
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Real-Time Neural Materials using Block-Compressed Features

C. Weinreich†, L. De Oliveira†, A. Houdard† and G. Nader†

Ubisoft La Forge

BC 1024 - 2.67MB

BCf-1K, 1.77MB

B
C
f-
1K

BCf-1K

B
C

10
24

BC1024

Mipmapped Neural Textures

Block-Compressed Features

Real-Time
PBR Material Decoding

Figure 1: PBR material texture set is decoded in real-time from our Block Compressed neural features (BCf) resulting in an image that is
visually sharper than standard BC textures of similar resolution.

Abstract

Neural materials typically consist of a collection of neural features along with a decoder network. The main challenge in
integrating such models in real-time rendering pipelines lies in the large size required to store their features in GPU memory
and the complexity of evaluating the network efficiently. We present a neural material model whose features and decoder are
specifically designed to be used in real-time rendering pipelines. Our framework leverages hardware-based block compression
(BC) texture formats to store the learned features and trains the model to output the material information continuously in
space and scale. To achieve this, we organize the features in a block-based manner and emulate BC6 decompression during
training, making it possible to export them as regular BC6 textures. This structure allows us to use high resolution features
while maintaining a low memory footprint. Consequently, this enhances our model’s overall capability, enabling the use of a
lightweight and simple decoder architecture that can be evaluated directly in a shader. Furthermore, since the learned features
can be decoded continuously, it allows for random uv sampling and smooth transition between scales without needing any
subsequent filtering. As a result, our neural material has a small memory footprint, can be decoded extremely fast adding a
minimal computational overhead to the rendering pipeline.

1. Introduction

The continuous challenge of real-time rendering systems is to
improve the graphics quality while reducing both the memory

† Equal Contribution, order determined by coin toss

cost and the evaluation time. Recent progress in graphics hard-
ware and rendering algorithms has gotten us closer to this goal.
For instance, hardware accelerated ray-tracing [Fen22] facili-
tates real-time dynamic global illumination and drastically im-
proves the quality of shadows, reflections and refractions [WNK22,
OLK∗21, DNSD22]. Besides that, micropolygon-based data struc-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15013

CGF 43-2 | e15013

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.15013

2 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

tures [MMT23, KSW21] allows the rendering of extremely de-
tailed and dense scenes. In terms of visual aesthetics, the Physi-
cally Based Rendering (PBR) framework has been the standard in
real-time applications for well over a decade [MHH∗12,MHM∗13,
HMB∗20]. In this framework, a material is composed of multi-
ple texture layers (such as albedo, normals, metalness, etc.) with
each layer serving a distinct role in accurately representing vari-
ous aspects of the material’s visual characteristics. Enhancing the
visual quality of materials typically involves the process of either
layering multiple elements [HdR23] or increasing the texture res-
olution, which affects their computational cost and memory foot-
print, respectively. Consequently, rendering hyperrealistic materi-
als in real-time applications, such as video games, remains some-
what restricted.

Recent work has shown the potential of neural networks to model
and represent material properties [SRRW21, ZZW∗21, FWH∗22,
XWH∗23]. This neural approach aims at replacing traditional PBR
textures with a collection of learned latent features, also known
as neural textures [TZN19], alongside a neural network, usually
a Multi-Layer Perceptron (MLP). In this context, the network
plays a crucial role in decoding the learned information and re-
constructing the original material. While neural approaches have
proven successful in accelerating the rendering of complex ap-
pearances [ZRW∗23] and compressing high-resolution PBR mate-
rials [VSW∗23], its integration in consumer oriented real-time ap-
plications such as video games is not straightforward. The trained
latent features have a relatively big memory footprint as they are of-
ten stored in GPU memory using an uncompressed format. Recent
work by Vaidyanathan et al. [VSW∗23] proposed to overcome this
issue by reducing the resolution and heavily quantize the values of
these features. However, to compensate for the loss in resolution
and precision, the associated decoder network is rather large and
thus computationally intensive which leads slow evaluation time.
As a result, achieving real-time performance remains challenging,
and depends on specific hardware extensions that are supported on
only the most recent high-end hardware. The method we present
addresses these challenges. Our goal is to design a neural material
model that can be integrated into a rendering pipeline and achieve
real-time performance without having to rely on any specific hard-
ware acceleration.

To do so, we present a framework capable of (1) learning
the material information at any point and scale and (2) leverag-
ing hardware-based Block Compression (BC) format to store the
learned neural features. Our features can thus be decoded contin-
uously at any scale in uv space, making it possible to reconstruct
the material information with one sample per pixel and achieve
smooth transition between various scales. This removes the need
for any subsequent filtering step. Furthermore, encoding our neural
features as regular block compressed textures reduces their mem-
ory footprint enabling us to increase their resolution. This, in turn,
directly influences the complexity of the decoder network, mak-
ing it considerably simpler and significantly reduces computational
time.

The paper is organized as follows. Section 2 quickly details ex-
isting material representation and compression methods. We then
present the technical aspects of our neural material learning frame-

work and block based features in sections 3 and 4 respectively. In
section 5 we describe how to practically use our framework to learn
a standard PBR material and integrate it in a real-time rendering
pipeline. Finally, we present our results in section 6 and conclude
by discussing some limitations and future work in section 7.

2. Related Work

This section provides an overview of the various methods to repre-
sent and store materials that are relevant to our work. We first focus
on the traditional texture based approaches (sec. 2.1) then highlight
the more recent field of neural representation methods (sec. 2.2).

2.1. Texture Materials

The material properties of a three-dimensional object can be
thought of as a multi-dimensional signal, which associates every
point (u,v) on its two-dimensional surface with the parameter space
of its appearance model. In a real-time rendering context, this is
primarily done via texture mapping [AMHH18] where the material
properties are discretely stored in a collection of textures with di-
mensions h×w× c. Here, h and w denote the spatial resolution of
the textures, and c represents the total number of channels across all
texture layers in the set. Increasing the visual fidelity of materials
primarily relies on either adding more layers [HMB∗20] or increas-
ing their resolution which has led to a significant rise in memory re-
quirements. To address this issue, textures are stored in GPU mem-
ory in a compressed format. Due to the object’s arbitrary position
and orientation, material information are sampled from the textures
at random locations. It is therefore necessary for the texture’s com-
pression format to allow for random-access and filtering so that the
information can be decompressed at any point in uv space when
needed in real-time. This makes standard image compression tech-
niques, such as JPEG [Wal92, AVAB∗19], as well as newer neural
based ones [BMS∗18, CSTK20] not suitable for this application as
they require unpacking the entire image before being able to access
pixel information.

