
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Advancing Front Surface Mapping

M. Livesu

CNR IMATI, Genoa, Italy

Figure 1: Given an input mesh with the topology of a disk (left), Advancing Front Mapping embeds it into a strictly convex (green), convex
(yellow) or star-shaped (red) polygon. All mappings are guaranteed to be free from degenerate or inverted elements, thus being injective.

Abstract

We present Advancing Front Mapping (AFM), a novel algorithm for the computation of injective maps to simple planar domains.
AFM is inspired by the advancing front meshing paradigm, which is here revisited to operate on two embeddings at once,
becoming a tool for compatible mesh generation. AFM extends the capabilities of existing robust approaches, supporting a
broader set of embeddings (star-shaped polygons) with a direct approach, without resorting to intermediate constructions. Our
method only relies on two topological operators (split and flip) and on the computation of segment intersections, thus permitting
to compute a valid embedding without solving any numerical problem. AFM is therefore easy to implement, debug and deploy.
This article is mainly focused on the presentation of the compatible advancing front idea and on the demonstration that the
algorithm provably converges to an injective map. We also complement our theoretical analysis with an extensive practical
validation, executing more than one billion advancing front moves on 36K mapping tasks.

1. Introduction

Surface mapping is arguably one of the most widely studied top-
ics in computer graphics and is at the core of many fundamental
techniques in the field [FH05, HPS08, FSZ∗21, NNZ21].

In this article we focus on the specific task of mapping a
given triangle mesh to a convex or star-shaped domain with
fixed boundary. While mappings of this kind are seldom directly
useful for downstream applications due to the high geometric
distortion they may contain, methods for the robust solution of
this problem are internally used in many higher level pipelines,
which employ these constructions to create valid initial maps that
are subsequently improved based on the needs of the application

at hand. Various representative examples of this strategy can be
found in the literature, spanning from the robust computation
of correspondences between shapes [KS04, SAPH04, SJZP19],
to morphing [PSS01] and the generation of low-distortion
planar maps for uv mapping, remeshing, and other applica-
tions [KSG03, LSS∗98, SS15, RPPSH17, LYNF18, FW22, Liv23].

For a surface map to be practically useful, it is required that
no triangle becomes degenerate or inverts its orientation. In other
words, mappings must be injective. This is a hard property to ful-
fill. Most of the existing methods achieve a good practical robust-
ness and can perform well in most of the cases, but may unexpect-
edly fail to produce an injective map [NCB23]. Very few methods
can be regarded to be unconditionally robust, meaning that they

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15026

CGF 43-2 | e15026

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-4688-7060
https://doi.org/10.1111/cgf.15026

2 of 16 M. Livesu / Advancing Front Surface Mapping

provide strict theoretical guarantees of injectivity if implemented
using exact numerical models such as integers or rational num-
bers [SJZP19, FBRCA23]. The design of robust algorithms in this
class is an active field of research in geometry processing (Sec-
tion 2).

In this article we introduce a novel methodology for the compu-
tation of provably injective mappings to a fixed domain called Ad-
vancing Front Mapping. AFM is based on the principles of advanc-
ing front mesh generation, a strategy that starts from the boundary
of a target domain and proceeds inwards, inserting new elements
until a tessellation of the whole domain is completed [GS94]. We
adapted this idea to the context of surface map generation, where
two fronts are initialized at the boundaries of two alternative do-
mains and are simultaneously advanced while maintaining a one-
to-one correspondence between them, reproducing the same topo-
logical structure in two embeddings. Since a meshing of the input
domain is typically known, AFM uses the connectivity of the input
mesh as a guidance, trying to install it also in the target domain.
This connectivity is a resource and never a limit: in case a mapping
with the given topology does not exist [ASS93], AFM is able to
automatically refine the input mesh, opening the space of solutions
and always providing a valid result (Figure 2).

Our method is partly inspired by prior art that uses a back-
ground mesh and topological operators to advance the front, such
as [MW95]. However, operating in two domains at once introduces
additional issues which cannot be handled by classical advancing
front methods, because they are not able to resolve the many dead-
lock configurations that arise when no advancing move can be ap-
plied to both domains simultaneously. We discuss and resolve all
these issues in a provably robust manner, using a completely novel
methodology. Remarkably, we do this by using only a minimal set
of geometric and topological constructions. In fact, AFM solely re-
lies on two topological moves to advance the front – triangle split
and edge flip – and uses simple edge intersections and edge splits
to resolve any possible deadlock configuration that may arise. As
a result, the AFM approach is entirely constructive and completely
avoids the use of numerical optimization routines for the compu-
tation of the output map. This makes our algorithm easy to imple-
ment, debug and deploy.

AFM compares favorably with alternative robust techniques
such as [FBRCA23], Tutte [Tut63] and Progressive Embed-
dings [SJZP19] in the sense that it enlarges the class of tar-
get domains to star-shaped polygons. Composite methods such
as [WZ14] still provide more flexibility, permitting mappings to
any non convex domain, even self-overlapping. However, [WZ14]
internally relies on intermediate mappings to convex polygons,
whereas AFM creates the wanted mapping directly. To our knowl-
edge this is the only existing method that achieves this result for the
class of star-shaped polygons.

To date, our contribution is mostly of theoretical interest because
AFM appears to be more sensitive than prior art to floating point
implementations, it may suffer from cascading issues with exact
(rational) numbers, and may unnecessarily increase mesh size even
in cases when refinement is not strictly needed. A detailed discus-
sion of all these aspects is provided in Sections 4 and 5. Never-
theless, we believe that our theoretical results are sufficiently novel

v0

v2

v4v6

v8
v1

v3

v5

v7

v9
v0

v1

v2 v3

v4

v5
v6

v7

v8
v9

v0

v2

v4
v6

v8
v1

v3

v5

v7

v9
v0

v1

v2
v3

v4

v5
v6

v7

v8
v9

Figure 2: Top: two identical stars up to a shift of the boundary
vertices cannot be mapped to one another without introducing ad-
ditional vertices, because the convexities of the left one map to the
concavities of the right one. Bottom: by automatically refining the
input mesh our method successfully opens the space of solutions,
producing an injective map. Note: due to the presence of tiny trian-
gles in the original output, the inner nodes in the bottom right star
have been slightly relocated to make the figure easier to parse.

and powerful to be of interest for the computer graphics and com-
putational geometry communities, and have the potential to foster
more research in the field both for the surface and the volumetric
setting (Section 6).

2. Related Works

Our contribution is focused on a very specific instance of the gen-
eral surface mapping problem. In the remainder of this section we
discuss only methods that can compute mappings to planar domains
with a fixed boundary and exhibit some theoretical or practical ro-
bustness. We point the reader to [HPS08] for a broader perspective
on general surface mappings and their related applications.

2.1. Provably Robust Methods

Only a few methods offer strict theoretical guarantees of correct-
ness. Known algorithms to compute a map directly only support
simple domains, such as triangles [FBRCA23] or convex poly-
gons [Tut63, SJZP19]. More general methods build on top of them,
using intermediate constructions to create the embedding.

Tutte embedding and its derivatives. Solutions to the prob-
lem of mapping a surface to a strictly convex domain have been
known since 1963, when Tutte showed that positioning internal

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 3 of 16

vertices at the barycenter of their neighbors yields a valid embed-
ding [Tut63]. This approach was brought to the computer graph-
ics community and extended by Floater, who showed that the
embedding is still valid when the boundary is not strictly con-
vex and when interior vertices are positioned at a general con-
vex combination of their neighbors [Flo97, Flo03a, Flo03b]. Var-
ious subsequent works have shown that a "Tutte-like" embedding
could also be computed for alternative topological spaces such
as orbifolds [AL15, AL16, AKL17] and, under precise geomet-
ric and topological restrictions, even for a restricted set of pla-
nar domains containing multiple boundaries, possibly non con-
vex [GGT06, BCW17, KAD∗20]. While some of these methods
can compute injective mappings for certain star-shaped polygons,
none of them covers this class of domains entirely.

Intermediate domains. A successful strategy to further enlarge
the family of domains that can be considered is map composition.
Methods in this category internally use the Tutte embedding, gen-
erating mappings to strictly convex domains that are then com-
bined to obtain more general mappings to manifolds of arbitrary
genus [Liv20c, LBG∗08, GJGQ05, KS04, SAPH04], grid spaces
for quad remeshing [Liv23], and even non-convex planar polygons
that may also partially overlap [WZ14]. Being internally based on
Tutte, all these methods inherit the same theoretical guarantees of
correctness. Our method directly computes a map to star-shaped
polygons, without resorting to intermediate constructions.

