
ples (i.e. the large implicit knowledge composing the cinematic
paradigm [Alb12]) while being able to handle linguistic ambigu-
ities. This necessitates the ability to understand the implicit cin-
ematographic knowledge and be able to propose a many-to-many
generative system addressing many-to-one and one-to-many chal-
lenges. The many-to-one challenge is rooted in the linguistic varia-
tions that arise from different users when giving commands to the
camera system, e.g. ’push in’, ’get closer’, and ’move towards tar-
get’ can represent similar camera motions. Additionally, a camera
shot can be articulated from various perspectives, encompassing

aspects such as camera movement, shot composition, and screen
properties. The one-to-many challenge is more grounded on the
ambiguous and partial nature of such a language. For example, a
’tracking shot’ can be executed from different directions: from back
view, side view, or front view, therefore opening rich possibilities
for designers.

User controllability vs. style constraint: In the context of camera
motion generation, user controllability plays a critical role, partic-
ularly in filmmaking scenarios where precise camera movements
are required to avoid obstacles and achieve specific shots, whereas
the common text-based condition may not be sufficient to address
such requirements. To tackle this challenge, it is necessary to ad-
dress the common keyframing and transitioning problems to en-
able enhanced controllability without compromising the generative
capacity of cinematographic style constraints. The seamless transi-
tion between sequences of generated results is also crucial to ensure
smooth and artifact-free outputs.

In this context, the objective of our work is to generate diverse
and realistic camera motions from textual descriptions and offer
additional control to the users by specifying keyframe camera con-
ditions and means to transition realistically between different mo-
tions. To this end, we propose to rely on a diffusion approach that
we extend to handle camera motion specificities (automated transi-
tions and keyframe control). Different from regressive models such
as LSTM, generative models like GANs (generative adversarial
networks) and diffusion models have demonstrated impressive ca-
pacity in learning distributions and synthesizing unseen and diverse
results. GANs, however, hold shortages e.g. : difficulty in training
without carefully selected parameters, complicated when enabling
conditioning [DN21b]. Furthermore, results seem to demonstrate
that, despite similar performance on FID (Frechet Inception dis-
tance, which measures similarities between distributions) or on pre-
cision, GANs capture less diversity and are more prone to mode
dropping than state-of-art likelihood-based models. This is because
while training the generator fails to sample from the full range of
possibilities in the target distribution, causing it to produce samples
that are too similar to each other [DN21b; XKV21].

Therefore, drawing inspiration from motion diffusion mod-
els [TRG*23], we present our method named Camera Diffusion
Model (CDM), which learns from text-driven CLIP embeddings
how to generate diverse and realistic motions. We benefit from the
one-to-many capacity thanks to the stochasticity and better mode
coverage of diffusion models, and extend the many-to-one capac-
ity through textual augmentations. Furthermore, in order to inte-
grate additional constraints in the specifications, we use keyframe
constraints as input conditions, rather than exploiting traditional in-
painting techniques. Finally, we exploit the interpolation capacity
of the CLIP embedding to demonstrate how different generated se-
quences can be smoothly blended, while remaining qualitative.

The contributions of our work are the following:
(i). To the best of our knowledge, we are the first to design a cine-
matographic camera diffusion system that incorporates linguistic
support and provides keyframing constraints together with real-
istic transition schemes between camera sequences. This enables
users to generate diverse camera motions for given animations,
even when facing linguistic ambiguities. It also ensures that our
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generative model is a practical tool for artists and non-experts alike,
providing both precise control and the ability to generate cinemati-
cally pleasing results.

(ii). We show that these additional controls though keyframing and
transitioning schemes address the inherent conflict between con-
trollability and styled generation. We empirically illustrate that
prior inpainting techniques using masking [TRG*23] fail to han-
dle this conflict and demonstrate the superiority of integrating
keyframes as extra condition information in the diffusion process.

(iii). We finally conduct extensive quantitative and qualitative ex-
periments, ablation studies, and showcases on various aspects of
our method, including the impact of linguistic certainty, the trade-
off between keyframing and style, zero-shot multimodality infer-
ence, etc.

The source code and dataset for our method can be found
at https://github.com/jianghd1996/Camera-control. We
hope our work can provide valuable resources for further explo-
ration and experimentation in this field.

2. Related Work

Cinematography & camera control. The field of computational
cinematography covers a wide spectrum of problems, from narra-
tive aspects [dLPd*09] to mise-en-scene [XSF02], lighting [SL01],
camera control [CON08; GW92; LC08] and even cutting and edit-
ing problems [LDTA17]. Many researchers also worked on more
constrained problems such as drone cinematography [GLC*18;
NMD*17]. In recent years, the field has embraced Deep Neural
Networks (DNNs) due to their remarkable fitting capacity and abil-
ity to generalize from complex datasets. Applications are found in
cinematic feature extraction [CLCK21], film and shot classifica-
tion and segmentation [RXX*20], cutting and montage [WYH*19;
PCA*21], film scene reconstruction [PWTK22], etc.

Furthermore, several deep learning-based systems have been de-
veloped to address the camera control problem in various contexts:
such as drone cinematography systems [HGP*18; BZC*20], which
propose practical solutions for drone shooting tasks but are limited
in learning only certain types of camera movements and lack fine-
grained control. In the domain of virtual cinematography, i.e. ap-
plying cinematography in computer graphics environments, Jiang
et al. [JWW*20] combined the Toric [LC15] coordinate system
with a Mixture-of-Experts to generate styled camera motions based
on different video reference inputs. A follow-up work [JCW*21]
introduced keyframing for finer control of camera motions using
an LSTM-based backbone. These works design camera genera-
tors with examples and keyframe control, which are not effective
for textual conditions. Additionally, in alternative implicit learning-
based environments such as NeRF [MST*21], [WCS*23] proposed
a cinematic transfer task aimed at replicating similar camera mo-
tions from a reference video within a NeRF scene.