For real-time rendering, block compression methods [CDF∗86,
INH99] have long been the standard for compressing material tex-
tures. There are seven variants of the BC format (BC1-BC7) sup-
ported in DirectX [D3D], each designed for specific types of im-
age data. All BC formats divide the image into block of 4x4 pixels
and operate under the assumption that the colors in each block ex-
hibits minimal variation and are evenly distributed along one or
more line segments within the RGB color space. This means that
each block can be represented by a very small color palette. In this
context, the information in each block is encoded by storing the
two endpoints of each segment and indexing each pixel according
to its position in the RGB space (fig. 2). Reconstructing the pixel
value is simply done by blending the two endpoints proportionally
to the index value. The more recent BC6 and BC7 formats are the
ones using more than one segment per block. These formats, de-
signed for floating points and RGBA data respectively, improve the
compression quality by separating the pixels inside a block into
several groups, each having its own set of endpoints. The groups
are chosen from a set of predefined partitions. In this case, each
block stores more than one set of endpoints as well as the par-
tition number. However, BC formats can only compress textures

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 3 of 13

BC BlockUncompressed Block

Figure 2: Block Compression algorithms encode a block of 4× 4
pixels with a set of endpoints forming one or multiple line segments
and index each pixel based on it’s projected position in the RGB
space. In the case where two or more line segments are stored, the
pixels are separated into groups according to a pre-defined parti-
tion P.

with up to four channels which is not suited for high dimensional
materials. To overcome this, the material data is separated into sev-
eral textures that are compressed independently. ASTC [NLP∗12]
is another popular block-based texture compression technique. It
is more flexible than BC as it supports various block dimensions
including non-square blocks and can even handle 3D textures.

2.2. Neural Materials

Over the last few years, advancement in neural rendering
[TTM∗22] have shown that it is possible to represent a digital sig-
nal, such as a material M, with a neural network fη by minimizing
over its weights η the following quantity:

∑
i, j

∥ fη(ui,v j)−Mi, j∥2, (1)

where Mi, j is the pixel value of the target material and (ui,v j) are
their corresponding local coordinates. This is an overfitting prob-
lem where the weights of the network are optimized such that
the network’s output matches the target image at a given pixel.
Thus, the capability of the network is key to perfectly recover
the original image. For instance, simple coordinate based net-
works [MST∗20] are not capable of dealing with high frequency
details. To improve the network’s reconstruction capacity, posi-
tional encoding [TSM∗20, CRSL22] where the input (u,v) coor-
dinates is encoded as a vector generated from a periodic func-
tion, is usually employed. However, this requires a large network
to accurately reconstruct the original image which makes it not
suitable for real-time evaluation. Using trainable spatial features
[MESK22, CXW∗23, CLS∗23, SP23], i.e., neural textures, drasti-
cally reduces the size of the network and improves the reconstruc-
tion quality. In this setting, the input coordinates are used to sample
in the neural textures using bilinear interpolation and the resulting
feature vector is given as input to the neural network.

The idea of pairing a set of discrete spatial features and a neu-
ral network have proven to be popular for material representation.
For instance, Rainer et al. [RJGW19] uses an encoder-decoder ar-
chitecture to compress a large set of Bidirectional Texture Function
layers. The encoder is trained to generate a latent code for each
texel. This code is then used by the decoder, in conjunction with a
light and view direction to output a single RGB value. Kuznetsov

et al. [KMX∗21] combined a pyramid of neural textures with a
fully connected network to learn the material properties at differ-
ent scales. Their model is capable of rendering materials with in-
tricate parallax effects on an infinite plane but fails to generalize
to curved surfaces. This was later done in [KWM∗22]. By adding
curvature and transparency as part of the network’s input and out-
put respectively. More recently, Zeltner et al. [ZRW∗23] have used
a set of hierarchical textures and two MLPs to bake complex film-
quality appearance. Here, the first network learns the material’s re-
flectance and the seconds produces importance-sampled directions.
This model is about three times faster than standard node-based
multi-layers materials when integrated into a path-tracing pipeline.

Despite this progress, these methods often overlook the issue of
storage size. In practice, learned neural features are stored in an
uncompressed format which can be quite large to practically use in
a real-time environment, especially when considering the memory
capacity of mainstream hardware. Vaidyanathan et al [VSW∗23]
addressed this issue and demonstrated how neural material repre-
sentations can be more efficient than standard texture compression
techniques at storing PBR material information. To do so, they re-
duce the resolution of the neural features as much as possible and
aggressively quantize their values. This made it possible to com-
press PBR textures at very low bit-rates, up to 0.2 bits per-pixel
per-channel (bppc). However, integrating this neural material de-
compression in current rendering pipeline and achieving real-time
performance requires access to the latest high-end hardware. More-
over, since the model from [VSW∗23] only learns the material in-
formation at fixed coordinates, it is essential to couple the neu-
ral decompression with a filtering operation [FWSP23] in order
to minimize flickering and aliasing artefacts. This introduces addi-
tional computational overhead as it entails decompressing multiple
samples per pixel.

In the following, we introduce a novel neural material rep-
resentation using Block-Compressed features (BCf) specifically
designed to be integrated into a traditional real-time rendering
pipeline at minimal computational overhead.

3. Neural Material Framework

A PBR material M is constituted of a set of properties. These prop-
erties are represented at a coordinate (u,v) by a vector of dimension
c. In a standard 3D application, this data is stored in a discrete fash-
ion through a texture of size w× h× c and mapped onto a 3D ob-
ject. At render time, this information is sampled from the textures
as follows:

F(M)(u,v,s) ∈ Rc, (2)

where F is a filtering operation and s is a scale value. The filtering
is essential here. It accounts for the misalignment and the differ-
ence in area between the screen pixel and its corresponding texels,
caused by the 3D object’s arbitrary distance and orientation. Our
neural material model aims at replacing the material textures with
a set of neural features containing abstract information and a de-
coder network. The role of the decoder here is to reconstruct the
material data at a given point and scale using the learned features.
Figure 3 gives an overview of our neural material framework.

Let {Tθ0 , . . . ,Tθn} be a set of neural features of size

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

</> </>

inference
shader

lighting
shader

1011011000...
weight buffer

compressed neural textures

(a) (b)

Figure 3: Overview of our neural material framework. (a) The neural features Tθi and the MLP fη are fitted through backpropagation to
match the filtered material F(M). (b) After training, the neural features Tθi are exported as mipmapped texture sets that can be sampled by
the engine and the weights η of the MLP are exported as a binary buffer. A shader is used to perform the MLP inference after trilinearly
sampling the neural texture, outputting the filtered material Gθ,η(u,v,s)≈F(M)(u,v,s). Finally, The renderer can perform the shading step
as usual.

