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Figure 1: The Dam Break scenario simulated by our scheme, realistic rendering(top), streamline(down).

Abstract
In this paper, we propose a novel second-order explicit midpoint method to address the issue of energy loss and vorticity
dissipation in Eulerian fluid simulation. The basic idea is to explicitly compute the pressure gradient at the middle time of
each time step and apply it to the velocity field after advection. Theoretically, our solver can achieve higher accuracy than
the first-order solvers at similar computational cost. On the other hand, our method is twice and even faster than the implicit
second-order solvers at the cost of a small loss of accuracy. We have carried out a large number of 2D, 3D and numerical
experiments to verify the effectiveness and availability of our algorithm.

CCS Concepts
• Computing methodologies → Physical simulation;
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1. Introduction

Benefited from the pioneering work of [FM97] and [Sta99], Eule-
rian based fluid simulation has achieved great success in the graph-
ics community. They introduced the advection-projection scheme
of [CMM90], and used the semi-Lagrangian method to solve the
nonlinear advection term, resulting in an unconditionally stable
fluid solver. But this also introduces two serious problems, one is
the numerical dissipation caused by the semi-Lagrangian advec-
tion, and the other is the energy loss caused by the pressure projec-
tion.

In the past few years, a lot of work [KLLR05] [SFK*08]
[QZG*19] has been proposed to address the first issue. But with re-
spect to the second problem, even if an accurate advection scheme
is used, the overall solution accuracy is not good enough[MCP*09]
[ZBG15], which manifests as the rapid dissipation of vorticity and
the artificial viscosity of fluid motion. The key reason is that all
these methods actually employ a first-order treatment of the pres-
sure gradient term.

In order to solve the issue mentioned above, [ZNT18] proposed
the reflection solver, which can be interpreted as an implicit mid-
point method for the pressure gradient term[NZT19]. But it needs
an additional Poisson solution at the middle time, resulting in twice
the time cost of traditional first-order methods.

In this work, we propose a velocity solution scheme with full
second-order time accuracy and low computational overhead. This
scheme accurately considers the influence of pressure gradient on
fluid motion, and combines with the advanced advection scheme to
obtain a full second-order result. In short, we simplify the reflection
solver and consider the influence of pressure gradient on velocity
with the idea of second-order explicit midpoint time integration, as
shown in Fig. 2. Theoretically, doing this can avoid the expensive
multiple calls of Poisson solver while retaining the second-order
time accuracy.

To sum up, our paper has the following contributions:

• We propose a second-order explicit midpoint method to exert
the influence of pressure gradient on the velocity field to reduce
the energy loss caused by projection process. The computational
overhead of our method is comparable to the first-order methods
and twice and even faster than the implicit second-order solver.

• In order to get more accurate pressure value, we introduce the in-
cremental pressure projection methods in CFD to explicitly cal-
culate and save the pressure, advance it with time, and correct it
at the end of each time step;

At the same time, our scheme is purely Eulerian, which is com-
pletely parallel. And it is orthogonal to the existing framework,
hence can be integrated into it with minor modifications.

2. Related Work

Reviewing the Eulerian fluid simulation in the graphics community
can not ignore the pioneering work of [FM97] and [Sta99], who
introduced 1) staggered grid [HW65] 2) Chorin-style advection-
projection scheme[Cho68] 3) semi-Lagrangian advection [SC91]
into the graphics community. This brings stability, but also intro-
duces the famous and huge numerical dissipation, which will lead

to the reduction of fluid energy and the rapid loss of fluid de-
tails such as rotational motion. As mentioned above, there are two
main reasons: one is the numerical dissipation caused by the semi-
Lagrangian advection, and the other is the energy loss caused by
the pressure projection. In the past 20 years, a lot of work has been
done to improve these defects, we will make a brief review here.