Generative models. One approach to the computational cine-
matography task involves framing it as a generative problem with
a predefined data distribution. However, the technical approaches
to solving the generative problem are diverse in deep learning re-
search: from Auto-Encoder, Variational Auto-Encoder [KW13] to

the popular GAN [GPM*20] models. Recently, a contender has
emerged in the longstanding competition in generative models: the
diffusion model, initially proposed in [SWMG15] and becoming
prevalent in the image generation domain due to the adaptation
of DDPM [HJA20]. The model represents a notable advancement
in this field. The main idea consists of reversely generating con-
tent from Gaussian noise latent representation step by step and
has demonstrated remarkable capabilities in synthesizing realis-
tic image content. Subsequently, enhancements have been made
to improve user controllability and generation quality through the
utilization of guidance such as classifier guidance [DN21a] and
classifier-free guidance [HS21].

Text-driven generative models. Many recent works have chosen
to leverage textual inputs or conditions to drive generative mod-
els. These approaches have the potential to democratize technolo-
gies and benefit the rapid development of Large-Language Mod-
els (LLMs) for facilitating tedious and repetitive tasks. One of
the foundational works in this area is the CLIP model [RKH*21]
that exploits contrastive learning to create a joint image-text em-
bedding space. CLIP has demonstrated excellent performance on
zero-shot image and text tasks. This seminal work has opened up
numerous possibilities for incorporating text commands into the
generative process, allowing users to linguistically describe the
desired content to be generated. The very combination between
the controllable CLIP model and the generative diffusion model
empowered many applications in computer vision and computer
graphics domains, enabling text manipulation on generated con-
tent of images [RDN*22; RBL*22], videos [HSG*22], human mo-
tion [TRG*23] as well as human gesture animation [AZL23].

In our work, we build on the recent contributions related to hu-
man motion generation [TRG*23], and we design dedicated means
to handle the specific one-to-many and many-to-one requirements
of text-driven cinematographic generation. We also propose means
to handle keyframe conditioning for improved control and qualita-
tive motion interpolation, which contrast with existing work.

3. Overview

The overall architecture of our system is described in Fig. 2. The
system takes as input a partial or complete textual description
that follows well-established framing, angle, and camera motion
properties, together with optional user-defined camera keyframes
on the extremities of the trajectory. We use the CLIP embedding
model [RKH*21] to encode the textual descriptions that we con-
catenate with keyframe information. A latent noise Xt is also in-
put to the camera diffusion model (CDM) to generate an output
noise Xt−1. The system outputs a camera motion sequence satisfy-
ing both textual specification and keyframe constraints by denois-
ing the output Xt through successive steps. The system is also de-
signed to ensure a smooth transition from one sequence to another
with different strategies for long sequence generation.

4. Camera Diffusion Model

4.1. Data format

The proposed model aims to synthesize a sequence of camera poses
x1:N

0 (we replace the notation of x1:N
0 by X0 for simplicity) over N
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Figure 2: The pipeline of the proposed system. Our proposed Camera Diffusion Model (CDM) takes script conditions, keyframes (optional),
and a latent noise as input, and outputs camera motion sequence by denoising via the diffusion model T steps. At each step t, CDM predicts
the noise εt from Xt and diffuses it to Xt−1.

frames with a given condition c. The camera pose at a given frame
number n is represented with character-centric local coordinates:

X0 = {xn,yn,zn, pn
x , pn

y} ∈ R5,n ∈ [1..N], (1)

where {xn,yn,zn} stands for the relative position of the camera in
local character coordinates to the head center, and {pn

x , pn
y} repre-

sents the normalized screen position of the ’Look-At’ target (de-
fault head) at the frame n. We do not model the roll angle of the
camera in this representation.

4.2. Network design

The main idea behind the diffusion model is to gradually add in-
creasing noise to the original data sequence X0 and learn a denois-
ing process in reverse steps, transforming the data from a noise la-
tent to a valuable sequence. This stochastic process serves two pur-
poses: i) effective fitting of the distribution of the original data; ii)
handling the inherently ambiguous many-to-many mapping prob-
lem. By gradually removing noise and revealing signal, the diffu-
sion model can generate multiple plausible outputs while not com-
promising on variability and diversity. This forward process can be
described as:

q(Xt |Xt−1) =N (
√

αtXt−1,(1−αt)I), t ∈ [1..T ], (2)

where αt ∈ (0,1) is a decreasing variable when the timestep t gets
larger given a certain noise scheduler. When αt is small enough,
the distribution of Xt can be approximately viewed as a standard
Gaussian distribution. Then, the text-based camera motion genera-
tion task can be cast as a denoising process from a randomly sam-
pled Gaussian noise with a condition c, p(X0|c) = f (XT |c) (see
top of Fig. 2). Similar to [HJA20; TRG*23], using the notation
ᾱt := ∏

t
s=1 αs, we adopted a simple training objective to learn the

reversed noise with a random sampled noise ε ∈ N (0,1) and esti-
mated noise εθ from network:

L(θ) = Et,X0,ε[||ε− εθ(
√

ᾱtX0 +
√

1− ᾱtε, t)||2]. (3)

There are two primary challenges when applying the diffusion
model directly to camera cinematography tasks: (i) while the text-
based condition allows for incorporating style in the generated

camera motion, the level of controllability is insufficient for pre-
cise camera control scenarios often required by designers. In such
cases, users typically require the possibility to create specific cam-
era positions as constraints, similar to keyframing techniques, to
control the overall sequence better; (ii) as the diffusion model gen-
erates results in a segment-to-segment fashion, ensuring continu-
ous and smooth transitions between different segments is crucial
for producing visually appealing camera motions.