Progressive Embedding (PE). When implemented in limited pre-
cision the Tutte embedding may occasionally contain degenerate
elements. Shen and colleagues proposed an alternative approach,
called Progressive Embedding [SJZP19], which offers the same
theoretical guarantees of correctness but is more reliable when im-
plemented in floating point. Inspired by the concept of Progressive
Meshes [Hop96], PE operates by first removing all degenerate el-
ements from an input map through a sequence of edge collapses.
Then, it reintroduces the previously removed vertices one at a time,
through a reverse sequence of vertex splits. Newly inserted vertices
are carefully positioned in the domain, ensuring that no incident
triangle inverts its orientation or vanishes, thus preserving injectiv-
ity. Similarly to Tutte, also PE is designed to operate on convex
domains. At first, it may seem that also star-shaped domains could
be supported if, during the simplification phase, all internal ver-
tices outside the kernel of the target domain are removed. However,
not all mesh topologies can be successfully embedded into a star-
shaped polygon. In the the worst case scenario, it is known that up
to a quadratic number of Steiner points are necessary to complete
this task [ASS93], making it impossible for methods that do not
perform mesh refinement to succeed. We modified the authors’ ref-
erence implementation to operate in this fashion and the software
consistently failed to produce a valid map due to its inability to re-
fine the input mesh, showing that this theoretical limitation arises
in all practical cases.

Foliations. Campen and colleagues introduced the concept of sim-
plicial foliations [CSZ16], a method to map both 2D and 3D sim-
plicial meshes to simple base domains. This method is provably
robust but it only supports mappings to squares and circles, also
not permitting to setup explicit per vertex boundary conditions. Fo-

liations yield maps that are non linear inside each triangle, which
can be transformed into piece-wise linear maps only at the expense
of massive mesh refinement, increasing mesh size even by orders
of magnitude. A recent article, mostly focused on volumes, signifi-
cantly improved the original algorithm [HC23], alleviating some of
these limitations.

Compatible Triangulations. Methods that fill two empty do-
mains with a compatible triangulation are similar in spirit to
our method. Various algorithms have been proposed over the
years [ASS93, GW97, SG04, Liv20a, Liv20b] but they can only
operate in a 2D-to-2D fashion. The case in which the source
mesh is a surface embedded in a higher dimensional space is not
supported. The concept of compatible triangulations was recently
lifted to the surface case [Tak22], but this latter method requires
to be initialized with a previously existing map, hence it does not
solve the problem we are interested in.

2.2. Numerical Methods

A large body of literature focuses on algorithms that compute a
planar embedding by solving a numerical problem. These methods
typically minimize some distortion energy, producing high quality
surface maps that are already in floating point and are best suited
for downstream applications. Modern algorithms are extremely
robust and can produce a valid map in the vast majority of the cases
[DKZ∗22, DAZ∗20, GKK∗21, POK23, WGS23, GSC21, SLS22],
also applying on-demand refinement to open the space of solutions
if needed [JHT14]. Despite superior in terms of map quality and
practical usefulness, methods in this class do not provide theoret-
ical guarantees of correctness and, when tested on large datasets
of models, tend to fail in a higher number of cases [NCB23]. A
major shortcoming stems from the fact that explicitly encoding the
injectivity constraint yields a non-linear non-convex optimization
problem that cannot be solved directly [WZ14]. Various ideas
have been explored to relax this constraint and make the problem
numerically tractable. We point the reader to [FSZ∗21, NNZ21]
for recent surveys on the topic.

Robust Initialization. If initialized with a valid embedding,
numerical methods can iteratively reduce geometric distor-
tion while provably preserving the injectivity of the given
map [SS15, CBSS17, RPPSH17, LYNF18, FW22, JSP17]. Our
advancing front algorithm, as well as any other robust method in
Section 2.1, can be used to provide a valid initial solution. Note
that these pipelines are implemented in floating point, therefore
the injectivity of the initial solution and of the final result are only
guaranteed up to approximation errors introduced by the numerical
system.

3. Advancing Front Mapping (AFM)

AFM takes in input a triangle mesh with disk-like topology, M1,
and an injective mapping of its boundary vertices onto the boundary
of a target domain Ω. Such domain is required to be convex or star-
shaped, meaning that it contains a non empty kernel from which
all its boundary vertices are directly visible. The algorithm outputs

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 16 M. Livesu / Advancing Front Surface Mapping

…

INPUT

SO
U

R
C

E
(M

1)
TA

R
G

ET
 (M

2)

OUTPUTITER #3
edge flip

ITER #2
triangle split

INITIALIZATION
front + embedding

ITER #1
triangle split

O

…O O O O O

O O O O

t0
t1 t2

Φ

t0
t1 t2

Figure 3: Pipeline of AFM: we start from a source triangle mesh and a target convex or star-shaped domain (left). In the initialization step
(second column) boundary edges are marked as front (thick blue lines) and a starting embedding is created by forming a triangle between
each front edge and the front origin (O), selected as an inner mesh vertex. Due to convexity, all triangles share a globally coherent orientation.
Then, AFM iteratively reproduces the connectivity of the source mesh in the target domain, advancing both fronts while maintaining a one-
to-one correspondence between them. Source triangles having only one edge on the front (t0 and t1) are inserted by splitting the triangle
formed by the image of such edge and O (iterations #1 and #2). Source triangles having two edges on the front (t2) are inserted by flipping
the edge connecting O with the front vertex shared by the images of such edges (iteration #3). The algorithm stops when all source triangles
have been inserted in the target domain, yielding a one-to-one mapping Φ between the two meshes.

two meshes: a possibly refined version of M1 and a mesh M2 that
triangulates Ω and has the same connectivity of M1.

Since the two meshes contain the same number of vertices, con-
nected to form the same triangles, there exists a natural piece-wise
linear mapping between them

Φ : M1↔M2.

Function Φ is constructed through a direct per vertex correspon-
dence and is linearly extended inside mesh triangles via barycentric
interpolation. AFM is guaranteed to always produce a piece-wise
linear injective map, meaning that neither M1 nor M2 contain
zero-area or inverted elements and all triangles share a globally
coherent orientation, hence Φ is one-to-one [Lip14].

At a high level the algorithm is rather simple: after having cre-
ated a coarse mesh M2 that covers the target domain Ω, the bound-
ary edges of M1,M2 are set to form two initial fronts with sim-
ple topology (Figure 3, Initialization). These two fronts are then
coherently pushed inwards, maintaining a one-to-one correspon-
dence throughout the whole execution. Each advancing front move
amounts to conquering an unvisited triangle in M1, inserting an
equivalent triangle in M2. Advancing moves in the target domain
are always executed by either splitting an existing triangle in M2
or by flipping one of its edges (Figure 3, Iterations). Both moves
are guaranteed to not create degenerate or inverted elements if sim-
ple local geometric requirements are fulfilled, thus ensuring the in-
jectivity of the map (Appendix B). In case of geometric deadlock
configurations that prevent the front to advance any further, vertex
relocation or finite local mesh refinement (applied to both meshes)
is used to resolve the lock and proceed with the computation, ensur-

ing convergence (Appendix A). Refinement is used parsimoniously
and only marginally impacts the input mesh size (Section 5). The
algorithm stops when all triangles of M1 have been successfully in-
serted into mesh M2, yielding two meshes with identical connectiv-
ity and different embedding. An algorithmic description of AFM is
reported in Algorithm 1. In the remainder of this section we discuss
details of each step, including initialization, front advancement, and
handling of the deadlock configurations that may arise.

3.1. Initialization

In this phase the input mesh M1 is first refined to avoid predictable
degenerate configurations. Then, mesh M2 is initialized as a polar
mesh that entirely covers the target domain Ω. After these opera-
tions have been executed, the algorithm is ready for the iterative
part and the boundaries of meshes M1 and M2 form the two fronts
to be advanced.

3.1.1. Refinement

From a topological perspective, advancing a front with simple
topology starting from the boundary and proceeding inwards un-
til the whole mesh is conquered corresponds to computing a
shelling sequence of M1. For topological disks, a shelling se-
quence is always guaranteed to exist if the mesh graph is 2-
connected [CSZ16](§4.4). This property can be easily enforced by
splitting all internal edges that connect pairs of boundary vertices in
the input mesh. This edge splitting strategy also provides additional
benefits to our algorithm, because:

• it ensures that the mesh has at least one internal vertex, which is
a necessary condition for the initialization of mesh M2;

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 5 of 16

• it ensures that no triangle has all its three vertices on the bound-
ary, which may become flipped or degenerate when mapping to
concave or non strictly convex domains such as a square (due to
concavity or co-linearity of the boundary edges).

3.1.2. Polar Mesh

For the final mapping to be injective, AFM needs to insert the con-
nectivity of M1 onto the mesh M2 by always operating onto a valid
mesh. In our setting a mesh is valid if all triangles share a glob-
ally coherent orientation and are not degenerate. Constructing such
a mesh is trivial if Ω is convex or star-shaped. In fact, in case of

ALGORITHM 1: Advancing Front Mapping (AFM)
inputs : (1) a triangle mesh M1 with the topology of a disk; (2) a

one-to-one correspondence between the boundary vertices of
M1 and the boundary of a convex or star-shaped domain Ω.

outputs: (1) a possibly refined version of M1; (2) a new mesh M2
which has the same connectivity of M1 and that realizes an
injective mapping of M1 onto the target domain Ω.