Higher-order advection methods. The error caused by semi-
Lagrangian advection is generally considered to be the main reason
of the above phenomenon. The improvement of the advection term
is mainly divided into two parts over time. On the one hand, many
people continue to improve the grid based advection. For example,
[KLLR05] introduced the idea of back and forth error compensa-
tion and correction methods (BFECC)[DL03] into advection, and
expect to use the first-order semi-Lagrangian construction module
to construct the second-order advection algorithm; [SFK*08] im-
proved the efficiency of BFECC to reduce the computational over-
head without losing its accuracy. [QZG*19] introduced the method
of characteristic mapping (MCM) and showed high advection ac-
curacy in their experiments. On the other hand, a lot of work has
turned to the hybrid grid particle method, which has more advan-
tages in dealing with advection. According to [Bri15], this can
be traced back to the work of Los Alamos National Laboratory
in the early 1950s, it uses particles to deal with the kinematic
properties of fluid, and hands over the mechanical calculation to
the grid, which named as particle-in-cell (PIC). Many subsequent
works continue this idea. [ZB05] improved the transmission pro-
cess from direct sampling to incremental updating, which greatly
reduced the numerical dissipation of PIC, but also introduced some
noise. The work of [JSS*15] proved that even incremental updat-
ing greatly lost the motion information of fluid, so they developed
a series of methods to solve this problem, such as APIC[JSS*15]
and PolyPIC[FGG*17].

Energy conservation. Independent of the improvement of the ad-
vection algorithm, a lot of work turn to the projection process. This
is due to the discovery of [ETK*07] and [ZBG15] that even if
the high-order advection scheme is used, the projection step will
still removes energy from fluid. Around this problem, [SU94] and
[FSJ01] calculated a force that does not exist in practice to confine
the vorticity. [MCP*09] applied the influence of pressure on fluid
motion in the form of implicit Crank-Nicolson-style, which need an
expensive nonlinear Newton solver. In contrast, [ZNT18] approxi-
mate their idea in a simpler way, they consider the effect of pres-
sure on the fluid by using a reflection operation at the middle time,
which is more like the idea of implicit midpoint method[NZT19].

Vortex methods. In addition to the fluid simulation based on ve-
locity, the vortex method is very useful in maintaining the rotat-
ing motion of the fluid. But it uses vorticity instead of velocity to
represent the fluid, which brings difficulties to the large-scale ap-
plication of the industry. Since our method does not belong to the
vortex method, we will only list some interesting work here. Such
methods include [SRF05]; [PK05]; [ZB14]; [Ang17]; [PCK*19];
[YXZ*21] and so on.

3. Theory

In this part, we will first make a simple review of the first-order
advection-projection solver and second-order reflection solver in
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Table 1: Physical quantities and symbols

Symbols Meaning

un,un+1/2,un+1 Fluid velocity field
ũn+1/2, ũn+1 Intermediate fluid velocity field after advection

ûn+1/2 Intermediate fluid velocity field after reflection
pn, pn+1 Fluid pressure field

p̃n+1 Intermediate fluid pressure field after advection

∇p̃n+1/2
exp

Intermediate pressure gradient field
by explicitly estimate

∇p̃n+1/2
imp

Intermediate pressure gradient field
by implicitly calculate

φ
n+1 Pressure increment field obtained by projection

Sec. 3.1 and Sec. 3.2 respectively. And then the basic idea of our
second-order explicit solver is presented in Sec. 3.3. Finally, more
details of our algorithm are discussed in Sec. 3.4 - 3.5. For the
sake of clarity, the physical quantities used in this paper and their
symbols are as shown in Tab. 1.

In the following analysis, we use Taylor vortex as an intuitive
case to help illustrating the basic ideas of various solvers, including
ours, as shown in Fig. 2. Considering a specific point x (red dot) at
time step n + 1 in the flow field, its position at last time step n
can be achieved by a backward mapping Ψ(x;un,∆t)(blue dot), as
illustrated in Fig. 2(b).