4.3. Keyframes as constraints in the diffusion process

Regarding keyframing strategies, many previous works have re-
lied on inpainting [LDR*22] or in-betweening schemes to im-
pose additional constraints on the generated results. For example,
MDM [TRG*23] sets partial sequence information, such as the first
25% and last 25% of the content, as fixed during the denoising gen-
eration process. We implemented the inpainting scheme inspired
by [LDR*22],

Xkeyframe
t−1 ∼N (

√
ᾱtX0,(1− ᾱt)I),

Xt−1 = m⊙Xkeyframe
t−1 +(1−m)⊙Xpredict

t−1 ,
(4)

where Xpredict
t−1 is predicted from last diffusion step and Xkeyframe

t−1
is two side keyframe conditions. These variables are combined to
the new sample Xt−1 using the mask m. However, in this paper, we
argue that this masking strategy is not efficient and fails to address
the inherent conflicts between the style label and keyframing con-
straints. In the context of inpainting techniques, keyframe guidance
may be regarded as noise in the denoising process due to its inher-
ent sparsity. Instead, we incorporate the keyframing constraint ck
directly as part of the condition. We leverage the interpolation ca-
pacity of CLIP embedding and the keyframe condition design men-
tioned earlier to achieve continuous and styled transition segments
between the generated results corresponding to different scripts. We
show in the results that this joint approach enables us to generate
visually coherent and cinematographically pleasing transitions in
the camera motion sequences (see ablation studies in Section 5.2
for further discussion).

Therefore, to enhance the diffusion model with condition infor-
mation c, we have employed the classifier-free guidance training
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protocol [HS21]. We train both an unconditional denoising diffu-
sion model and a conditional model using a single neural network
εθ(Xt , t,c). During training, the condition is set to ∅ (unconditioned
label) with a certain probability (p = 0.1). During inference, the
estimated noise is formulated as:

ε̃t = εθ(Xt , t,∅)+ω · (εθ(Xt , t,c)− εθ(Xt , t,∅)). (5)

Our conditions include both cinematic shooting script condition cs
and keyframe constraints ck, aiming to cover both style guidance
and precise specification of trajectory: c = [cs,ck]. For the shooting
script, we rely on CLIP [RKH*21] text embedding to map the text
into a latent embedding cs ∈R512 to capture the semantic informa-
tion and incorporate it into the diffusion model (Fig. 2 left). Re-
garding the keyframe condition, we encode the starting and ending
keyframes into a representation ck ∈R2×5, to provide more precise
control to users. We train the network both with (c = [cs,ck]) and
without keyframes (c = [cs,∅]) with the same probability.

4.4. Dataset and training details

4.4.1. Synthetic dataset

We generate a synthetic dataset consisting of camera trajectories
and paired textual descriptions. The dataset encompasses variations
in shot angle, shot scale, camera movement, camera velocity, and
screen properties. The definitions of each of these terms are pro-
vided below. Please see the appendix A for more details.

Shot angle. The shot angle refers to the relative vertical angle be-
tween the camera and the target, which results in different visual
perceptions. For example, a low angle is typically used to create a
sense of grandeur or threat towards the subjects in the shot, while a
high angle can convey vulnerability or insignificance.

Shot scale. The shot scale refers to the size of the target within the
camera framing. We adopt a default field of view 45, and determine
the shot scale based on the appearance of the characters or subjects
within the screen [Ari91]. For example, in a medium shot, the bot-
tom of the screen aligns with the characters’ knees. We generate a
range of camera shots from extreme close-up to extreme long shot.

View directions. The view direction describes the relative position
between the camera and the target. We enumerate eight simple di-
rections to represent different perspectives: front, back, left, right,
left front, left back, right front, right back.

Screen properties. Instead of using a camera-centric orientation,
we leverage the screen position of the target to control the cam-
era’s orientation. Following the common screen composition rules
[Ari91], we define the screen position of the target as a relative
vertical and horizontal position, resulting in combinations of top-
middle-bottom and left-center-right on the screen.

Shot movement. We describe several basic camera movements
with character-centric coordinates: Static: The camera remains lo-
cally static in both position and framing; Push in/Pull out: The
camera either decreases or increases the distance to the character,
while keeping other properties constant; Pan: The camera position
remains constant while it rotates on its vertical axis to track a tar-
get or switch between targets. In character-centric coordinates, we
transform the globally static camera into a locally moving camera;

Boom: A boom motion typically involves an upward or downward
translational movement of the camera. This camera movement is
commonly used at the beginning or end of a narrative; Orbit: In
this motion, the camera swivels horizontally around a target. Here,
we randomly select the starting and ending view directions, as well
as a moving direction, to generate a circular movement with a con-
trolled angular velocity. This motion is widely used in modern films
for various reasons: engaging dynamic motion, navigating around
the environment, or highlighting the shot target.