1 refine M1; (Section 3.1.1)
2 mark all triangles in M1 as unvisited;
3 select the front origin O and initialize M2; (Section 3.1.2)
4 initialize front as the set of boundary edges in M1;
5 push all front edges into a queue Q;

6 while Q is not empty do
7 pop edge e from Q;
8 select the triangle t ∈ M1 inside the front and incident to e;

9 if t is already marked as visited then
10 continue;
11 end
12 let E be the front edges incident to t

13 if |E| = 1 then
14 let v be the vertex of t opposite to e;
15 if v is on the front or is the front origin O then
16 continue;
17 end
18 advance front in M2 by triangle split; (Section 3.2.1)
19 end
20 else if |E| = 2 then
21 if edges in E form a concave angle then
22 locally convexify front; (Section 3.3.1)
23 end
24 let tE be the triangle denoted by edges in E;
25 if tE contains the front origin O then
26 if the the front is not locally a triangle strip then
27 continue;
28 end
29 locally concavify front; (Section 3.3.2)
30 end
31 advance front in M2 by edge flip; (Section 3.2.2)
32 end
33 mark t as visited;
34 push new front edges in Q;
35 end

convexity M2 can be initialized by taking any point strictly inside
Ω and forming a triangle between such point and each boundary
edge. Similarly, if the domain is star-shaped a valid mesh M2 can
be created with the same procedure, with the additional restriction
that the inner point must be located inside the kernel of the domain,
that is, any point inside Ω from which all boundary vertices of M2
are directly visible [SBS22]. A visual example of the so generated
mesh can be seen in Figure 3, at the bottom of the second column.
Since this mesh contains only one internal vertex that is incident
to all boundary triangles, we call such vertex the front origin, and
denote it with the letter O.

We recall that M1 and M2 will eventually contain the same con-
nectivity, therefore an interior vertex in mesh M1 must also be se-
lected and put in correspondence with O. Thanks to the prelimi-
nary refinement step, an interior vertex in M1 is guaranteed to exist.
From a theoretical perspective any interior vertex is equally good.
In practice, using a point that is furthest from the boundary pro-
motes a uniform growth of the front, providing higher numerical
stability in floating point. We select such vertex by simply running
the Dijkstra shortest path algorithm with multiple sources, select-
ing all boundary vertices as source nodes and flooding the whole
mesh until the furthest vertex is found.

3.2. Advancing Moves

This is the core of the algorithm. All front edges of the input mesh
M1 are inserted into a queue and then processed one at a time until
the queue becomes empty. Given a front edge e, AFM aims to insert
into the target domain the image of the triangle t that is incident to
e from the inner side of the front. Two cases are possible: t may
have either one or two of its edges exposed on the front (including
e). Note that the case where all the three edges of t are on the front
cannot happen, because the front has simple topology and there is
at least one vertex inside the front (the origin O).

3.2.1. One front edge

Let e be the only edge of t exposed on the front and v the vertex of t
opposite to it. If vertex v is inside the front and has not been inserted
into mesh M2 yet, we insert the image of t into mesh M2 by splitting
the triangle formed by the image of e and the front origin, O. We do
this by using as a split point the image of vertex v, Φ(v) (Figure 4).
This operation produces three sub-triangles, one of which is formed
by Φ(e) and Φ(v), hence is the image of triangle t. The front in both
meshes is then advanced, moving from e to the other two edges of
triangle t, which is now located outside of the current front (see
iterations #1 and #2 in Figure 3). For the newly generated triangles
to preserve the orientation of their father (hence local injectivity) it
is sufficient to position point Φ(v) strictly inside the triangle formed
by Φ(e) and O. In our implementation we position Φ(v) at

Φ(v) =
99 Φ(v0)+99 Φ(v1)+2O

200
,

where v0 and v1 are the vertices of edge e. This choice avoids the
front to rapidly approach the origin O, leaving more room for the
insertion of the subsequent mesh elements.
Triangles having one edge and all three vertices exposed on the
front are initially skipped because inserting them would break the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 16 M. Livesu / Advancing Front Surface Mapping

SO
U

R
C

E
(M

1)
TA

R
G

ET
 (M

2)

t t

e

O

Φ(e)
Φ(t)

triangle split

O

Figure 4: Advancing the front to reproduce a triangle t having a
single front edge e amounts to: (i) locating the triangle formed by
the image of e, Φ(e), and the front origin O; (ii) splitting it into
three sub-triangles. The triangle formed by the split point and by
Φ(e) is Φ(t).

SO
U

R
C

E
(M

1)
TA

R
G

ET
 (M

2)

t

edge flip

t

O O

Φ(t)

v

Φ(v)

e

Figure 5: Advancing the front to reproduce a triangle t having two
front edges meeting at a shared vertex v amounts to: (i) locating
the edge e connecting the image of v, Φ(v), with the front origin
O; (ii) flipping e. This operation can be performed only if the quad
surrounding e (i.e., its link) is strictly convex.

topology of the front, making it a non simple polygon (i.e., the tri-
angle insertion sequence would not be a valid shelling sequence).
Note that this case does not need to be handled: the front will ad-
vance further through other moves and, at some point, another edge
of the same triangle will show up in the front. At that point, the tri-
angle will be inserted with the edge flip move described in the next
paragraph.

Figure 6: Naively applying triangle splits and edge flips to advance
the front does not always lead to convergence. In the typical case,
the front conquers all the mesh vertices, leaving a network of trian-
gle strips (closeup) that cannot be inserted in the target domain be-
cause their associated edge flip operations are concave, hence they
would introduce flipped elements. The local strategies described
in Section 3.3 ensure that any edge flip can be performed without
breaking the injectivity of the map, thus always ensuring both va-
lidity and convergence.

3.2.2. Two front edges

Let e1,e2 be the two edges of t exposed on the front and let v be
the front vertex in between them. In the target domain edges Φ(e1)
and Φ(e2) form two triangles with the front origin O and are ad-
jacent to one another along the edge connecting Φ(v) with O. The
insertion of triangle t inside mesh M2 can therefore be performed
by simply flipping such edge (Figure 5). The front in both meshes
is then advanced, moving from e1,e2 to the edge of t opposite to
them (see iteration #3 in Figure 3). Note that, differently from the
triangle split, the edge flip operation cannot always be performed.
Deadlock cases that arise when no further flip move is possible are
discussed in the next section.

3.3. Deadlocks

An edge can be flipped without introducing inverted elements only
if the four-sided polygon formed by the two triangles incident to it
is strictly convex. This may create deadlock configurations where
the front can no longer be advanced, because all missing triangles
have their three vertices exposed on the front and no edge flip move
is possible. Situations of this kind typically arise towards the end of
the execution, when all input mesh vertices have been inserted in
the target domain and a sequence of edge flips is required to close
the front (Figure 6).

Concavities that prevent the execution of a flip move may arise at
both endpoints of the edge to be flipped. In AFM flipped edges al-
ways connect a front vertex with the origin O. In the following two
subsections we describe the two procedures that we use to unlock
illegal edge flips in these two cases.

3.3.1. Convexification

When the front is locally concave at a front vertex v, we unlock the
flip of the edge connecting v and O via vertex relocation, pushing
one of the front vertices adjacent to v towards O, making the front

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 7 of 16

O

pr
pl

O OO

e

v

e

vv

vl
vr

e
vr

Figure 7: Left: flipping edge e introduces an inverted element (red) because the front is locally concave at vertex v. Middle left: we compute
points pl , pr by intersecting the prolongation of edges v,vl and v,vr with edges vl ,O and vr,O. Positioning either vl or vr at such intersection
points makes the front locally flat. Pushing any of them a bit further towards the origin (black arrows) makes the front locally convex at v.
Middle right: since only one vertex motion is necessary, we break ties by moving the vertex that remains furthest from O (in this case vr),
leaving more room for the next advancing moves. For the same reason, in our implementation we only minimally lift vertex vr, computing its
final position as 0.99pr +0.01O. Right: after vertex relocation the front can be advanced by flipping edge e.

O

v

p

O

v

p

O

v

O

v

p

Figure 8: Left: pushing vertex v towards point p flips the orientation of some triangles (in red) because, for each of them, v and p lie at
opposite sides of the supporting line of the edges opposite to v (dashed lines). Middle left: split points to fix this issue can be computed by
intersecting, for each red triangle, the edge whose positive half-space contains the front origin O with the line passing through O and the
triangle vertex opposite to such edge. Middle right: splitting edges at the so computed intersections yields a new mesh where all triangles
remain valid when pushing v towards O (right).