(w0,h0,d0) , . . . ,(wn,hn,dn) with trainable parameters
{θ0, . . . ,θn}. And let fη be a fully connected neural network
of input size ∑

n
i=1 di and output size c with trainable parameters

η. To reconstruct the material information at a point (u,v) with
respect to a scale s, we sample each of the features, concatenate
the resulting values and pass it to the neural network as follow:

Gθ,η(u,v,s) = fη
(
Tθ0 (u,v,s) , . . . ,Tθn (u,v,s)

)
. (3)

In this framework, learning the material M boils down to optimiz-
ing θ and η such that:

θ̂, η̂ = argmin
θ,η

∥∥Gθ,η −F(M)
∥∥2

. (4)

This allows us to train a model such that it simulates a given filter-
ing operation. In practice, we use a batched stochastic gradient de-
scent to perform this optimization where the gradient is computed
on a batch of random values of (u,v,s). This leads us to minimize
the following loss:

∑
(u,v,s)∈B

∥∥Gθ,η(u,v,s)−F(M)(u,v,s)
∥∥2

. (5)

Once trained, we export the learned features as textures and store
the model’s weights in a binary buffer. At render time, the neural
textures and the weights are used to reconstruct the material in-
formation. To make neural materials more appealing, it is impor-
tant to reduce their memory footprint and to make their memory
size match the traditional material texture. There are two possi-
ble strategies here. The first one consists in using low bitrate and
low resolution neural features [VSW∗23]. However, this approach
leads to a more complex decoder architecture, making the material
reconstruction more computationally expensive. The second aims
at storing the neural features more efficiently by using a compres-
sion algorithm. We chose the latter and propose to store them in the
BC6 format as it is designed to handle floating point data and al-
lows for random-access. Additionally, these compressed features
can be handled like any traditional texture, which considerably
simplifies the neural material’s decoding at rendertime. However,
naively compressing the learned features at the end of the training

(a) psnr: 33.5 db (b) psnr: 27.4 db

Figure 4: Neural material reconstructed from (a) raw uncon-
strained neural features and (b) compressed ones. The naive com-
pression of the neural features will lead to artifacts severely affect-
ing the visual quality.

will lead to artifacts that severely impact the visual quality of the
reconstructed material (fig. 4). In order to tackle this issue, we pro-
pose a specific block compressed neural feature parameterization
that is compatible with the BC6 format.

4. Block Based Neural Features

In this section, we detail our block-based neural features. The goal
here is to be able to store the trained neural features as BC6 textures
without affecting the visual quality and use them in a real-time en-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 5 of 13

vironment. To do so, we structure the features in blocks of 4× 4
and define the parameters on a per-block basis (sec. 4.1). Then, we
design a forward pass that emulate the BC6 decompression (sec.
4.2) and takes advantages of hardware texture samplers (sec. 4.3).
This makes it possible to directly export the neural features as BC6
textures without the need for a subsequent compression step and
use them into real-time environment with a minimal computational
overhead.

4.1. Block parameterization

In the BC6 setting, an image is stored by encoding the endpoints
value for each 4× 4 block and indexing each pixel according to
its distance to the corresponding line segment (fig. 2). The dual
partition mode of BC6 divides the pixels inside each block into two
regions allowing for two lines segments per block.

We design the neural features to mimic this behaviour. Given
a feature layer Tθi of size w× h× 3, we force its values within a
block of size 4× 4 to lie on two lines segments. This is done by
design, we structure our block-based neural features by modeling
the parameter set θi such that each block of size 4× 4 is modeled
with

l1 = {e1,e2} ⊂ R3

l2 = {e3,e4} ⊂ R3

x = {x1, . . . ,x16} ⊂ [0,1]

, (6)

where l1 and l2 are two sets of endpoints for the first and second
line segments respectively and x pixel index represented as the rel-
ative position of each one of the sixteen pixels on the corresponding
line segment. To determine which pixel belongs to which segment,
we attach to each block an integer, k ∈ {0, . . . ,31}, linking to a bi-
nary mask of the corresponding partition. We refer the reader to
the DirectX BC documentation [D3D] for all the technical details
regarding the pre-defined partitions.

Reconstructing the material information (eq. 3) requires sam-
pling each neural feature Tθi at position (u,v) and scale s. This
consists of performing the BC6 decompression and then filtering
the corresponding value according to a certain strategy (fig. 5). In
order to train our block-based model, it is necessary to backprop-
agate through this decompression. Additionally, it is important to
choose a filtering strategy that does not incur additional computa-
tion overhead. The latter is crucial to be able to integrate our neural
material model in rendering pipelines.

4.2. Trainable BC6 decompression

In the two partition mode, a BC6 block stores two sets of quantized
endpoints, the pixel indices and a partition ID. The decompression
operation uses this data to recover back the original information
by mixing the endpoints proportionally with the index values. Ac-
cording to the BC6 standard specification [D3D], this operation is
non-linear and is done in three steps. First, the endpoints of each
block are unquantized as follow :

ei =
a216ei +215

2b , i = 1, . . . ,4. (7)

per-block feature
parameters BC features

backpropagable
BC6 decoding

19

1917

31

Figure 5: Evaluating Tθi at position (u,v) and scale s is done by
performing a BC6 decompression then filtering the result with re-
spect to the given scale. Our simulated BC6 decoding makes it pos-
sible to backpropagate through this operation and train the per-
block neural features.

Where a = 31/64 for the unsigned BC6 mode, a = 31/32 for the
signed BC6 mode and b is the number of bits used to quantize the
endpoints. This essentially maps the endpoint values into a valid
range. The second step consists in interpolating the endpoints lin-
early:

y = Pk ⊙ (e1 +2qx(e2 − e1))+¬Pk ⊙ (e3 +2qx(e4 − e3)), (8)

where Pk is the binary mask associated with partition k and q is the
number of bits used to quantize the pixel indices. This will give a
value y ∈ [−31743,31743] and whose bits are finally re-intrepreted
as a half precision number [iee19]. This cast is a non-linear trans-
formation that can be simulated with the following operation

w = 2h(y)−14
(y

1024
−h(y)

)
, (9)

where h(y) = max(⌊(y−1)/1024⌋−1,0).

Therefore, to simulate the hardware BC6 decompression for
each pixel within a block, we unquantize and mix the endpoints us-
ing eq. (7) and eq. (8), and finally simulate the bit re-interpretation
operation with eq. (9) resulting in the final value w. All these oper-
ations being almost-everywhere differentiable, it allow us to back-
propagate through the BC6 decompression, when the partitions are
fixed.

4.3. Hardware compliant filtering

In a real-time rendering context, sampling a texture at a particu-
lar scale is often done via mipmapping. This technique consists in
explicitly storing in memory a version of the texture at different
scales, also known as mip, and performing trilinear filtering. This
involves doing a texture lookup and bilinear filtering on the two
closest mipmap levels (one higher and one lower), and then lin-
early interpolating the results. In general, this approach stabilizes
sampling performance as it fixes the number of processed pixels
for each query independently of the scale values.