Figure 2: An intuitive interpretation of various solvers: (a) Veloc-
ity field of Taylor vortex; (b) Take position x at time step n+ 1 as
an example; (c) Advection; (d) An implicit first-order treatment of
the pressure gradient term; (e) The reflection solver is actually an
implicit second-order method which requires an additional call of
Poisson solver; (f) Our method greatly reduces the computational
overhead while maintaining the second-order accuracy.

3.1. Advection-Projection Solver

For the incompressible Navier-Stokes equations, if we do not con-
sider the fluid viscosity and external force, they degenerate into the
following form:

∂u
∂t

+u ·∇u =− 1
ρ
∇p

∇·u = 0
(1)

where u, p,ρ represent velocity, pressure and density respectively.
Spatially, we use the standard MAC grid discretization, and in time,
the advection-projection method [Sta99] discretizes Equ. 1 into two
main steps: advection A and projection P .

The advection step A solves the advection term in the Navier-
Stokes equation, but ignores the non divergence constraint to ob-
tain an intermediate velocity field ũn+1(x) = un(Ψ(x;un,∆t)), as
shown in Fig. 2 (c). This step usually pulls the velocity field into
a divergent space. Then the projection step P is to enforce the non
divergence constraint and maintain mass conservation, as shown in
Fig. 2 (d), which is actually a Helmholtz-Hodge decomposition.

un+1 − ũn+1

∆t
=− 1

ρ
∇pn+1 (2)

Note that in this solver, the effect of pressure gradient on veloc-
ity is only considered in the backward Euler integral scheme, like
Equ. 2, which is only first-order time accuracy. As [ETK*07] and
[ZBG15] found, doing this significantly reduces the kinetic energy
of the fluid, resulting in the rapid loss of fluid details such as vortex
motion.

3.2. Second-Order Implicit Solver

To address above issue, [ZNT18] proposed a reflection solver,
which can be interpreted as an implicit midpoint time integration
scheme[NZT19]. That is, for the pressure gradient term, replace
∇pn+1 in Equ. 2 with ∇p̃n+1/2

imp to get Equ. 3:

un+1 − ũn+1

∆t
=− 1

ρ
∇p̃n+1/2

imp (3)

Algorithm 1: Reflection solver (one time step)

Input: Original velocity: un

Output: Updated velocity: un+1

1 ũn+1/2 =A(un;un,∆t/2) ▷ Advect velocity
2 un+1/2 = P(ũn+1/2) ▷ First projection
3 ûn+1/2 = 2un+1/2 − ũn+1/2 ▷ Reflection
4 ũn+1 =A(ûn+1/2;un+1/2,∆t/2) ▷ Advect velocity
5 un+1 = P(ũn+1) ▷ Second projection

The pseudo code of reflection solver is as shown in Alg. 1, the
first projection step implicitly calculates the pressure gradient ap-
proximation at the middle time (line 2), and the reflection operation
applies it to the velocity field for the whole time step (line 3). At
the same time, in order to strictly meet the incompressible condi-
tion at the end of each time step, an additional projection operation
is performed at the end (line 5).
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However, as mentioned above, the reflection solver needs to call
the Poisson solver twice (line 2 and 5 in Alg. 1), which almost
double the time cost of the traditional first-order scheme.

3.3. Our Second-Order Explicit Solver

In order to avoid the extra computational overhead caused by the
implicit method and maintain the second-order time accuracy, we
choose to estimate the pressure gradient at the middle time explic-
itly, and obtain our second-order explicit midpoint time integration
scheme for the pressure gradient term, as shown in Equ. 4.

un+1 − ũn+1

∆t
=− 1

ρ
∇p̃n+1/2

exp (4)

So we need to find a way to explicitly estimate ∇p̃n+1/2
exp . In nu-

merical calculations, if we want to advance a fluid variable (∇p)
over time explicitly, just find its time derivative ∂(∇p)

∂t . In the Eu-
lerian fluid simulation, for each grid point, the change of pressure
gradient with time is composed of two parts: one is caused by ad-
vection, the other is the pressure increase caused by the current grid
fluid inflow or the pressure decrease caused by fluid outflow. The
latter is expressed by f (x, t), which is a function of spatial position
x and time t, so the above change can be written in the form of
Equ.5:

∂(∇p)
∂t

=−u ·∇(∇p)+ f (x, t) (5)

For explicit advancing, we fit the first term in Equ.5 as the ap-
proximate rate of change of pressure gradient, that is, advect ∇pn

to n+1/2 to get our simple approximation of ∇p̃n+1/2
exp . The pseudo

code of the above process is shown in Alg. 2(G represents calculate
gradient). Compared with the implicit(reflection) method, this will
cost some accuracy, which is caused by the existence of the second
term and the error of the advection operation itself, but our numer-
ical experiments (Sec. 4.4) show that it is small enough and can be
exchanged for twice or more efficiency improvements (Sec. 4.1).

Algorithm 2: Estimate ∇p̃n+1/2
exp with right order

Input: Original pressure: pn

Output: Intermediate pressure gradient: ∇p̃n+1/2
exp

1 ∇pn = G(pn) ▷ Calculate gradient

2 ∇p̃n+1/2
exp =A(∇pn;un,∆t/2) ▷ Advect gradient

Algorithm 3: Estimate ∇p̃n+1/2
exp with wrong order

Input: Original pressure: pn

Output: Intermediate pressure gradient: ∇p̃n+1/2
exp

1 p̃n+1/2 =A(pn;un,∆t/2) ▷ Advect pressure

2 ∇p̃n+1/2
exp = G(p̃n+1/2) ▷ Calculate gradient

Figure 3: Estimate ∇p̃n+1/2
exp with wrong order(left), the results

obtained have only first-order accuracy, our scheme can obtain
second-order accuracy(right).

It should be emphasized that if first advect ∆t/2 to get pn+1/2

and then calculate its gradient, it is different from the above pro-
cess. The latter (Alg. 3) is hardly helpful to improve the velocity
accuracy, e.g. Fig. 3. This is because the pressure gradient after ad-
vection carries direction information, which is very important to
improve the accuracy of the solution, as shown in Fig. 4.

Figure 4: (a) A simplified original pressure field conforming to
pressure gradient distribution(the number represents the pressure
distribution); (b) Pressure field after advection, if we first advect
the pressure and then calculate its gradient, it will lose the key di-
rection information; (c) We apply the pressure gradient at n+1/2
(Ψ(x;un,∆t/2), marked by the green particle) to the velocity field.
Equivalent to advect original pressure gradient field to n+1/2.

To sum up, we get our algorithm as in Alg. 4. And we will ex-
plain line 4 and line 7 of Alg. 4 in Sec. 3.4.

Algorithm 4: Our solver(one time step)

Input: Original velocity and pressure: un, pn

Output: Updated velocity and pressure: un+1, pn+1

1 ũn+1 =A(un;un,∆t) ▷ Advect velocity
2 ∇pn = G(pn) ▷ Calculate pressure gradient

3 ∇p̃n+1/2
exp =A(∇pn;un,∆t/2) ▷ Advect pressure gradient

4 p̃n+1 =A(pn;un,∆t) ▷ Advect pressure

5 ũn+1 = ũn+1 −∆t∇p̃n+1/2
exp ▷ Apply pressure gradient

6 un+1 = P(ũn+1) ▷ Projection
7 pn+1 = p̃n+1 +φ

n+1 ▷ Pressure correction

3.4. Pressure Incremental Correction

The premise of the discussion in Sec. 3.3 is that we have the
pressure field pn at the beginning of time step. In the advection-
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projection framework, the pressure will not be saved, but an acces-
sory generated by Helmholtz-Hodge decomposition, the purpose is
to make ∇· un+1 = 0. What makes the matter worse is that since
we need to explicitly calculate the effect of the gradient of pres-
sure on the velocity, in order to obtain a more accurate velocity, a
more accurate pressure is necessary. But the pressure obtained by
advection-projection framework has only the first-order accuracy in
time. Therefore, we introduce the pressure incremental projection
scheme[BCM01] to explicitly save and calculate the more accurate
pressure, while the potential field φ

n+1 generated by Helmholtz-
Hodge decomposition just correct the pressure field we got be-
fore(Alg. 5).