O

v

p

O

v

r

p

O

v

r

p

O

v

p

vl vr vl vr vl vrvl vr

Figure 9: Left: moving vertex v to p would flip the orientation of the red triangle. As shown in the next three columns the mesh refinement
procedure described in Figure 8 may in turn create new triangles that would flip their orientation, thus triggering cascaded refinement. All
the newly inserted split points (black dots) are positioned along the ray r that emits from O. Since the number of edges incident to v is finite
and its valence never increases, r can only intersect a finite number of edges. Therefore the cascaded refinement is guaranteed to terminate.

locally convex at v (Figure 7). Once the selected point has been
repositioned to the desired location, the edge can be flipped and the
front advanced as described in Section 3.2.2.

The convexification strategy described in Figure 7 is not com-
pletely safe, because it only ensures that the two triangles generated

by the edge flip are not inverted, completely overlooking the effect
that this operation has on all the other triangles that are incident
to a relocated vertex v. As shown in the left part of Figure 8, pre-
viously existing triangles (in red) may flip their orientation due to
vertex relocation. We resolve this issue by splitting such triangles

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 16 M. Livesu / Advancing Front Surface Mapping

SO
U

R
C

E
(M

1)
TA

R
G

ET
 (M

2)

edge split

v

vl

vll

vr

vrr

O

v

vl

vll

vr

vrr

O

e

triangle split edge flip edge flip

O

v

vl

vll

vr

vrr

vn

v

vl

vll

vr

vrr

vn

v

vl

vll

vr

vrr

vn

O O

Φ(v)

Φ(vl) Φ(vr)

Φ(vll) Φ(vrr) Φ(vll) Φ(vrr)

Φ(vl) Φ(vr)

Φ(v)

Φ(vll) Φ(vrr)

Φ(vl) Φ(vr)

Φ(v)

Φ(vn)

Φ(vll) Φ(vrr)

Φ(vl) Φ(vr)

Φ(v)

Φ(vn)

Φ(vll) Φ(vrr)

Φ(vl) Φ(vr)

Φ(v)

Φ(vn)

Figure 10: Left: flipping edge e introduces an inverted element (red) because the triangle Φ(vl ,v,vr) contains the front origin O. We resolve
this issue by inserting a new vertex vn in both meshes, locally editing the front to avoid advancing it beyond the origin O. In the input domain
vertex vn splits the edge vl ,vr at its midpoint. In the target domain, its image Φ(vn) is positioned so as to create valid edge flip moves to insert
triangles Φ(vn,v,vr) and Φ(vl ,vn,vll). The feasible region is highlighted in the second column (green area) and is computed by intersecting
the prolongations of edges Φ(vr),O and Φ(vll),O with the front. The advancing moves are shown in the last three columns. Note that in case
Φ(vn) is not inserted in the green region, one or both the edge flip moves in the last two columns would in turn suffer from the same issue
shown in the first column, thus triggering infinite refinement.

as described in the same figure, ensuring that, for each triangle t
incident to v, the positive half-space of the edge e opposite to v in
t contains the front origin O. Since vertices are always relocated at
a point along an edge incident to O, this ensures that any possible
relocation does not introduce inverted elements in M2.

This refinement may in turn generate another flipped triangle that
is adjacent to the same split edge and the process can potentially it-
erate, resulting in cascaded refinement. As shown in Figure 9 the
entire process is convergent, because all offending triangles are
fixed by splitting edges incident to the front vertex v at the inter-
section points with a fixed ray r. Considering that the valence of
vertex v is finite and does not increase during refinement, the num-
ber of edges intersected by r is fixed as well, ensuring termination
in a finite number of steps.

Note that, differently from the triangle splits in Section 3.2.1,
all refined triangles are images of triangles existing in the input
mesh. Therefore, these splits are also applied to triangles in M1,
maintaining a full topological compatibility with mesh M2.

To avoid excessive mesh growth, convexification should be used
parsimoniously. AFM is designed to promote the fulfillment of the
geometric criteria that ensure the applicability of flip operators and
only marginally uses convexification. In our large scale benchmark
we performed almost half a billion edge flips. Only in the 15.7%
of the cases convexification was necessary and only in the 3.7% of
these cases local refinement was used to unlock a flip (Section 5).

3.3.2. Concavification

When the concavity that prevents a flip is located at the front origin
O, we unlock the flip operation by adding one degree of freedom
along the front, splitting the triangle that would flip its orientation
(left of Figure 10, in red) into two sub-triangles that do not contain

O. We call this procedure concavification, because a portion of the
front that is already convex becomes locally concave to accommo-
date the flip move that we need to perform. Particular care must be
taken to ensure that the process terminates. The key to successfully
advance the front and ensure convergence consists in positioning
the new vertex not only in function of the current advancing move,
but also considering the next two, finding a location that ensures
that a full sequence of three advancing moves can be performed
without any further convexification or concavifications (one split
and two flips shown in last three columns of Figure 10). Concavi-
fication can only be applied if the two triangles to be inserted form
a triangle strip, that is, if all their four vertices are already on the
front and no alternative move is locally possible. As detailed in Ap-
pendix A this is enough to ensure algorithmic convergence. For this
reason, concavification is even more rare to occur than convexifica-
tion and has negligible impact on the output mesh size. In our large
scale benchmark this procedure was applied in only the 0.29% of
the cases.

A tempting (apparently simpler) alternative to concavification
consists in relocating vertex O outside of the red triangle in Fig-
ure 10. While in some cases this would work without requiring
extra refinement, it should be noted that not only O but also other
portions of the front may sneak inside that triangle, possibly re-
quiring a large number of relocations, each of which may trigger
its own refinement (Figure 8). Considering the marginal number of
its occurrences, we opted for concavification because it is compact
to code and it always has the same complexity, avoiding the neces-
sity to handle challenging corner cases in the code.

4. Implementation Details

The constructions described in the previous two sections theoreti-
cally guarantee both the existence and the injectivity of any map-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 9 of 16

Domain #Models #Conv. #Timeout #Adv.
Moves

#Triangle
Splits

#Edge
Flips #Convex. #Concav. Mesh

growth
#Flips

(rational)
#Flips

(double)
Average
runtime

Circle 11942 11679
263

96.5% done
314.6M

152.7M
48.5%

161.9M
51.5%

15.1M
9.3%

918.6K
0.56%

avg 4.91%
max 42.6%

0
885.5K

3166 models
27.1%

0.77s

Square 11942 11645
297

96.2% done
312.3M

151.6M
48.5%

160.7M
51.5%

15.7M
9.8%

910.1K
0.57%

avg 5.76%
max 42.9%

0
866.7K

3231 models
27.7%

0.76s

Star 11942 11567
375

86.1% done
308.1M

149.5M
48.5%

158.6M
51.5%

43.2M
27.2%

901.9K
5.69%

avg 18.1%
max 56.1%

0
791.5K

3780 models
32.7%

0.83s

TOTAL 35826 34892
935

92.2% done
934.9M

453.8M
48.5%

481.1M
51.5%

74.0M
15.4%

2.7M
5.68%

avg 9.5%
max 56.1%

0
2.5M

10177 models
29.1%

0.78s

Table 1: Summary of the results obtained in our large scale benchmark. In the second section of the table we report: the total number of
input meshes; the number of maps successfully completed and the number of timeouts (i.e., the amount of runs that were stopped because an
advancing move took more than 2s). For timeouts, we also report the average percentage of triangles already inserted in the target domain
when the process was stopped. In the second section of the table we report: the total number of advancing moves; the number and percentage
of triangle flips and edge flips, and the number and percentage of convexifications and concavifications that were executed to unlock an illegal
edge flip move. We then report the average and maximum growth rate of the meshes, measured as (|T |out −|T |in)/|T |in, and the number of
flipped elements in the map, both with rationals and floating point coordinates. Flips in floating point coordinates were computed by forcing,
at the end of the execution, a naive snap rounding to double for all mesh vertices. The total number of models containing at least one inverted
element and the percentage w.r.t. the total number of converged models are also reported. Finally, in the rightmost column we report the
average running time. Statistics on moves, growth, flips and run times do not consider timeouts. Including timeout experiments, more than
one billion advancing moves were successfully performed by AFM.

ping to a convex or star-shaped domain. The proposed approach
entirely focuses on mesh validity and does not make any attempt
to generate an embedding with good geometric quality. As a result,
output meshes can be expected to contain badly shaped and nearly
degenerate triangles which may be problematic to handle in a real
software implementation. In this section we provide low level prac-
tical details about AFM, explaining how to transfer its correctness
guarantees theory to software.

Numerical models. Many nearly degenerate triangles will be cre-
ated by AFM and, based on properties computed on such triangles,
many algorithmic choices will be made during the execution. Ex-
pecting a correct algorithmic flow using limited precision floating
points for calculation is practically impossible. Since all points in-
serted in the domains are computed by means of barycentric in-
terpolation or by the computation of intersections, all point coordi-
nates will be rational numbers. We therefore implemented AFM us-
ing exact constructions to express both vertex coordinates and inter-
mediate quantities, ensuring that no approximations will occur dur-
ing the map computation. Specifically, we used the GMP [Gra10]
rational numbers enhanced with the lazy evaluation scheme of
CGAL [PF11].