Since our goal is to integrate the neural material model in a real-
time environment, we propose to rely on trilinear interpolation to
filter the neural features Tθi . This makes it possible to exploit hard-
ware accelerated texture filtering to sample the corresponding neu-
ral textures during rendering. To do so, we consider that each fea-
ture layer Tθi is composed of a pyramid with Si block-based mips,

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

Figure 6: When sampling a feature at a scale level s, the block com-
pressed features are filtered using a trilinear interpolation. This re-
quires sampling the two closest mip levels ⌊s⌋ and ⌊s⌋+ 1 using a
bilinear interpolation than linearly mixing the results.

Tθi = {T 0
θi
, . . . ,T Si

θi
}, of decreasing sizes. Each block-based mip has

independent parameters that will be adjusted during the training
process. In this setting, the scale parameter s ∈ [0,Si] refers to the
level at which the features Tθi are sampled. This is done as follows:

Tθi(u,v,s) = λT ⌊s⌋+1(u,v)+(1−λ)T ⌊s⌋(u,v), (10)

where, λ = s−⌊s⌋ and T k
θi
(u,v) is the bilinear interpolation from

the kth block based mip at coordinates (u,v) (fig. 6).

5. Implementation details

In this section, we present all the practical details related to the
encoding and decoding of PBR material information with our block
based neural features.

5.1. Material encoding

Model structure In our implementation, we use 4 sets of neural
block-based features {Tθ0 ,Tθ1 ,Tθ2 ,Tθ3} with size wi = hi = 2ni . As
described in section 4.3, each Tθ0 consists of a pyramid with several
block-based mips of decreasing power of two sizes. We use a sim-
ple MLP with RELU activations as our decoder network and adjust
the size of the output according to the endcoded material.

Partition selection strategy As mentioned in section 4.2, we can
backpropagate through the simulated BC6 decompression only if
the partition IDs for each block are fixed. In order to maximise
the reconstruction quality, it is necessary to select the most optimal
partition for each block. However, choosing the one with the lowest
error during training is not straightforward. Indeed, the optimal val-
ues of l1, l2 and xi might vary significantly depending on which par-
tition k is considered. This means every-time the partition changes,
these parameters need to re-adapt to the new set of pixels resulting
in training instability. To overcome this issue, one approach would
be to learn in parallel all the parameters for each possible parti-
tion for each block. This is unpractical and would increase both
the memory and time needed to learn the material model. Instead
of that, we propose to consider the partitions as hyper-parameters,
and thus fix them before the training. Since randomly setting their
values would possibly lead to non-optimal partition attribution, we

therefore propose to learn the material model in two steps. First, we
perform a quick training using a set of features with unconstrained
parameters, i.e., move freely in 3D space and not constrained on a
line segment. Then, we initialize the block-based features by com-
pressing the unconstrained features with the BC6 algorithm. This
provides us both a partition selection strategy and a relevant ini-
tialization of the parameters within each block. In our experiments,
we train the model for 5k iterations with unconstrained parameters,
then use the result to initialise the block based features. While this
does not guarantee the selection of optimal partitions, we found
that it improves the reconstruction quality and consistency of the
results.

Reference material sampling In our experiments, we consider
reference materials with S mipmaps and sample them at random
during training by doing a bicubic filtering on the closest two mips
then linearly interpolating the results. More precisely, we process
batches of 512x512 uniformly sampled uv-grids, for each batch
we also sample a continuous scale parameter s uniformly in [0,S]
where S is the number of mipmap. Both the reference material and
the neural material (sec. 4.3) are then sampled at (u,v,s) and the
loss is computed as the mean squared error between them. For
more details on the training parameters, we refer to the results in
section 6.

5.2. Real-time Decoding

We export each trained feature layer as a mipmapped BC6 texture.
The block-based structure of these features simplifies this operation
as it only involves the quantization and encoding of the endpoints
and pixel indices with 6 bits and 3 bits respectively. The network’s
weights are stored directly in a binary buffer as fp16 values since
their size is negligible.

Multiple methods can be employed to integrate our model into
a real-time renderer. Our implementation is rather straightforward
and simply consists in loading the neural textures and weights in
GPU memory and proceed as follows (fig 3). First, we use the
partial derivatives of the input pixel’s uv coordinates to compute
the sampling scale si for each neural texture Tθi

si = log2 (max(|∂uv/∂u| , |∂uv/∂v|))+bi, (11)

where bi = log2 (max(hi/h,wi/w)) is a bias value that depends on
the neural texture’s and render resolutions, respectively wi ×hi and
w×h. Then, we sample each of the neural textures using the GPU’s
hardware filtering capabilities and pass the resulting values to the
decoding shader. Within this shader, the sampled values processed
through a sequence of functions that perform vector-matrix mul-
tiplications with the model’s weights and the return the material
information. When rendering a scene with multiple neural materi-
als, we store all the different networks weights in a single buffer
and use a material id value as an offset to access a specific model’s
weights. Finally, the pixel is shaded.

6. Results

6.1. Experimental setup

Evaluation dataset We gather a dataset of 19 materials from poly-
haven.com, 12 of which are accompanied with a 3D model. All of

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 7 of 13

Table 1: our Neural block-compressed feature configuration.

Tθ0 Tθ1 Tθ2 Tθ3

res mips res mips res mips res mips

BCf-0.5k 512 8 256 7 128 6 64 5
BCf-1k 1024 9 512 8 256 7 128 6
BCf-2k 2048 10 1024 9 512 8 256 7
BCf-2k++ 2048 10 2048 10 512 8 256 7

the material information consist of at least 9 channels that are stored
in a set of three textures : albedo, normals, and arm. The albedo
layer has 3 channels and contains the diffuse color information. The
normals layer has 3 channels and contains surface normals with re-
spect to a local tangent frame. In practice, our model learns the
x and y components since the z value can be reconstructed. The
arm layer has 3 channels and contains the ambient occlusion, sur-
face roughness and metalness parameters. 8 of the materials in the
dataset contains an additional displacement channel that is stored in
its own texture. Note that our model is not restricted to learn only
this specific material representation but can handle materials with
arbitrary number of layers.

Model configuration. In our experiments, our models consisted of
four mipmapped square shaped block compressed features. Table 1
details the resolution of each of the feature layers along with the
corresponding number of mips. Our decoder network consist of a
small MLP with 12 inputs and one hidden layer of dimension 16.
The output of the network depends on the number of channels in the
material texture set. For the rest of this paper, we will refer to our
model by the name of its block compressed features configuration
and the size of its network. For instance BCf-0.5K refers to the
model with a resolution of Tθ0 equal to 512.