We collect 25,000 sequences of data, amounting to a total of
4,500,000 frames, together with 206,570 single sentences of tex-
tual descriptions. By default, the length of all the synthetic data is
limited to 300 frames. However, to introduce variations in camera
velocities, we further augment the camera movement by scaling the
time factor in the sequences. For instance, a fast push-in movement
may last approximately 3 seconds, while a slow push-in movement
may last around 8 seconds. We demonstrate how to control the cam-
era velocity during inference in Section 5.3.6.

We create our dataset by combining variations across all proper-
ties. Different camera movements exhibit specific variations in each
property, e.g. the push in/pull out shot has different shot scales at
the beginning and ending frames. We enumerate all possible com-
binations and randomize the parameters within the specific range,
resulting in a collection of primitive camera sequences.

4.4.2. Prompt augmentation

We utilize the CLIP [RKH*21] model to generate embeddings as
conditions from text prompts. We propose variant template prompts
to describe different camera properties, where each property is gen-
erated separately. For example, ’The camera shoots the character
in front view.’, ’The character is at the middle center of the screen.’
’The camera pushes in to the character.’ Also, we augment the
prompt with synonyms or similar expressions, such as describing
the orbit movement as ’the camera rotates around the character.’
and a static tracking in the side or back view as ’the camera tracks
the character’. The full description of a camera sequence is the
combination of all the prompts.

During the inference stage, users may provide few or partial de-
scriptions of the desired camera motion. To handle such scenarios,
we randomly select a portion of the given prompts during train-
ing as the condition to generate the camera motion sequence. This
approach transforms the task into a challenging many-to-many gen-
eration problem, yet the diffusion model can generate multiple di-
verse results that all satisfy the partial given descriptions. e.g. many
different orbiting frequencies to one description of rotating.

This operation provides users with a range of linguistic controls
to accurately specify their desired camera motion gradually. By
providing more detailed prompts step by step, the specification of
the generated results can be more refined, resulting in less variance
across different generations with the sampling noise. The trade-off
between variation and controllability will be further discussed in
the forthcoming Section 5.3.

4.4.3. Training details

We follow the DDPM [HJA20] to train the diffusion model. During
training, we utilized a single Titan Xp GPU with diffusion noising
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steps T=1000 and a linear noise schedule. The batch size is 256
and we set a learning rate of 1.0e−4 for the Adam optimizer which
follows linearly a reduction scheduler. We train our text condition
with a respective maximum sequence length of 60 frames and a
maximum sequence of 300 frames to satisfy different cases such as
creating short transitional sequences or long sequences. With the
fixed length requirement in the transformer, we employ padding
for terminal frames when the sequence falls short of the desired
target length. The training takes about 60 and 90 hours respectively
to converge. During the inference phase, synthesizing a sequence
of 300 frames requires around 6 seconds. Multiple sequences can
be generated in parallel with conditions respectively. We evaluate
the model with 60 frames in Section 5 and employ both models (60
and 300 frames) to generate our results.

4.5. Inference

At inference time, we sample p(X0|c) from a standard Gaussian
noise and then predict and remove noise from step T to 0 (Fig. 2
bottom right). The final conditioned results fc(Xt , t,c) can be com-
puted by incorporating both conditioned generation f (Xt , t,c) and
unconditioned generation f (Xt , t,∅) shown as Eq. 6. The balance of
diversity and fidelity can be controlled by different magnitudes ω,
which is further studied in Sect. 5.3.7 (see [HS21] for more details):

fc(Xt , t,c) = f (Xt , t,∅)+ω · ( f (Xt , t,c)− f (Xt , t,∅)). (6)

5. Results and Experiments

5.1. Script-to-camera

In the script-to-camera task, our method generates camera motions
only based on given scripts as conditions, where the keyframing
condition is masked. To demonstrate the capability of generating
qualitative content, we assess the performance on various metrics:

R Precision classification (R Prec): This metric is used to con-
firm the model’s ability to generate content in the desired style. We
trained the classifier with a multi-layer transformer encoder as a
feature extractor and additional fully connected layers for classifi-
cation. The architecture is described in appendix B. The training
and testing datasets are randomly separated in a 9:1 ratio with six
different camera movements as labels. In testing, we generate se-
quences conditioned on the text features and the R precision evalu-
ates the classification accuracy of generated sequences.

Fréchet Inception Distance (FID): FID is a common metric in
generative models for revealing the similarity between the distribu-
tions of real and generated content. In computer vision tasks, it is
typically computed by a pre-trained Inception-v3 model [SVI*16].
A similar idea of projecting animation to features and comparing
the FID in the feature space can also be found in many human
motion models [TRG*23]. Therefore, we leverage the middle-level
features of the trained classifier to compute the FID metric with
12,000 sampled sequences by randomly selecting ground truth text
features.

Diversity (Div) & MultiModality (MM): Similar to [TRG*23],
we compute the Diversity metric, to measure the variability in the
resulting motion distribution. With generative models, the objective

is to closely approximate the distribution of real data to confirm the
believability of the generated content. Additionally, we calculate
Multimodality as the average variance from the same text prompt
condition to demonstrate the model’s capacity to generate one-to-
many results from inherently ambiguous linguistic inputs. In prac-
tice, we sample tens of sentences and sample 100 trajectories for
each prompt. The MM value is the mean value of diversity with
each prompt.