Snap rounding. Despite enhanced by a lazy kernel, rational num-
bers are known to introduce dramatic slowdowns in the compu-
tation [CLSA20, CPAL22]. Even worse, due to our progressive
approach vertex insertion is incremental, thus introducing a cas-
cading effect that may produce rational numbers with huge com-
plexity. To mitigate the cascading problem and reduce the com-
putational overhead introduced by our numerical model we al-
ways try to convert the coordinates of newly inserted vertices into

floats. This is done by attempting a naive snap rounding, using
CGAL::to_double(), and then checking whether the rounded
coordinates have inverted the orientation of any triangle incident
to such vertex. If no flip is found, the snap rounding is accepted.
Otherwise, the coordinates for that specific vertex are kept ratio-
nal. Based on our experience, this simple strategy reduces running
times by almost one order of magnitude.

Algorithmic choices. AFM has been explicitly designed to op-
erate with rationals. This is perhaps visible in the geometric con-
structions that we used for convexification (Section 3.3.1) and con-
cavification (Section 3.3.2), which entirely avoid the use of nor-
malized vectors (which involve the computation of squared roots)
and trigonometric functions. Line searches for vertex reposition-
ing were also avoided because when implemented in infinite preci-
sion may produce (almost) infinite loops even in cases when con-
vergence is guaranteed from a theoretical perspective. Alternative
geometric constructions may have possibly produced better shaped
triangles or smaller vertex displacements, but our approach entirely
based on the computation of segment intersections is fully compat-
ible with our numerical model and is closed form, in the sense that
it is based on finite quantities that can be readily computed, without
requiring iterations or numerical algorithms for their estimation.

5. Results

We implemented AFM in C++, using Cinolib [Liv19] for geom-
etry processing and CGAL::Lazy_exact_nt<CGAL::Gmpq>
for exact computations. Our reference code is directly contained in-
side Cinolib (example 47) and runs as a single threaded application,
supporting mappings to circles, squares and star-like polygon do-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/mlivesu/cinolib/blob/master/examples/47_AFM/main.cpp

10 of 16 M. Livesu / Advancing Front Surface Mapping

mains as the ones shown in Figures 1 and 12. Code improvements
such as parallelization and warm starting are possible and would
likely greatly boost our performances and practical usefulness, but
are not currently implemented. Considerations about these future
extensions can be found in Section 6.

Dataset. To validate our approach we conducted a large-scale ex-
perimentation involving roughly 12K meshes collected from the 2D
Structure Dataset [CLH∗16] and from data released by the authors
of [LYNF18, CFH∗18]. We composed this testing dataset so as to
be heterogeneous in multiple ways, exposing AFM to a wide vari-
ety of mesh sizes (from 190 to 230K triangles), shapes (humans, an-
imals, abstract objects, tools, furnitures, silhouettes), surface types
(smooth, noisy) and local mesh structures (regular, irregular, high
vertex valence).

Setup. Overall, we run 36K experiments, launching AFM three
times for each input model, producing mappings to three alterna-
tive target domains, both convex and star-shaped. All tests have
been executed on commodity hardware (a Mac Book M1 Pro with
32GB of RAM). Considering the limited hardware capabilities at
our disposal, we decided to set a strict time limit for each experi-
ment, aborting the map generation if a single advancing move took
more than 2 seconds and also setting 24 hours as a maximum time
budget for the whole experiment. Comprehensive statistical infor-
mation for all our tests are reported in Table 1.

Baseline. Our baseline for comparative analysis is composed by
Tutte [Tut63] and Progressive Embedding (PE) [SJZP19]. We did
not consider [FBRCA23] because it only supports triangular do-
mains. For Tutte, we considered the implementation available in
Cinolib [Liv19]. For PE, we used the reference implementation
released by the authors. Both implementations use floating point
numbers and PE also exploits parallelization to speed up computa-
tion. The reference code for PE assumes to receive in input a previ-
ously existing mapping, which is only locally modified to remove
inverted elements (if any). The authors released two tools to warm
start PE: one based on Tutte and one based on randomization. Since
in most of the cases Tutte already computes an injective map, boot-
strapping PE with Tutte would trigger the execution of PE on a tiny
amount of cases (5 out of 12K tests). We therefore initialized an
invalid embedding using their random_init_bin tool and then
processed the so generated file with their tool untangle_bin,
using option -e 1. This configuration ensures that PE is indeed ex-
ecuted on every single mapping task and is asked to reproduce the
entire map with its edge collapse/vertex split strategy. We empha-
size that this choice of the baseline is not representative of the state
of the art. The best existing compromise between performances
and floating-point robustness is obtained with PE bootstrapped with
Tutte. However, for the sake of a more informative comparison be-
tween basic mapping strategies, we decided to not rely on warm
starting (which is also compatible with AFM, as discussed in Sec-
tion 6). For the same reason, we restricted our comparative analysis
to strictly convex domains only. Squared and star-shaped domains
are not considered, even though a basic pre-processing refinement
such as the one described in Section 3.1.1 would have allowed us
to extend our comparative analysis at least to convex domains con-
taining co-linear boundary vertices.

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50K 100K 150K 200K

AFM on circle
AFM on square
AFM on star
Tu�e on circle
PE on circle

t

Figure 11: Running times (in seconds) for AFM, Tutte [Tut63] and
Progressive Embedding [SJZP19] on our testing dataset. For AFM
we considered mappings to circles, squares and stars. Tutte and PE
were only tested on mappings to strictly convex domains.

Timings. Despite the single thread implementation and the use of
computationally expensive rational numbers, on average AFM was
able to complete each mapping task in less than a second (avg
0.78s). As shown in Figure 11, floating point Tutte is by far the
fastest algorithm (avg 0.04s), one order of magnitude faster than
AFM. PE with random initialization is much slower (avg 608s),
three and four orders of magnitude slower than AFM and Tutte,
respectively. PE is the only method that consumed the whole 24h
time budget. After 24h of computation only 139 out of the 12K
maps were completed. The evaluation of PE is therefore limited to
this restricted set of shapes. Conversely, Tutte was executed on the
full set of 12K input shapes, which completed in 8.3 minutes.

For AFM, running times remain consistent across the target do-
mains we considered, with mappings to circles and squares being
slightly faster (avg 0.76s) than mappings to stars (avg 0.83s). This
difference can be explained by observing that star mappings tend
to refine more (Figure 13), thus introducing a computational over-
head.

In a few cases our tool was stopped because the insertion of a
triangle took more than two seconds, violating our testing policy.
As can be noticed in Table 1 (percentages in the Timeout column),
stopped processes had already completed more than the 92% of
the map on average, meaning that only a handful of input triangles
were missing in the target domain. Based on our analysis, this slow-
down towards the end of the execution is entirely due to cascad-
ing issues with the rational numbers, which accumulate complexity
throughout the computation. The snap rounding strategy discussed
in Section 4 is naive and it only mitigates this issue, without en-
tirely avoiding it. Possible remedies are discussed in Section 6. To
give a reference, we considered 10 timed out cases and run AFM
until convergence. In the worst case the algorithm took two days
to complete. These timings seem compatible with recent exact nu-
merical approaches that suffer from similar issues with cascaded
constructions [NCB23, HC23].

Robustness (rational). When implemented with rational numbers
AFM is fully robust. The correctness of our topological and geo-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 11 of 16

Figure 12: Results obtained with AFM on a variety of meshes with different geometric and topological properties. All maps are fully injective.
The second column shows a closeup of each mesh connectivity. Star domains appear different to one another because they depend on mesh
resolution. They are all computed starting from a circular disk and then pushing odd vertices in the sequence inwards, creating the spikes.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

12 of 16 M. Livesu / Advancing Front Surface Mapping

0

50K

100K

150K

200K

250K

300K

0 50K 100K 150K 200K 250K

AFM on circle
AFM on square
AFM on star

Figure 13: Plot of output mesh size (vertical) over input mesh
size (horizontal) for our 36K mapping tests. Points on the dashed
line correspond to maps that introduced zero refinement. AFM only
marginally refines the input mesh: mappings to circles and squares
perfectly overlap and are almost entirely flat on the dashed line.
Mappings to concave (star-shaped) domains are more likely to trig-
ger refinement, but remain just slightly above it.

metric constructions was practically verified in the 36K runs AFM
was tested on. More than one billion advancing moves were suc-
cessfully completed without ever introducing a degenerate or in-
verted triangle in the embedding, including the cases when the pro-
cess was stopped because of the elapsed runtime. As detailed in
Table 1, this quantity is almost perfectly split into triangle splits
and edge flips, with just a slight predominance of the latter over the
former.