Training parameters. We use the Adam stochastic gradient de-
scent algorithm [KB14] with an exponential decay learning rate
scheduler. We set a different learning rate for both the block com-
pressed features and the MLP in order to balance the gradient back-
propagation. We train the models for a total of 205k iterations
in two phases. In the first phase we train our model with uncon-
strained features for 5k iterations using learning rates of 5× 10−2

and 10−3 for the features and the MLP respectively, and a decay
parameter γ = 0.9995. The second phase starts by initializing the
block compressed features from unconstrained ones as described
in section 5.1. Then we train the model for 200k iterations using
a learning rate of 10−2 for the features and 10−3 for the MLP
with decay parameter γ = 0.9999. For reference, our BCf-1K re-
quires about 140 minutes to be trained for the 205k iteration on
an NVIDIA RTX2070 with our implementation using the PyTorch
library [PGM∗19]. Note that we observed that the model already
outputs decent results after 10k steps, in approximately 15 minutes.

Compared methods. We compare our method with standard
BC compression, ASTC [NLP∗12] and our implementation of
Vaidyanathan et al.’s NTC [VSW∗23]. Both BC and ASTC com-
pressed textures were generated using NVIDIA’s texture tools ex-
porter [NVI] with a compression quality set to the highest possible
setting. For BC compression, we used the BC5 format to store the

(a) psnr: 34.9 db (b) psnr: 34.7 db

Figure 7: Our training process comprises three stages: A warmup
stage (blue) with unconstrained neural features. The main training
stage (yellow) with Block-based features initialised from the result
of the previous stage. Finally, a finetune stage (green) the BC fea-
tures are quantized. The results at the end of the second stage (a)
and third stage (b) are visually identical.

normal layer and the BC1 for the rest for rest of the texture set (the
albedo, armand displacement textures when available). For ASTC,
we used a 12×12 blocks as it matches the size of our BCf-1K con-
figuration. In the context of our experiments, where the reference
material resolution is 2048×2048, the highest resolution of NTC’s
features grid of set to 512 for NTC0.2 and NTC0.5, and 1024 for
NTC1.0.

Considered metrics. Quantifying the visual quality of an image is
still an open problem as no metric can effectively align with human
perception. This is especially the case when the types of distortions
introduced by the compression methods are different. For instance,
traditional BC and ASTC methods tends to have more blocky arte-
facts while neural methods such as ours and NTC tend to exhibit
color shift and feature bleeding. For this reason we mainly rely
on the PSNR value as it is directly linked to the loss we are opti-
mizing. In this sense, the PSNR can be seen more as a proxy for
the method’s capacity to approximate the reference data and not
as a measure of visual quality. We also include SSIM [WBSS04]
and FLIP [ANA∗20] values as they are supposed to be more in
line with human perception. We compute our metrics for each mip
level and aggregate the values as described by Vaidyanathan et al.
in [VSW∗23].

6.2. Reconstruction quality

Block-compressed features. Figure 7 shows the evolution of the
PSNR value throughout the entire training. We start by training a
set of unconstrained embedding and use them to initialise the BC

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

Table 2: Evaluation of the reconstruction metrics (PSNR, SSIM and FLIP) on the whole dataset. For PSNR, we averaged the mean-squared
error over all the mips (as proposed in [VSW∗23]) and all the models then computed the PSNR.

BC ASTC12BCf–0.5K BCf–1K BCf–2K BCf–2K++ NTC0.2 NTC0.5 NTC1.0
1024 2048 1024 2048

PSNR (↑) 28.70 31.83 36.02 37.86 31.90 33.92 37.13 28.49 36.16 26.82 30.48
SSIM (↑) 0.85 0.90 0.95 0.96 0.89 0.92 0.93 0.84 0.96 0.78 0.89
FLIP (↓) 0.142 0.099 0.069 0.059 0.089 0.069 0.057 0.099 0.036 0.143 0.082

size (MB) 0.44 1.77 7.08 11.08 0.93 2.26 4.53 2.91 11.65 0.53 2.11

features at the 5000th iteration as stated in section 5.1. It is expected
that the PSNR value drops at this point since the network’s input
undergoes a change due to the alteration of the embeddings. The
BC constrained model is trained for 200K iterations, after which
we quantize the trained end-points and indices. Following this, we
freeze the values of the BC features and proceed with training for
1000 more iterations to fine-tune the network. Although quantizing
the trained features leads to a slight reduction in PSNR value, its vi-
sual impact is negligible. The material information reconstruction
from the raw unquantized fp16 block compressed features (fig. 7
(a)) and from the exported BC6 block features (fig. 7 (b)) are visu-
ally indistinguishable.

Visual Performance. We trained all our model configurations
against a reference 2K material and compared them to the meth-
ods mentioned in section 6.1. The results are gathered in table 2
and illustrated in figure 8. In these experiments, the texture set is
reconstructed using a regular uv grid aligning with the center of
pixels and the metrics are evaluated by comparing the result with
the reference 2K material. Our model outperforms standard BC and
ASTC textures as it does not exhibit blocky artifacts and is capable
of reconstructing sharper visuals with less memory (see fig. 9). It is
not surprising to see that the resolution of the neural features has a
direct impact on the capacity of the model to reconstruct the mate-
rial. The higher the resolution, the better the reconstruction. How-
ever, our model’s performance does not scale equally with the in-
crease in resolution and can output a slightly smoother result when
compared with NTC [VSW∗23] (see fig. 9). This is due to our min-
imalist neural architecture that relies on a very small MLP with one
hidden layer of size 16 and an input of size 12 to reconstruct a very
complex signal which is particularly well suited for real-time per-
formance. While naively increasing the size of the hidden layers
does improve the quality, it causes the inference time to increase in
a quadratic manner. We refer to the supplementary material for ad-
ditional experiments with larger networks and other configurations.

The main advantage of our approach with respect to NTC, is its
capacity to output filtered material information. This is particularly
important since, in a 3D environment, material texture sets are al-
most never perfectly aligned with the screen’s pixel. The misalign-
ment between the 3D object and the viewport, along with changes
in distance, results in the material being sampled at random points
within the uv domain and across continuous scales. NTC cannot
handle this in a straightforward manner since it is trained by con-
sidering a fixed uv grid and lod values. For instance, in fig. 10, we

Figure 8: Reconstruction PSNR versus size in megabytes (MB) for
all the methods presented in table 2.

compare our method to NTC by evaluating the result while con-
stantly changing the lod value. It shows that NTC’s performance
is not stable when opting to reconstruct the material with 1 sample
per pixel (spp) and requires to be paired with a filtering operator. In
this case, a bilinear or trilinear filtering is not suited for real-time
rendering as it requires decoding multiple samples per pixel. While
temporal stochastic filtering can mitigate this issue, its reconstruc-
tion quality is dependant on several factors (jittering pattern, noise
distribution, accumulation policy, etc) and does result in a smoother
reconstruction in motion (fig. 11). Our approach, on the other hand
does not require any filtering and is capable to reconstruct the ma-
terial texture with 1spp. Moreover, the values outputted by our de-
coder remains stable across time (fig. 11) and mip levels (fig. 10)
and can even handle extreme magnifications (fig. 12) . This is not
surprising since our model is trained to emulate a continuous filter-
ing operation. In this case our network plays the role of a decoder
and a filter at the same time.