For the sake of comparison, we run our system side-
by-side against a SoTA keyframe-driven style-to-camera sys-
tem [JCW*21]. Such a system encodes an example sequence to
a latent style code with a gating network and generates a camera
sequence through generative experts that account for both the en-
coded style code and keyframe constraints. To perform our com-
parison (see Tab 1), we first took ground truth camera sequences
as inputs to the SoTA system (LSTM+Gating [JCW*21]), to serve
as a reference. Then for the other models, we used the textual de-
scriptions linked to the ground truth sequences. And we compared
the techniques by first, proposing to eliminate the gating network
in LTSM+Gating and substituting it with the style code from the
CLIP text embeddings (LSTM+CLIP), before retraining their net-
work. With only the style input in script-to-camera evaluation, we
exclude the keyframe constraints in both the LSTM [JCW*21] and
the diffusion model to ensure a fair comparison (see the compari-
son with keyframes in the next section). We then run variants with
CLIP and T5 [RSR*20] embeddings.

The results of both methods are presented in Tab. 1, with metrics
computed on samples from the real data (namely test ground truth
data) distribution. We mask the keyframe condition when keyframe
constraints are absent (where c = [cs,∅]), and trained each model
using two different approaches: 1-to-1, where the condition of the
text prompt and data are injectively mapped, and 1-to-N, where we
introduced the skill of prompt augmentation by selecting a portion
of the text prompts during training to generate inherently ambigu-
ous data pairs.

Table 1: Evaluation of methods on the script-to-camera task. Bold
indicates best result, → indicates that closer to real is better.

Method FID ↓ R Prec(%) ↑ Div → MM ↑
Real 0.003 99.26 63.14 -
LSTM+Gating [JCW*21] 26.50 98.24 62.23 -
LSTM+CLIP (1-to-1) 137.32 63.56 60.63 -
LSTM+CLIP (1-to-N) 97.96 88.35 61.67 -
Diffusion+T5 (1-to-N) 52.43 91.40 61.85 43.29
Diffusion+CLIP (1-to-1) 92.83 68.22 61.52 40.83
Diffusion+CLIP (1-to-N) (Ours) 48.25 97.78 61.93 47.75

As shown in Tab. 1, the low FID and high R Prec values on
real data confirm the effectiveness and fairness of the proposed
classifier-based metrics. We observe that our proposed method (in
both training schemes) outperforms the LSTM+CLIP methods on
almost all metrics. The prompt augmentation enhances the net-
work’s ability to recognize textual input with increased robust-
ness. The reference LSTM+Gating method [JCW*21] attains op-
timal performance but exploits the full camera sequence as input
(rather than text embedding) thereby being more effective in dis-
cerning style information. Our method significantly outperforms
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the LSTM+CLIP model, thereby highlighting the capacity to han-
dle the inherent many-to-many challenges in textual input.

Furthermore, the metrics of Diversity and MultiModality high-
light the benefits of prompt augmentation in improving the vari-
ability, believability, and overall performance of the generated cam-
era motion. Prompt augmentation enables the generation of one-to-
many results, which increases the diversity and multimodality of
the generated camera motions. However, it should be noted that
LSTM-based methods do not inherently support one-to-many gen-
eration, and as a result, the MM metric in the comparison table
remains empty for these methods.

We also investigate the impact of different pre-trained textual
encoders on the performance of the diffusion model. We conduct a
comparative analysis between CLIP and a frequently employed T5
encoder [RSR*20]. In contrast to the CLIP model, the pre-trained
T5 module produces a sequence of features from textual input. Sub-
sequently, we keep the T5 module in a frozen state and train an
additional LSTM to aggregate the T5 output tokens, yielding the
final text embedding. We choose the CLIP model as a textual en-
coder due to its superior capability to embed cinematic prompts.
Nevertheless, the results with T5 embedding also outperform the
LSTM-based method.

Figure 3: Comparison of generated trajectories with different
methods (inpainting vs. LSTM+CLIP vs. Ours). Results are con-
ditioned on the text prompt ’The camera rotates around the char-
acter’, and with the two keyframe constraints displayed in red.

5.2. Keyframe-conditioned generation

In this section, we present the experiments conducted when adding
keyframing constraints by implementing and comparing different
techniques: LSTM+Gating model [JCW*21], LSTM+CLIP model,
keyframe conditioned diffusion generation (condition) and inpaint-
ing based diffusion generation (inpainting). As we mentioned be-
fore, inpainting techniques were proposed in [TRG*23; LDR*22].
They consist in merely fixing some parts while applying the de-
noising process. We implement the inpainting technique in diffu-
sion model with Eq. 4 using the text only condition c = [cs,∅]. The
proposed condition method incorporates both text and keyframes
c = [cs,ck] as conditions in denoising process.

We evaluate different methods with text prompts from test
dataset with keyframes close to the ground truth reference (near-
style) and keyframes far to the ground truth (far-to-style) and
display results in Tab. 2. It is important to note that far-to-style
keyframes may intrinsically conflict with the desired style. e.g. a
keyframe turned way from the character may conflict with a push-
in motion.

In addition to the FID and Precision metrics, we also introduce
the keyframe distance (KF) metric to represent the spatial distance
of the generated content in meeting the desired keyframes. We use
the average L2 distance on the nearest 3 frames of the starting and
ending keyframes to the required keyframes to detect the degree
of satisfaction of the keyframe constraint, as well as the continuity
around keyframes (to avoid sudden jumps while still satisfying the
first keyframe).

In Tab. 2, we demonstrate that the condition method outperforms
the inpainting method in generating believable content while satis-
fying the keyframing requirements and desired style. It is worth
noting that the utilization of the inpainting technique, while incor-
porating keyframe conditions during the denoising process, does
not guarantee the generation of continuous trajectories. Employing
the style-only classifier free guidance yields higher R precision,
particularly in scenarios where keyframes may potentially conflict
with the desired style.