Another important aspect to consider when evaluating the prac-
tical robustness of a mapping method is its ability to not get stuck
due to a vanishing space of solutions. A key advantage of AFM over
prior provably robust methods is its ability to exploit on-demand
local mesh refinement to create a valid solution even when it does
not exist. While basic topological checks like the 2-connectedness
of the graph could be executed in a pre-processing phase and re-
move some of the potential issues (Section 3.1.1), mappings to
non convex domains may require non trivial refinement of the in-
put mesh that is hard to determine a priori. In the worst case, the
number of Steiner points that are necessary to grant the existence
of a valid embedding are quadratic w.r.t. the number of boundary
vertices [ASS93]. Our statistical results indicate that AFM indeed
introduced more refinement to complete mappings to star-shaped
domains, showcasing 18.1% mesh growth on average. Growth for
circles and squares was 4.91% and 5.76%, respectively. In the worst
case the amount of refinement reached a peak of 56.1% of the input
mesh size. Nevertheless, our analysis revealed that the highest per-
centages of mesh growth belong to very coarse meshes containing
either none or just a few internal vertices and edges, such as the one
shown in Figure 2. Indeed, the full plot in Figure 13 shows that for
the 24K maps to circles and squares input and output mesh sizes

Guaranteed
Injective

Floating Point
Robust

Running
Time

Supported
Domains

Smart
Refinement

Tutte yes
99.96%

11946/11950
0.04s

serial, float
convex

only if a map exists
no

PE yes
100%

139/139
608s

parallel, float
convex

only if a map exists
no

AFM yes
70.8%

24715/34892
0.78s

serial, rational
star-shaped yes

Table 2: Summary of the outcomes of our large-scale compara-
tive analysis. Percentages in the second column refer to the amount
of fully injective mappings in double precision produced by each
method over the totality of the attempts. Third column reports av-
erage running times on the same attempts. PE was tested on 139
models (mapping to a circle). Tutte was executed 12K times (map-
ping to a circle) and AMF was executed 36K times (mapping to
circles, squares and stars, 12K times each). For the supported do-
mains column, Tutte and PE permit maps to non strictly convex
domains (e.g. a square) only if the mesh does not contain trian-
gles having all three vertices on the boundary. Conversely, AFM
exploits local mesh refinement to automatically open the space of
solutions in case a mapping does not exist.

were almost identical, whereas for the 12K maps to stars output
mesh size was only marginally higher than the input one.

Robustness (float). In many practical cases planar embeddings
must be passed to downstream applications that operate in float-
ing point. Alongside exact rational coordinates our implementation
also maintains a floating point copy of the embedding, which we
exploited to verify the practical usefulness of our tool. In the ma-
jority of the cases our floating point embeddings were free from de-
generate or inverted elements (70.8%). Percentages are a bit lower
for star-shaped domains (67.3%), and higher for circles and squares
(72.9% and 72.3%, respectively). Considering that no serious at-
tempts to achieve floating point robustness were made, we believe
this is a promising result. Nevertheless, in this regard AFM per-
forms worse than Tutte [Tut63] and PE [SJZP19], which is entirely
designed to be floating point robust. In practical cases where a map-
ping to a convex domain suffices, these methods remain a prefer-
able solution. In Section 6 we discuss how the technical solutions
used in [SJZP19] could also be adopted in AFM to match their
floating point robustness, possibly at a lower computational cost.

6. Conclusions and Future Works

We have introduced Advancing Front Mapping (AFM), a novel
constructive algorithm for the computation of provably injective
embeddings to simple planar domains. AFM expands the set of un-
conditionally robust tools for surface mapping, providing a method
that natively supports a wider class of domains (star-shaped poly-
gons) than existing direct methods [Tut63, SJZP19, FBRCA23],
without resorting to intermediate constructions [WZ14]. In Appen-
dices A and B we have formally proved the convergence and injec-
tivity properties of AFM, also validating its capabilities extensively
with a large-scale experimentation. The open source implementa-
tion of our algorithm will be released to the public domain upon
acceptance of the article.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 13 of 16

As openly discussed in Sections 1 and 5 and conveniently sum-
marized in Table 2, AFM does not currently translate into a prac-
tical mapping tool and cannot currently be considered a valid al-
ternative to prior robust methods such as [Tut63, SJZP19, WZ14],
because of issues with efficiency and sensitivity to floating point
implementations. It should be noted that none of these features are
the core business of this article, which is rather focused on the pre-
sentation of a novel construction and its theoretical validation. In
the remainder of this section we share a few considerations on fu-
ture extensions of the core algorithm that may provide significant
practical benefits in terms of these and other aspects, both in 2D
and 3D.

Parallelization. Our current implementation relies on a serial
mesh data structure, hence is single threaded. From an algorithmic
perspective AFM could be trivially parallelized by applying simul-
taneous advancing moves in different regions of the active front.
Designing fully disjoint advance operations is easy, because each
move has a very local footprint. If the move is a triangle split, the
only mesh element that changes is the triangle being split. If the
advancing move is an edge flip, then two adjacent front edges plus
the already inserted triangles that are incident to any of the three
front vertices involved may change (due to the possibility of local
refinement). In addition to this, it should be noted that even though
all triangles inside the front share the same vertex (the front origin),
such vertex never moves and its adjacencies are never read. There-
fore, for the sake of a better parallel system, the front origin could
just be duplicated so as to make each such triangles fully disjoint
from the others, merging the various copies of the front origin just
in a final step. Considering the 10 cores of our testing hardware,
using a parallel-friendly mesh data structure such as [JDH∗22] we
could reasonably expected a boost factor of 4-5× or higher.

Warm Start. AFM is currently designed to create a surface map
from scratch, always inserting all the input triangles in the target
domain. Alternative methods such as PE hugely benefit from a
warm start initialization (e.g., computed with Tutte), which permits
to focus only on the very few spots where the map needs to be fixed.
AFM could be similarly modified to enjoy a warm start, identify-
ing the inverted triangles in the input map and then defining small
star-shaped neighborhoods that fully contain each of them (e.g., via
flooding). At this point, each of these regions could be considered
separately and filled with our advancing front methodology. In the
worst case scenario, the local neighborhood could grow to conquer
the whole mesh, yielding a problem identical to the one we cur-
rently solve. Conversely, if smaller sized pockets around each ille-
gal triangle are successfully found, each of them could be processed
separately, reducing the computational cost and also providing yet
another opportunity for parallelization.

Indirect Predicates and Cascading. As shown in multiple recent
articles [CPAL22, CLSA20], switching from rational numbers to
Indirect Predicates [Att20] provides great advantages in terms of ef-
ficiency without sacrificing robustness. Such a change should pro-
vide similar advantages also in our setting. Unfortunately, Indirect
Predicates do not support cascading, hence the switch is currently
incompatible with our implementation. A tempting idea to resolve
the cascading problem consists in expressing all mapped points as

a convex combination of the vertices of the polar mesh computed
during initialization (Section 3.1.2). Specifically, since such a mesh
is a valid tessellation of the target domain, any mesh point is strictly
contained either in one of its triangles or edges. Devising alterna-
tive construction that allow to exactly represent split point loca-
tions with only one indirection is an appealing direction of further
research.

Snap Rounding and Regularization. In their current form, some
of the embeddings generated with AFM cannot be passed to a
downstream application because switching to floating point may in-
troduce degenerate triangles. Switching from an exact to an approx-
imated numerical model in a robust manner is a notoriously com-
plex problem, called 3D snap rounding. Besides the naive round-
ing to double described in Section 4, our method does not make
any serious attempt to robustly generate floating point maps, fail-
ing at this task in the 29.2% of the cases (Table 2). Provably correct
snap rounding algorithms are still too complex to be practically
useful [DLL18]. Effective heuristics often used in the context of
mesh arrangements ([ZGZJ16] §6.1) are not usable in our context
because they require to collapse triangles in the input mesh, fail-
ing to preserve its original geometry. The only possible solution
that we envision is to incorporate in our pipeline a regularization
step that relaxes the geometry, avoiding almost degenerate config-
urations. This routine has been successfully used by Progressive
Embedding [SJZP19], although in their case it introduces a huge
computational overhead because vertex insertions may arise any-
where in the mesh, requiring a global optimization. Our approach
operates only along the active front, keeping the geometry of the
previously inserted triangles frozen. Introducing vertex relaxation
only along the current front may permit to find a sweet spot between
floating point robustness and numerical overhead. Experiments in
this direction have not been attempted yet.

Volume Maps. Last but not least, an appealing property of AFM
is its apparent compatibility with a volumetric extension. Provably
injective volume mapping is a fundamental yet open problem in the
literature ([Liv20b] §2), for which existing robust approaches fall
short for their limited applicability [Ale23] or high computational
cost and excessive amount of mesh refinement [HC23, NCB23].
Regarding AFM, the generation of the polar mesh in the initializa-
tion phase (Section 3.1) and the basic advancing moves by means
of triangle splits and edge flips (Section 3.2) have a direct counter-
part in tetrahedral meshes, with the only difference that in 3D there
are two alternative flip operations to advance the front: a face flip
move to conquer a tetrahedron having two faces on the front and an
edge flip move to conquer a tetrahedron having three faces on the
front (Figure 14). What remains unclear – and is subject to ongo-
ing research – is the handling of locally concave configurations that
prevent the execution of a flip. As discussed in Section 3.3 in 2D
there are only two possible cases, that are fully addressed by our
convexification and concavification strategies, whereas in 3D there
are more, possibly more complex.