6.3. Decoding performance

In order to better illustrate the computational overhead of our neural
material model, we rendered a textured full-screen quad at 1080p,
1440p and 2160p (4K). We then compared the total rendering time
of our BCf–1K with rendering times obtained using the same setup
but with standard BC textures. The results are presented in table 3.
They clearly show that our method is well suited for real-time envi-
ronments as the computational overhead on a 4K resolution is only
0.6ms for a full 4K screen. The small computational overhead is
a direct consequence of our block compressed neural features. Ex-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 9 of 13

D
if
fu
se

N
or
m
al

A
R
M

BCf-1k
1.77MB

NTC 0.5
2.26MB

Reference 2k
32MB

ASTC 12x12
1.89MB

BC 1024
2.67 MB

33.88 dB

34.41 dB

33.81 dB 34.58 dB

33.04 dB

34.85 dB

35.09 dB

32.86 dB

31.51 dB

32.41 dB

31.62 dB

30.27 dB

Figure 9: Close-up crop of the Ukulele’s material texture set. Comparison between ASTC, BC, our BCf-1K, NTC0.5 methods and the
reference 2K material.

Figure 10: Evolution of the PSNR reconstruction metric over the
scales on the Ukulele’s material.

porting these features as BC6 textures makes their memory foot-
print small which makes it possible to increase their resolution.
This allows us to rely on a very small and fast decoder network
to reconstruct the material. More importantly, it enables the use
of hardware texture filtering operations to sample the features at
render-time which minimizes the overhead.

6.4. Quantization vs. Compression

As mentioned in section 3, there are two possible strategies that
can be adopted when it comes to storing the learned neural features
with fewer bits. We can either quantize their values or maintain
them at a high bitrate and compress them. Both approaches are not
straightforward to implement. Simply reducing the number of bits
downgrades quality. This can be mitigated by increasing features’s

Table 3: Average time to render a textured full-screen quad using
an NVIDIA RTX2070.

BCf-1K
BC Textures

total time neural overhead

1080p 0.376 ms 0.555 ms 0.179 ms
1440p 0.614 ms 0.924 ms 0.310 ms
2160p 1.684 ms 2.324 ms 0.640 ms

dimension but requires reducing the resolution to maintain man-
ageable memory usage. For instance, it is possible to match the
size of our BCf-1K profile with features of 4 channels quantized
with two bits, or by dividing their resolution by two and increas-
ing the number of channels to 8 and quantizing with 4 bits. Figure
13 plots the PSNR values of these configuration for the ukulele
model and shows that, when pairing the features with a small net-
work, it is more beneficial to have high bitrate features that are
compressed than high dimensional low bitrate values. On average,
at equal resolution, neural features with 3 channels stored accord-
ing to be BC6H format performs similarly to ones with 5 channels
and quantized with 4 bits resulting in a memory reduction of 40%
(fig. 14). Increasing the number of channels and increasing the res-
olution without increasing the complexity of the network is not a
viable strategy. The resolution of the features has a major impact
on the reconstruction quality that cannot be compensated by in-
creasing the number of channels and more importantly the larger
input will overwhelm the small network and impact the result in
a negative way. A larger network and more complex architecture
are, thus, needed to fully take advantage of the higher number of
input features and compensate for the lower resolution and bitrate
as demonstrated by Vaidyanathan et al. [VSW∗23].

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

R
ef

er
en

ce
 2

k
bi

li
ne

ar
N

T
C

0.
5

no
 fi

lt
er

N
T

C
0.

5
st

oc
ha

st
ic

B
C
f-

1K
no

 fi
lt

er

Diffuse Normal ARM Values of various channels at point P when subjected to a sub-pixelic uv motion

uv motion
PPP

30.96 dB31.62 dB

33.88 dB 34.06 dB

31.73 dB

32.94 dB

33.15 dB 31.84 dB 34.27 dB

Figure 11: Close-up crop of the reconstruction of the Ukulele’s material when subject to a circular motion. We also track the values of each
channel throughout time at point P. NTC is not stable when it is evaluated center of the pixel and requires some filtering which smoothen the
result. Our approach does not require any filtering and output values that are stable temporally.

BCf-2KNTC 1.0 NTC 1.0
StochiasticNo Filter No Filter Bilinear

Reference 2k

30.42 (dB) 32.84 (dB) 36.29 (dB) 10X Zoom

Figure 12: Reconstuction the Ukulele’s texture set with 10× mag-
nification. Without any filtering NTC exhibit blocky artifacts and
high frequency noise. Pairing it with a stochiastic filter will yield a
smoother result. Our model can handle this without any filtering.

6.5. Impact of BC partition selection

By design, the introduced BC6 constraints restrain the model capa-
bility compared to unconstrained features. The more the partition
shape is aligned with the content of the data in a 4× 4 block, the
better the compression. Thus randomly selecting the partitions or
forcing a static one is not optimal and will lead to lower reconstruc-
tion performance. Figure 15 shows that by initializing the partitions
from pre-trained unconstrained neural features, as discussed in sec-
tion 5.1, yields better result in the long run. In general, the warmup
stage is not required to be long. We found that usually 5K iterations
are sufficient for the shape of the unconstrained features to stabilise
resulting in more suitable partitions. On our hardware, this takes up
to 3 minutes.

7. Limitations and Future Work

In this section we discuss some of the limitations of our neural
material model and offer avenues for future work.

Reconstruction artifacts Our reconstructed material can experi-
ence layer bleeding and color shift. Since our model is exploit-
ing correlation between the channels and projecting the data into
a smaller dimensional space, we believe these artifacts occur when
there is small correlation or their absolute values are too divergent.
In addition, the use of a decoding network consisting of only one
hidden layer makes our model struggle with reconstructing and sep-
arating the data from the material layer. Even increasing the net-
work size is hardly an option considering the potential overhead. It
should be possible to overcome these issues by designing a decoder
network that separates the reconstruction of uncorrelated layers. In
addition to that, we could learn a tone mapping operator to map
each output to the corresponding values. The challenge here, is to
keep the decoding network small in order to maintain real-time per-
formance, so we leave this to future work.