Our method achieves comparable keyframe error with LSTM
methods which incorporate an additional keyframe loss term during
training. In far-to-style keyframe test, given the potential conflicts
that may arise between the keyframes and the desired style, it is
observed that the required style is not well maintained. We further
investigate the style variation with the same groundtruth keyframe
constraints. As shown in Tab. 3, we identify hundreds of pairs of
camera trajectories sharing identical keyframes yet exhibiting dis-
tinct camera movements. It is evident that the learned LSTM mod-
ule generates biased sequences, whereas our proposed method con-
sistently provides a correct interpolation scheme.

To illustrate this, we provide an example in Fig. 3 to elucidate
the manner in which three distinct keyframe interpolation strategies
generate camera sequences conditioned on two keyframes and an
input text prompt. Notably, the LSTM+CLIP approach exclusively
acquires the capacity to perform a linear interpolation during its
training phase, while the inpainting method fails to align with the
keyframes. In contrast, our method excels in generating accurate
styles while adhering to the keyframe constraints.

5.3. Qualitative studies and ablation

5.3.1. Variation vs. linguistic uncertainty of script

To address the challenge of the many-to-many mapping from
prompt to camera motion, we employ a prompt augmentation strat-
egy during training to help generate diverse results for a given
script prompt. In Fig. 4, we demonstrate the conflict between vari-
ation and linguistic uncertainty in script prompts, when provided
with a vague script such as "The camera pushes in to the charac-
ter", our model is capable of generating a multitude of results due
to the stochasticity of the denoising process by sampling different
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Table 2: Evaluation of near-style and far-to-style keyframes condi-
tioned generation. In near-style keyframing (KF), the model is con-
ditioned with keyframes close to the original data when generating
the results. In far-to-style KF, keyframes are arbitrarily sampled,
and the method is asked to generate camera motion with the de-
sired style prompt.

Near-style KF Far-to-style KF
Method FID↓ KF dist ↓ R Prec ↑ FID↓ KF dist ↓ R Prec ↑
LSTM+Gating [JCW*21] 3.87 0.042 96.10 143.75 0.046 60.03
LSTM+CLIP (1-to-1) 8.04 0.065 93.08 165.94 0.067 56.22
LSTM+CLIP (1-to-N) 4.64 0.047 95.46 138.54 0.042 58.11
Ours (inpainting) 43.14 1.794 79.83 114.53 1.95 63.30
Ours (condition) 6.67 0.041 96.62 111.03 0.041 58.05

Table 3: Evaluation of camera trajectories with the same keyframes
but different camera movements.

Method KF dist ↓ R Prec ↑
LSTM+CLIP (1-to-N) 0.048 50.0
Ours (condition) 0.039 92.8

noises. As more descriptive information is iteratively appended to
the prompt, the uncertainty is reduced, leading to fine-grained and
specific generated camera motions (see Fig. 4, Fig. 11 and sup-
plementary video). This confirms two aspects: i) the existence of
many-to-many ambiguities in the camera control task, where multi-
ple camera motions can correspond to a single script prompt; and ii)
with our model, users can achieve fine control and a wide range of
variability by inputting different levels of precision in their scripts.

5.3.2. Example-based generation

CLIP embedding is renowned for its high discriminative capacity in
handling linguistic features and for its ability to provide a joint em-
bedding space between images and text, enabling zero-shot appli-
cations. We leverage this feature to demonstrate the multimodality
potential of our proposed method. Inspired by [AZL23], we utilize
CLIP image embedding to process real film sequences frame by
frame, followed by an average pooling layer. The resulting embed-
dings are then directly connected to our system, bypassing the text
embedding input. Fig. 5 presents examples showcasing the capa-
bility of our method to capture certain cinematic information, such
as screen position, framing, and camera motion, even under zero-
shot multimodal conditions (see more in the supplementary video).
However, it should be noted that due to the limited and noisy in-
formation (especially temporal) provided by individual frames, the
camera motions generated from the CLIP image embeddings may
not be as precise as those generated from script inputs.

5.3.3. Zero-shot natural language generation

One of the challenges in text-based generation tasks lies in the
robustness to casual or non-strict text inputs. Through the use
of prompt augmentation strategy, as well as leveraging the zero-
shot capacity of CLIP features, we can handle various non-strict
cinematographic language inputs never seen during the training
e.g. "camera switches to ...", "circling", "move ... further away"
and generate corresponding camera motions. Some examples are
demonstrated in Fig. 6, yet it is important to note that erroneous

Figure 4: By iteratively appending the descriptive information to
the script, the generated motion progressively converges to the
overall input condition. Highlighted cyan camera views are demon-
strated in Fig. 11.

Figure 5: Example-based camera motion generation with real
films. The CLIP module also enables embedding real film images
as conditions, allowing for the generation of camera sequences that
exhibit cinematic framing similar to the provided reference frames.

cases can still occur, as CLIP embedding is not specifically influ-
enced by "cinematic" language bias. Addressing this issue can be a
direction for future research.

5.3.4. Interpolation on CLIP space

As mentioned in the previous section, our approach combines
keyframing techniques with interpolation on CLIP text embed-
dings to achieve continuous and styled transition while retaining
keyframing control. In Fig. 7, we provide an example of CLIP text
embedding interpolation between the styles of ’orbit’ and ’pan’,
while keeping the keyframes fixed. In subfigure (a), we visual-
ize the trajectories of the interpolated parameters X , Rx, and Ry.
The color interpolation between blue (pan) and green (orbit) rep-
resents the different levels of linear interpolation on the CLIP
text embeddings. We perform interpolation steps of 20%, start-
ing from 1 × cs(orbit) + 0 × cs(pan) and gradually interpolating
to 0.8× cs(orbit)+ 0.2× cs(pan), until reaching the all-pan style
(blue), with cs denotes the text CLIP embedding. We visualize the
interpolated embeddings in Fig. 8. The results demonstrate that
the camera trajectories smoothly transition between the two styles
while maintaining the keyframing information.
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Figure 6: Examples of casual language input, showing that our method can handle non-strict cinematographic language to a certain extent,
though erroneous results can still occur in some cases.