Akcnowledgements

Thanks are due to Daniele Panozzo, Teseo Schneider and Zhongshi
Jiang, with whom I failed to make a preliminar version of this idea

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

14 of 16 M. Livesu / Advancing Front Surface Mapping

face flip (2-to-3)

v3

O

v0
v1

v2

v0

v3

O

t0

v1

v2

t1

v0

v1

v2

v3

O

edge flip (3-to-2)

v0

v1

v2

v3

O

Figure 14: Advancing front moves in a volume mesh by means of
flipping operators. Top: tetrahedra having two triangular faces ex-
posed on the front (t1, t2), can be inserted in the domain by flip-
ping the triangle v0,v1,O. Bottom: tetrahedra having three faces
exposed on the front can be reproduced by flipping edge v3,O.

work back in 2019. I am also grateful to Gianmarco Cherchi, Enrico
Puppo, Marco Attene and Riccardo Scateni, who have patiently lis-
tened to me spelling the steps of this algorithm for years, often
pointing me in the right direction to solve unexpected corner cases.
This work was supported by the EU project DIGITbrain/ProMED
(952071).

References
[AKL17] AIGERMAN N., KOVALSKY S. Z., LIPMAN Y.: Spherical orb-

ifold tutte embeddings. ACM Trans. Graph. 36, 4 (2017), 90. 3

[AL15] AIGERMAN N., LIPMAN Y.: Orbifold tutte embeddings. ACM
Trans. Graph. 34, 6 (2015), 190–1. 3

[AL16] AIGERMAN N., LIPMAN Y.: Hyperbolic orbifold tutte embed-
dings. ACM Trans. Graph. 35, 6 (2016), 217–1. 3

[Ale23] ALEXA M.: Tutte embeddings of tetrahedral meshes. Discrete
& Computational Geometry (2023), 1–11. 13

[ASS93] ARONOV B., SEIDEL R., SOUVAINE D.: On compatible tri-
angulations of simple polygons. Computational Geometry 3, 1 (1993),
27–35. 2, 3, 12

[Att20] ATTENE M.: Indirect predicates for geometric constructions.
Computer-Aided Design 126 (2020), 102856. 13

[BCW17] BRIGHT A., CHIEN E., WEBER O.: Harmonic global
parametrization with rational holonomy. ACM Transactions on Graphics
(TOG) 36, 4 (2017), 1–15. 3

[CBSS17] CLAICI S., BESSMELTSEV M., SCHAEFER S., SOLOMON J.:

Isometry-aware preconditioning for mesh parameterization. In Computer
Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 37–47. 3

[CFH∗18] CHAI S., FU X.-M., HU X., YANG Y., LIU L.: Sphere-based
cut construction for planar parameterizations. Computers & Graphics 74
(2018), 66–75. 10

[CLH∗16] CARLIER A., LEONARD K., HAHMANN S., MORIN G.,
COLLINS M.: The 2d shape structure dataset: A user annotated open
access database. Computers & Graphics 58 (2016), 23–30. 10

[CLSA20] CHERCHI G., LIVESU M., SCATENI R., ATTENE M.: Fast
and robust mesh arrangements using floating-point arithmetic. ACM
Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6 (2020). 9, 13

[CPAL22] CHERCHI G., PELLACINI F., ATTENE M., LIVESU M.: Inter-
active and robust mesh booleans. ACM Transactions on Graphics (TOG)
41, 6 (2022), 1–14. 9, 13

[CSZ16] CAMPEN M., SILVA C. T., ZORIN D.: Bijective maps from
simplicial foliations. ACM Transactions on Graphics (TOG) 35, 4
(2016), 1–15. 3, 4

[DAZ∗20] DU X., AIGERMAN N., ZHOU Q., KOVALSKY S. Z., YAN
Y., KAUFMAN D. M., JU T.: Lifting simplices to find injectivity. ACM
Trans. Graph. 39, 4 (2020), 120. 3

[DKZ∗22] DU X., KAUFMAN D. M., ZHOU Q., KOVALSKY S., YAN
Y., AIGERMAN N., JU T.: Isometric energies for recovering injectivity
in constrained mapping. In SIGGRAPH Asia 2022-Computer Graphics
and Interactive Techniques Conference-Asia, SA 2022 (2022), Associa-
tion for Computing Machinery, Inc, p. 36. 3

[DLL18] DEVILLERS O., LAZARD S., LENHART W.: 3d snap rounding.
In Proceedings of the 34th International Symposium on Computational
Geometry (2018), pp. 30–1. 13

[FBRCA23] FINNENDAHL U., BOGIOKAS D., ROBLES CERVANTES P.,
ALEXA M.: Efficient embeddings in exact arithmetic. ACM Transac-
tions on Graphics (TOG) 42, 4 (2023), 1–17. 2, 10, 12

[FH05] FLOATER M. S., HORMANN K.: Surface parameterization: a
tutorial and survey. Advances in multiresolution for geometric modelling
(2005), 157–186. 1

[Flo97] FLOATER M. S.: Parametrization and smooth approximation of
surface triangulations. Computer aided geometric design 14, 3 (1997),
231–250. 3

[Flo03a] FLOATER M.: One-to-one piecewise linear mappings over tri-
angulations. Mathematics of Computation 72, 242 (2003), 685–696. 3

[Flo03b] FLOATER M. S.: Mean value coordinates. Computer aided
geometric design 20, 1 (2003), 19–27. 3

[FSZ∗21] FU X.-M., SU J.-P., ZHAO Z.-Y., FANG Q., YE C., LIU L.:
Inversion-free geometric mapping construction: A survey. Computa-
tional Visual Media 7 (2021), 289–318. 1, 3

[FW22] FARGION G., WEBER O.: Globally injective flattening via a
reduced harmonic subspace. ACM Transactions on Graphics (TOG) 41,
6 (2022), 1–17. 1, 3

[GGT06] GORTLER S. J., GOTSMAN C., THURSTON D.: Discrete one-
forms on meshes and applications to 3d mesh parameterization. Com-
puter Aided Geometric Design 23, 2 (2006), 83–112. 3

[GJGQ05] GARNER C., JIN M., GU X., QIN H.: Topology-driven sur-
face mappings with robust feature alignment. In VIS 05. IEEE Visualiza-
tion, 2005. (2005), IEEE, pp. 543–550. 3

[GKK∗21] GARANZHA V., KAPORIN I., KUDRYAVTSEVA L., PROTAIS
F., RAY N., SOKOLOV D.: Foldover-free maps in 50 lines of code. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1–16. 3, 16

[Gra10] GRANLUND T.: The gnu multiple precision arithmetic library.
http://gmplib.org/ (2010). 9

[GS94] GEORGE P. L., SEVENO É.: The advancing-front mesh genera-
tion method revisited. International Journal for Numerical Methods in
Engineering 37, 21 (1994), 3605–3619. 2

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Livesu / Advancing Front Surface Mapping 15 of 16

[GSC21] GILLESPIE M., SPRINGBORN B., CRANE K.: Discrete confor-
mal equivalence of polyhedral surfaces. ACM Transactions on Graphics
40, 4 (2021). 3

[GW97] GUPTA H., WENGER R.: Constructing piecewise linear home-
omorphisms of simple polygons. Journal of Algorithms 22, 1 (1997),
142–157. 3

[HC23] HINDERINK S., CAMPEN M.: Galaxy maps: Localized foliations
for bijective volumetric mapping. ACM Transactions on Graphics (TOG)
42, 4 (2023), 1–16. 3, 10, 13

[Hop96] HOPPE H.: Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques
(1996), pp. 99–108. 3

[HPS08] HORMANN K., POLTHIER K., SHEFFER A.: Mesh parameter-
ization: theory and practice. In ACM SIGGRAPH ASIA 2008 courses.
2008, pp. 1–87. 1, 2

[JDH∗22] JIANG Z., DAI J., HU Y., ZHOU Y., DUMAS J., ZHOU Q.,
BAJWA G. S., ZORIN D., PANOZZO D., SCHNEIDER T.: Declarative
specification for unstructured mesh editing algorithms. ACM Transac-
tions on Graphics (TOG) 41, 6 (2022), 1–14. 13

[JHT14] JIN Y., HUANG J., TONG R.: Remeshing-assisted optimization
for locally injective mappings. In Computer Graphics Forum (2014),
vol. 33, Wiley Online Library, pp. 269–279. 3

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex
augmentation framework for bijective maps. ACM Transactions on
Graphics 36, 6 (2017). 3

[KAD∗20] KOVALSKY S. Z., AIGERMAN N., DAUBECHIES I., KAZH-
DAN M., LU J., STEINERBERGER S.: Non-convex planar harmonic
maps. arXiv preprint arXiv:2001.01322 (2020). 3