Higher quality reconstruction Depending on the profile, our
model may struggle to learn high-frequency details which results in
a slightly over-smooth reconstruction. This is a direct consequence
of having neural features with only 3 channels and a very small
decoder network, which prevent the effective use of positional en-
coding that could have contributed additional high frequency infor-
mation as shown in [VSW∗23]. Increasing the number of channels
is key here. However, it is not straightforward in the context our BC
neural features as the BC6H format is only capable of compressing
RGB images. One way to overcome this is to group the high dimen-
sional features into sets of 3 and process them independently. In this
context, our BCf-2k++ configuration can be seen as one where we
have three neural layers where the first one has 6 channels.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 11 of 13

size (MB)

P
S

N
R

 (
dB

)

2

4

6

2

4

6

2

4

6

2

4

6
8

2

4

6 8

BCf-1K

Figure 13: The reconstruction performance of the Ukulele’s ma-
terial using neural features with various number of channels and
quantization rate versus Block Compressed ones. The quantization
rate is written in white.

Reference 2k
42.7MB

BCf-1K
1.77MB

1024 | 5ch | 4b
4.43MB

512 | 8ch | 4b
1.77MB

32.0dB 33.8dB 34.3dB

31.5dB 34.1dB 33.9dB

Figure 14: Texture set reconstruction obtained with neural features
of various configurations. Our BCf-1K configuration matches up
visually with neural features of dimension 5 and quantized on 4
bits while being 40% smaller in size.

Faster material encoding In this current version, our PyTorch im-
plementation of the training pipeline requires about 140 minutes for
200K iteration steps. For now, we mainly focused on designing a
model with a fast decoder which is critical for real-time applica-
tions such as video games. Reducing the training time is equally
important as it is key in making such methods less computation-
ally intensive and more practical in dynamic environments where
the assets keep changing. There are several avenues that we can em-
ploy to improve on this. For instance, it is possible to train a generic
encoder to initialize the embedding from the reference material in
order to have a better starting point and train for fewer iterations as
in [ZRW∗23]. Additionally, we could improve the sampling strat-
egy during training and sample only where it matters. This could
also have an impact on the visual quality as the network will focus
on minimizing the errors only where it matters.

Simulating more complex filtering Even with simple MLP de-
coders, our architecture is able to emulate simple texture filtering
operations such as bilinear and bicubic filtering. We believe that
this idea can be explored further by training models to emulate
more elaborate filtering operations. For instance it would be possi-

Figure 15: Initializing the partitions of the neural BC feature from
a set of unconstrained features yields better result in the long run.
After 50k iterations, our initialisation heuristic is ahead by 1 PSNR
unit compared to a randomized initialisation.

ble to sparsely sample the neural textures in an anisotropic manner,
i.e., along the major ellipse axis, and train them against a high den-
sity anisotropic filtered ground truth. This would make it possible
to emulate high quality anisotropics filtering with few samples.

8. Conclusion

This work introduces a novel block-compressed feature layer along
with a continuous neural material encoding framework. This al-
lows us to design an encoding and a decoding method that fits well
within the real-time rendering pipeline constraints. We demonstrate
the ability of our method to compress PBR materials efficiently and
decompress them in real-time in a shader on consumer-level hard-
ware. By taking into account memory and time constraints, and by
taking advantage of existing hardware operations, we make neural
textures usable at large scale in a real-time rendering pipeline, such
as a video game engine. We hope that our work could serve as a
starting point for future work and open the door for more complex
use cases, such as learning directional materials or more complex
filtering.

Acknowledgements

We thank Dr. Heqi Lu for all the discussions and advice and Ar-
naud Schoentgen for proofreading the paper. We also thank all the
anonymous reviewers for their insightful comments.

References

[AMHH18] AKENINE-MLLER T., HAINES E., HOFFMAN N.: Real-
Time Rendering, Fourth Edition, 4th ed. A. K. Peters, Ltd., 2018. 2

[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-
KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3, 2 (2020), 15:1–15:23. 7

[AVAB∗19] ALAKUIJALA J., VAN ASSELDONK R., BOUKORTT S.,
BRUSE M., COMS, A I.-M., FIRSCHING M., FISCHBACHER T., KLI-
UCHNIKOV E., GOMEZ S., OBRYK R., ET AL.: Jpeg xl next-generation
image compression architecture and coding tools. In Applications of
Digital Image Processing XLII (2019), vol. 11137, SPIE, pp. 112–124.
2

[BMS∗18] BALLÉ J., MINNEN D., SINGH S., HWANG S. J., JOHNSTON
N.: Variational image compression with a scale hyperprior. In Interna-
tional Conference on Learning Representations (2018). 2

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

12 of 13 C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features

[CDF∗86] CAMPBELL G., DEFANTI T. A., FREDERIKSEN J., JOYCE
S. A., LESKE L. A., LINDBERG J. A., SANDIN D. J.: Two bit/pixel
full color encoding. In ACM SIGGRAPH conference proceedings (1986),
vol. 20. 2

[CLS∗23] CHEN Z., LI Z., SONG L., CHEN L., YU J., YUAN J., XU
Y.: Neurbf: A neural fields representation with adaptive radial basis
functions. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (2023), pp. 4182–4194. 3

[CRSL22] CHNG S.-F., RAMASINGHE S., SHERRAH J., LUCEY S.:
Gaussian activated neural radiance fields for high fidelity reconstruc-
tion and pose estimation. In European Conference on Computer Vision
(2022), Springer, pp. 264–280. 3

[CSTK20] CHENG Z., SUN H., TAKEUCHI M., KATTO J.: Learned im-
age compression with discretized gaussian mixture likelihoods and atten-
tion modules. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2020), pp. 7939–7948. 2

[CXW∗23] CHEN A., XU Z., WEI X., TANG S., SU H., GEIGER A.:
Dictionary fields: Learning a neural basis decomposition. ACM Trans.
Graph. (2023). 3

[D3D] Texture block compression in direct3d 11. https://learn.
microsoft.com/fr-fr/windows/win32/direct3d11/
texture-block-compression-in-direct3d-11. Ac-
cessed: 2023-09-28. 2, 5

[DNSD22] DATTA S., NOWROUZEZAHRAI D., SCHIED C., DONG Z.:
Neural shadow mapping. In ACM SIGGRAPH 2022 Conference Pro-
ceedings (2022), pp. 1–9. 1

[Fen22] FENG X.: Real-time cluster path tracing for remote rendering.
In ACM SIGGRAPH 2022 Courses (2022). 1

[FWH∗22] FAN J., WANG B., HAŠAN M., YANG J., YAN L.-Q.: Neural
layered brdfs. In Proceedings of SIGGRAPH 2022 (2022). 2