Figure 7: Interpolation with keyframing. Visualization of keyframe constrained CLIP interpolated results from orbit (green) to pan (blue)
gradually, the interpolated results are achieved by linear interpolating (20% per step) on the CLIP text embedding space while fixing two
ends of keyframes.

5.3.5. Transition schemes for long sequence generation

Once the keyframing, script, and interpolated embedding control
are in place, our method is capable of generating long sequences of
cinematographic camera motions. We provide an example of a long
sequence generated for a heated conversation scene in Fig. 10. By
providing different camera scripts along with desired keyframing
information and the duration of each motion, our method can gener-
ate long sequences of motions that are believable, styled, smoothly
transitioned, and controllable.

In the supplementary video, we compare long sequences using
different schemes. Given user-specified keyframes as constraints,
only a few text prompts are needed to control the generation. When

only generating sequences with text, long text prompts with differ-
ent cinematic properties are required to generate a target sequence,
and an automatic transition scheme is required to achieve continu-
ous camera movement without jump cuts.

5.3.6. Velocity control

To offer users the ability to control the camera velocity, we also
added to the dataset a collection of motions with different cam-
era velocities. Since we rely on sequences of fixed duration for
the training, we simply padded the remaining frames with static
camera poses for faster camera motions. Semantic annotations are
based on measuring the speed of the camera along the trajectory. In
Fig. 9, we illustrate this velocity control during inference by gen-
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Figure 8: Visualization of CLIP embeddings with different camera
movements using PCA reduction. The interpolated embeddings be-
tween ’pan’ and ’orbit’ are represented by red quivers.

Figure 9: Illustration of control on the camera velocity with differ-
ent text prompts. Each sequence is generated with the same prompt
’The camera pushes into the character. The camera shoots at eye
level. The camera moves in front view. The character is at the mid-
dle center of the screen. The camera moves from long shot to close
shot.’ Textual specifications related to different camera velocities
are added at the beginning of these prompts, and the padded frames
are indicated by the "padding".

erating various camera trajectories of different velocities, thereby
influencing the temporal duration of the shots. With different text
prompts, the camera moves from a ’long shot’ to a ’close shot’
within a shorter or longer duration. In the training phase, we use
a padding strategy to achieve the target length for transformers.
During inference, users control camera velocity through prompts
and the model will generate the padding frames, which can subse-
quently be truncated.

5.3.7. Influence of ω

We show the ablation of the guidance scale with near-style
keyframing experiments in Tab. 4. We evaluate our model with
ω = 1 as the accuracy-fidelity sweet spot.

Table 4: We evaluate how different classifier-free guidance scale ω

affect the performance of proposed method.

Near-style KF
Method FID↓ KD ↓ R Prec ↑
Ours (ω=0.5) 7.01 0.040 95.71
Ours (ω=1) 6.67 0.041 96.62
Ours (ω=1.5) 7.63 0.045 94.99

5.3.8. Experts evaluation

After sharing our results with artists (x2), film directors and direc-
tors of photography (x2), and producers (x1) in the film and an-
imation industries, we have summarized their reactions (the raw
transcripts are listed in the supplementary document).

Potential: Almost every participant expressed their belief in the
high potential of the proposed method for the future combination
of AI and filmmaking. Some mentioned the integration of metahu-
mans and Large Language Models as potential avenues for explo-
ration.

Non-professional and professional application: Many partici-
pants noted that the tool could be used for non-professional pur-
poses, such as experiencing the filmmaking process in platforms
like TikTok or virtual reality. For professionals, the tool could be
utilized to replace some human labor, particularly in previz, facili-
tating intuitive communication with directors to staff, and capturing
non-complex routine shots.

Efficiency and automation: The tool’s pros were seen in its ef-
ficiency and automation, allowing it to reach a comparable level
to a mediocre-pro cameraman, and find shooting problems earlier.
Issues were perceived with sometimes too fast orbit motions with
rotating characters. Overall the efficiency was appreciated by par-
ticipants.

Creative limitations and systematic decision-making: Some par-
ticipants raised concerns about the creative limitations of the
learned patterns, suggesting that the tool may restrict users’ cre-
ative freedom. Others mentioned that addressing camera motion as
a standalone tool might not be sufficient, as the entire filmmaking
process requires systemic and integrated decision-making, encom-
passing shooting, environment, and mise-en-scene simultaneously.

6. Limitations and Conclusion

6.1. Limitation

Semantic language input: Current methodologies lack in incor-
porating rich semantic language inputs that include context and
emotional correspondence aligned with real film shooting data. En-
hancing the semantic depth of language inputs could significantly
improve the realism and applicability of generated scenes.