[KS04] KRAEVOY V., SHEFFER A.: Cross-parameterization and com-
patible remeshing of 3d models. ACM Transactions on Graphics (ToG)
23, 3 (2004), 861–869. 1, 3

[KSG03] KRAEVOY V., SHEFFER A., GOTSMAN C.: Matchmaker: con-
structing constrained texture maps. ACM Transactions on Graphics
(TOG) 22, 3 (2003), 326–333. 1

[LBG∗08] LI X., BAO Y., GUO X., JIN M., GU X., QIN H.: Glob-
ally optimal surface mapping for surfaces with arbitrary topology. IEEE
Transactions on Visualization and Computer Graphics 14, 4 (2008),
805–819. 3

[Lip14] LIPMAN Y.: Bijective mappings of meshes with boundary and
the degree in mesh processing. SIAM Journal on Imaging Sciences 7, 2
(2014), 1263–1283. 4, 16

[Liv19] LIVESU M.: cinolib: a generic programming header only c++
library for processing polygonal and polyhedral meshes. Transactions
on Computational Science XXXIV (2019), 64–76. 9, 10

[Liv20a] LIVESU M.: A Mesh Generation Perspective on Robust Map-
pings. In Smart Tools and Applications in Graphics (STAG) (2020), The
Eurographics Association. 3

[Liv20b] LIVESU M.: Mapping surfaces with earcut. arXiv preprint
arXiv:2012.08233 (2020). 3, 13

[Liv20c] LIVESU M.: Scalable mesh refinement for canonical polygonal
schemas of extremely high genus shapes. IEEE Transactions on Visual-
ization and Computer Graphics 27, 1 (2020), 254–260. 3

[Liv23] LIVESU M.: Towards a robust and portable pipeline for quad
meshing: Topological initialization of injective integer grid maps. Com-
puters & Graphics 112 (2023), 50–59. 1, 3

[LSS∗98] LEE A. W., SWELDENS W., SCHRÖDER P., COWSAR L.,
DOBKIN D.: Maps: Multiresolution adaptive parameterization of sur-
faces. In Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques (1998), pp. 95–104. 1

[LYNF18] LIU L., YE C., NI R., FU X.-M.: Progressive parameteriza-
tions. ACM Trans. Graph. 37, 4 (2018), 41–1. 1, 3, 10

[MW95] MARCUM D. L., WEATHERILL N. P.: Unstructured grid gener-
ation using iterative point insertion and local reconnection. AIAA journal
33, 9 (1995), 1619–1625. 2

[NCB23] NIGOLIAN V. Z., CAMPEN M., BOMMES D.: Expansion
cones: A progressive volumetric mapping framework. ACM Transac-
tions on Graphics (TOG) 42, 4 (2023), 1–19. 1, 3, 10, 13

[NNZ21] NAITSAT A., NAITZAT G., ZEEVI Y. Y.: On inversion-free
mapping and distortion minimization. Journal of Mathematical Imaging
and Vision 63 (2021), 974–1009. 1, 3

[PF11] PION S., FABRI A.: A generic lazy evaluation scheme for ex-
act geometric computations. Science of Computer Programming 76, 4
(2011), 307–323. 9

[POK23] POYA R., ORTIGOSA R., KIM T.: Geometric optimisation via
spectral shifting. ACM Transactions on Graphics 42, 3 (2023), 1–15. 3

[PSS01] PRAUN E., SWELDENS W., SCHRÖDER P.: Consistent mesh pa-
rameterizations. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (2001), pp. 179–184. 1

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1. 1, 3

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE H.:
Inter-surface mapping. In ACM SIGGRAPH 2004 Papers. 2004, pp. 870–
877. 1, 3

[SBS22] SORGENTE T., BIASOTTI S., SPAGNUOLO M.: Polyhedron
kernel computation using a geometric approach. Computers & Graphics
105 (2022), 94–104. 5

[SG04] SURAZHSKY V., GOTSMAN C.: High quality compatible trian-
gulations. Engineering with Computers 20 (2004), 147–156. 3

[SJZP19] SHEN H., JIANG Z., ZORIN D., PANOZZO D.: Progressive
embedding. ACM Transactions on Graphics 38, 4 (2019). 1, 2, 3, 10, 12,
13

[SLS22] STEIN O., LI J., SOLOMON J.: A splitting scheme for flip-free
distortion energies. SIAM Journal on Imaging Sciences 15, 2 (2022),
925–959. 3

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free
boundaries. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9. 1,
3

[Tak22] TAKAYAMA K.: Compatible intrinsic triangulations. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 1–12. 3

[Tut63] TUTTE W. T.: How to draw a graph. Proceedings of the London
Mathematical Society 3, 1 (1963), 743–767. 2, 3, 10, 12, 13

[WGS23] WANG Y., GUO M., SOLOMON J.: Variational quasi-harmonic
maps for computing diffeomorphisms. ACM Transactions on Graphics
(TOG) 42, 4 (2023), 1–26. 3

[WZ14] WEBER O., ZORIN D.: Locally injective parametrization with
arbitrary fixed boundaries. ACM Trans. Graph. 33, 4 (jul 2014). 2, 3, 12,
13

[ZGZJ16] ZHOU Q., GRINSPUN E., ZORIN D., JACOBSON A.: Mesh
arrangements for solid geometry. ACM Transactions on Graphics (TOG)
35, 4 (2016), 1–15. 13

Appendix A: Proof of convergence

Since the algorithm operates by inserting one triangle at a time, to
prove convergence it is sufficient to show that: (i) each advancing
move reduces the number of input triangles to be inserted in the
embedding by at least one unit; (ii) it is always possible to execute
an advancing move.

For (i): the advance by triangle split (Section 3.2.1) and advance
by edge flip (Section 3.2.2) moves clearly reduce the number of

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

16 of 16 M. Livesu / Advancing Front Surface Mapping

triangles by one. The convexification strategy (Section 3.3.1) does
not decrease the number of triangles, but it always permits the ex-
ecution of a subsequent edge flip, thus ensuring that at least one
more triangle can be inserted in the embedding. Finally, the con-
cavification strategy (Section 3.3.2) takes two triangles inside the
front, splits the edge shared by them creating four sub-triangles,
and then inserts in the embedding three of them, thus reducing the
total amount of triangles by one unit as well.

For (ii): triangles that touch the front with only one edge can al-
ways be inserted with a triangle split (Section 3.2.1), there are no
restrictions on the applicability of this move. Triangles that touch
the front with two edges can be inserted with an edge flip (Sec-
tion 3.2.2) only if the four-sided polygonal pocket surrounding the
edge to be flipped is convex. If such a polygon is not convex and
the concavity lies along the front, the convexification strategy de-
scribed in Section 3.3.1 is guaranteed to locally edit the front to
make it convex, thus ensuring the insertion of the wanted triangle.
Note that convexification may trigger iterative refinement, but this
operation is always guaranteed to terminate (Figure 9). If the con-
cavity lies at the opposite side (i.e., around the front origin O) the
concavification strategy described in Section 3.3.2 can only be ap-
plied if the two triangles to be inserted form a triangle strip (i.e.,
all their vertices are already on the front). If this is the case, con-
cavification can always be applied and the front be pushed forward.
Conversely, if such triangles do not form a strip, then at least one
of them will have a vertex inside the front, hence such a triangle
could be inserted with a triangle split operation (Section 3.2.1),
once again ensuring that at least one advancing move can always
be executed and the method converges.

Appendix B: Proof of injectivity

We demonstrate injectivity by showing that all advancing and re-
finement moves used by AFM preserve the orientation of the trian-
gles, which is set to be globally coherent in the initialization phase
(Section 3.1.2).

Triangle and edge splits provably preserve the orientation of the
refined elements if split points are inserted at a strictly convex com-
bination of their vertices, that is, a point strictly inside a triangle for
the triangle split and a point strictly inside the segment for the edge
split. This is always the case for the operations described in Sec-
tions 3.2.1 and 3.3.1.

The edge flip operator preserves the orientation of the triangles if
the pocket containing the edge to be flipped is convex. Our advanc-
ing front move by edge flip is always applied in such a case and, in
case this property is not fulfilled, provably convergent routines are
used to ensure that the convexity requirement holds (Sections 3.2.1
and 3.3.1). Therefore, no inverted triangles can be inserted in this
step either.

Combining all these ingredients, we can guarantee that all tri-
angles in the final embedding share a globally coherent orientation.
Note that this condition alone is not sufficient to ensure the injectiv-
ity of the map because non injective configurations may still arise
around a mesh vertex. Failure cases of this kind can be found in
Figure 1 in [Lip14] and in Figure 16 in [GKK∗21]. Nevertheless,
coupling the coherent orientation property with the bijectivity of

the boundary map, which in our case is an input requirement (Sec-
tion 3), the so generated simplicial maps are guaranteed do be bi-
jective. A formal proof of this statement is contained in [Lip14]
(Theorem 3) .

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