[FWSP23] FAJARDO M., WRONSKI B., SALVI M., PHARR M.:
Stochastic texture filtering, 2023. arXiv:2305.05810. 3

[HdR23] HILLAIRE S., DE ROUSIER C.: Authoring materials that mat-
ters - substrate in unreal engine 5. In ACM SIGGRAPH 2023 Courses
(2023). 2

[HMB∗20] HILL S., MCAULEY S., BELCOUR L., EARL W., HAR-
RYSSON N., HILLAIRE S., HOFFMAN N., KERLEY L., PATRY J.,
PIEKÉ R., ET AL.: Physically based shading in theory and practice.
In ACM SIGGRAPH 2020 Courses. 2020, pp. 1–12. 2

[iee19] Ieee standard for floating-point arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008) (2019), 1–84. 5

[INH99] IOURCHA K., NAYAK K., HONG Z.: System and method for
fixed-rate block-based image compression with inferred pixel values,
1999. 2

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 7

[KMX∗21] KUZNETSOV A., MULLIA K., XU Z., HAŠAN M., RA-
MAMOORTHI R.: Neumip: Multi-resolution neural materials. Trans-
actions on Graphics (Proceedings of SIGGRAPH) 40, 4 (July 2021). 3

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive into nanite
virtualized geometry. In ACM SIGGRAPH 2021 Courses (2021). 2

[KWM∗22] KUZNETSOV A., WANG X., MULLIA K., LUAN F., XU Z.,
HASAN M., RAMAMOORTHI R.: Rendering neural materials on curved
surfaces. In ACM SIGGRAPH 2022 conference proceedings (2022),
pp. 1–9. 3

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
Trans. Graph. 41, 4 (July 2022), 102:1–102:15. 3

[MHH∗12] MCAULEY S., HILL S., HOFFMAN N., GOTANDA Y.,
SMITS B., BURLEY B., MARTINEZ A.: Practical physically-based
shading in film and game production. In ACM SIGGRAPH 2012 Courses
(2012). 2

[MHM∗13] MCAULEY S., HILL S., MARTINEZ A., VILLEMIN R.,
PETTINEO M., LAZAROV D., NEUBELT D., KARIS B., HERY C.,
HOFFMAN N., ZAP ANDERSSON H.: Physically based shading in the-
ory and practice. In ACM SIGGRAPH 2013 Courses (2013). 2

[MMT23] MAGGIORDOMO A., MORETON H., TARINI M.: Micro-mesh
construction. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–18.
2

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. 3

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OL-
SON T.: Adaptive scalable texture compression. In Proceedings
of the Fourth ACM SIGGRAPH/Eurographics Conference on High-
Performance Graphics (2012), pp. 105–114. 3, 7

[NVI] NVIDIA: Nvidia texture tools exporter. URL: developer.
nvidia.com/nvidia-texture-tools-exporter. 7

[OLK∗21] OUYANG Y., LIU S., KETTUNEN M., PHARR M., PANTALE-
ONI J.: Restir gi: Path resampling for real-time path tracing. In Computer
Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 17–29. 1

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
DESMAISON A., KOPF A., YANG E., DEVITO Z., RAISON M., TE-
JANI A., CHILAMKURTHY S., STEINER B., FANG L., BAI J., CHIN-
TALA S.: Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 2019, pp. 8024–8035. 7

[RJGW19] RAINER G., JAKOB W., GHOSH A., WEYRICH T.: Neural
btf compression and interpolation. In Computer Graphics Forum (2019),
vol. 38, Wiley Online Library, pp. 235–244. 3

[SP23] SHIN S., PARK J.: Binary radiance fields. arXiv preprint
arXiv:2306.07581 (2023). 3

[SRRW21] SZTRAJMAN A., RAINER G., RITSCHEL T., WEYRICH T.:
Neural brdf representation and importance sampling. In Computer
Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 332–346. 2

[TSM∗20] TANCIK M., SRINIVASAN P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI
R., BARRON J., NG R.: Fourier features let networks learn high
frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems 33 (2020), 7537–7547. 3

[TTM∗22] TEWARI A., THIES J., MILDENHALL B., SRINIVASAN P.,
TRETSCHK E., YIFAN W., LASSNER C., SITZMANN V., MARTIN-
BRUALLA R., LOMBARDI S., ET AL.: Advances in neural rendering.
In Computer Graphics Forum (2022), vol. 41, Wiley Online Library,
pp. 703–735. 3

[TZN19] THIES J., ZOLLHÖFER M., NIESSNER M.: Deferred neural
rendering: Image synthesis using neural textures. Acm Transactions on
Graphics (TOG) 38, 4 (2019), 1–12. 2

[VSW∗23] VAIDYANATHAN K., SALVI M., WRONSKI B., AKENINE-
MÖLLER T., EBELIN P., LEFOHN A.: Random-Access Neural Com-
pression of Material Textures. In Proceedings of SIGGRAPH (2023). 2,
3, 4, 7, 8, 9, 10

[Wal92] WALLACE G.: The jpeg still picture compression standard. IEEE
Transactions on Consumer Electronics 38, 1 (1992), xviii–xxxiv. 2

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.: Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 4 (2004), 600–612. 7

[WNK22] WRIGHT D., NARKOWICZ K., KELLY P.: Lumen: Real-
time global illumination in unreal engine 5. In ACM SIGGRAPH 2022
Courses (2022). 1

[XWH∗23] XU B., WU L., HAÅ¡AN M., LUAN F., GEORGIEV I., XU
Z., RAMAMOORTHI R.: Neusample: Importance sampling for neural
materials. In ACM SIGGRAPH 2023 Conference Proceedings (2023). 2

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://learn.microsoft.com/fr-fr/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://learn.microsoft.com/fr-fr/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://learn.microsoft.com/fr-fr/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
http://arxiv.org/abs/2305.05810
developer.nvidia.com/nvidia-texture-tools-exporter
developer.nvidia.com/nvidia-texture-tools-exporter

C. Weinreich & L. De Oliveira / Real-Time Neural Materials using Block-Compressed Features 13 of 13

[ZRW∗23] ZELTNER T., ROUSSELLE F., WEIDLICH A., CLARBERG P.,
NOVÁK J., BITTERLI B., EVANS A., DAVIDOVIČ T., KALLWEIT S.,
LEFOHN A.: Real-time neural appearance models. In Proceedings of
SIGGRAPH (2023). 2, 3, 11

[ZZW∗21] ZHENG C., ZHENG R., WANG R., ZHAO S., BAO H.: A
compact representation of measured brdfs using neural processes. ACM
Transactions on Graphics (TOG) 41, 2 (2021), 1–15. 2

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