Character-centric coordinate system: While the character-centric
coordinate system effectively addresses the character-camera pair-
ing challenge, ensuring the camera’s focus on the character, it in-
troduces potential drawbacks. These include: i) it is prone to gen-
erating shaky camera motions, especially when the character mo-
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Figure 10: Comparison of transition schemes. Our proposed transition can smoothly connect different styles with no need for transition
script. The interpolated CLIP embedding transition uses the average of the former and latter script embeddings as the text condition.

tion is active; ii) a limitation in exploring more complex compo-
sitional possibilities. E.g., it hinders the depiction of complicated
movements involving multiple characters, such as long shots with
complex trajectories; iii) difficulties in capturing scenes where the
character is absent, which are common in various cinematic con-
texts like scene touring, commercials, and shots that establish con-
text, restricting the narrative and visual storytelling capabilities.

6.2. Conclusion

In this paper, we presented a diffusion approach to generate realis-
tic camera motions relative to targets. We showed how to address
the specific requirements in camera motion generation techniques,
such as transitioning between motions using embedding interpo-
lation, accounting for keyframe conditions to improve user con-
trol, or augmenting the prompt diversity. The stochasticity of the
diffusion techniques helps to generate convincing results with par-
tial textual descriptions and displays the benefits of the approach
over recent techniques. The work presents some limitations such
as accounting for precise timings, dealing with sequential move-
ments, and lacking elaborate modifiers on the textual specifications
(faster/smoother/...) mostly due to the lack of available data. The
ongoing challenges consist of exploring how such textual descrip-
tions can be obtained automatically from real film clips with more
precision, accounting for a far richer dataset and therefore a wider
variability in generated results with more elaborate modifiers.
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Figure 12: Illustration of the character-centric local coordinate
system. The system is built under a left-handed coordinate system,
where the {X ,Y,Z} axes represent the left, up, and forward direc-
tions, respectively.
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Appendix A: Dataset

Camera representation and prompt templates

Our camera trajectories are formulated as a list of 5DoF camera
parameters: c = {(xn,yn,zn),(pn

x , pn
y)} (see Section 4). For conve-

nience, we also use additional variables {θ
n,ϕn,dn} to express the

camera in a local spherical coordinate system (elevation, azimuth,
and distance dn), as shown in Fig. 12. Here we provide detailed
information on how these parameters are related to different cine-
matic properties, along with example prompt templates.

• Shot angle

– ϕ
n ∈ {[0.25π,0.4π],(0.4π,0.6π), [0.6π,0.75π]} represents

high-angle, eye-level and low angle.
– The camera shoots the character at <shot angle>.
– The camera shoots in <shot angle>.

• Shot scale

– dn ∈ {[0.1h,0.2h), [0.2h,0.3h), [0.3h,0.6h), [0.6h,1.2h),
[1.2h,2.0h), [2.0h,4.0h)} represents extreme close, close,
medium close-up, medium, long, extreme long shots, where h
is the height of the character.

– The camera shoots at <shot scale>.
– The camera moves from <starting shot scale> to <ending

shot scale>.

• View directions

– θ
n ∈ {0,0.25π,0.5π,0.75π,π,1.25π,1.5π,1.75π} represents

front, right front, right, right back, back, left back, left, left
front. For each direction, θ

n has a variation with ±0.05π.
– The camera shoots in <view direction>.
– The camera switches from <starting view direction> to

<ending view direction>.

• Screen properties

– The screen coordinate system is normalized to [−1,1]×
[−1,1]. pn

x ∈ {[−0.7,−0.3], [−0.2,0.2], [0.3,0.7]} repre-
sents horizontal position left, center, right and pn

y ∈
{[−0.7,−0.3], [−0.2,0.2], [0.3,0.7]} represents vertical po-
sition top, middle, bottom.

– The character is at the <screen property> of the screen.

• Shot movement

– {(xn,yn,zn),(pn
x , pn

y)} = {(x0,y0,z0),(p0
x , p0

y)} represents
static, where the camera remains locally static in both po-
sition and framing.

– {(xn,yn,zn),(pn
x , pn

y)} = {(x0,y0,z0) ∗ dn/d0,(p0
x , p0

y)} rep-
resents push in/pull out, where the camera either decreases or
increases the distance dn to the character while keeping other
properties constant.

– {(xn,yn,zn),(pn
x , pn

y)} = {(x0,y0,z0 + n ∗ dz),(p0
x , p0

y)} rep-
resents pan, where the screen properties remains constant
while it rotates on its vertical axis to track a target.

– {(xn,yn,zn),(pn
x , pn

y)} = {(x0,y0 + n ∗ dy,z0),(p0
x , p0

y + n ∗
dpy)} represents boom, where dy

dpy
= d0. A boom motion typ-

ically involves an upward or downward translational move-
ment of the camera.

– {(xn,yn,zn),(pn
x , pn

y)} = {(sinθ
nd0,y0,cosθ

nd0),(p0
x , p0

y)}
where θ

n = θ
0 + n ∗ dθ represents Orbit, where the camera

swivels horizontally around a target with angular velocity dθ.
– The camera is static.
– The camera pushes in/out to the character.
– The camera pans to the character.
– The camera booms up/down.
– The camera rotates around the character.

• Shot velocity

– n ∈ {[75,105], [160,200], [240,300]} with fps 30 represents
’fast, normal, and slow’.

– The camera moves <velocity>.

Appendix B: Network structure

The full architecture of the classification network is summarized
in the table below, where FC, TE, ReLU, and L denote the fully
connected layer, transformer encoder layer, ReLU activation layer,
and the length of data, respectively. The number of input and out-
put channels are reported in the rightmost column. The network is
optimized with a cross-entropy loss implemented with PyTorch.

Name Modules Layers in/out
Camera Input process FC L*5/L*256
Classification Positional encoding - L*256/L*256
Network Transformer TE*6 L*256/L*256

Predictor FC+ReLU+FC L*256/L*6
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