Algorithm 5: Calculate pn+1 with lagging pressure pn

Input: Original pressure: pn, potential field: φ
n+1 obtained

by Helmholtz-Hodge decomposition
Output: Updated pressure (pn+1)

1 pn+1 = pn +φ
n+1 ▷ Pressure correction

Figure 5: The influence of advect pressure or not in small scale
rotational motion. In the case of small ∆t, and the fluid is mainly
rotating, the pressure field changes little with time, the error in-
troduced by advecting pressure(left) is greater than that by using
lagging pressure field(right).

Note that in Eulerian fluid simulation, all physical quantities
need to be advected, but in the paper of [BCM01], they directly
correct the lagging pressure field pn at the previous time step. This
is because the CFD field always aims at accuracy and will not pur-
sue large ∆t, therefore, for each grid point, there is little pressure
difference between the two time steps. Our experiments confirm
that this has better accuracy only in the case of small step size and
insignificant flow translational motion(see Fig. 5). But in the case
of large ∆t and more complex fluid motion, pressure advection is
necessary(see Fig. 6). So we choose to correct the advected pres-
sure p̃n+1 at the end of each time step instead of directly correcting
the lagging pressure field pn[BCG87] [BCM01], as Alg. 4 line 4
and line 7, even if this introduces another error: the error caused by
the inaccuracy of advection operation, and this error can be elimi-
nated as much as possible by using high-order advection scheme.

For pressure increment projection method, we have one more
thing to do: get our initial pressure(p0). In the paper of [BCG87], it
is suggested to use an iterative method to obtain the initial pressure
field at the beginning of the first time step. For convenience, we

Figure 6: The influence of advect pressure or not in large scale ad-
vective motion. In the scenario with large ∆t and obvious fluid ad-
vection motion, the local pressure (∂p/∂t) at the grid point changes
greatly with time, the error introduced by using lagging pressure
field(left) is greater than that by advecting pressure(right).

choose to execute a reflection solver at the first time step and save
the final pressure field generated by two Helmholtz-Hodge decom-
position as our initial pressure.

3.5. Additional Algorithm Details

In this part, we explain some specific algorithm details.

Boundary Conditions. Because we introduce explicit pressure
and make use of it, we set simple boundary conditions for it in
consideration of stability. For the empty grid, we set its pressure to
zero; for the fluid grid, the pressure refers to Alg. 4 to advect and
update; for the grid in the solid boundary, we set it as the average
value of the fluid grid pressure around it. It is worth mentioning
that many CFD literatures(like [BCG89]) believe that only veloc-
ity boundary conditions is needed, otherwise the system may be
in an over determined state. However, in our experiments, instabil-
ity may occur at the boundary. Therefore, we set simple pressure
boundary conditions to solve such problems. We will leave more
detailed research for future work.

MacCormack Limiter. According to the description of
[SFK*08], the MacCormack method needs to use an extrema
limiter to prevent its numerical oscillations. In our implementation,
the advection result of the MacCormack method is limited by the
result values of its first backward tracking.

4. Results

We have implemented our GPU solver based on [Bri15]. The fol-
lowing solvers are also implemented for comparison: stable flu-
ids with semi-Lagrangian advection (SF)[Sta99], stable fluids with
MacCormack advection (MC)[SFK*08], MacCormack advection
with reflection solver (MC + R)[ZNT18], MacCormack advection
with second-order reflection solver (MC + R2)[NZT19], MacCor-
mack advection with BDF2 (MC + BDF2)[NZT19], and MacCor-
mack advection with our method(MC + Ours). For some experi-
mental scenarios, we use higher-order backtrace mapping (RK3) in
advection, for these cases, we have made special notes in the figure
and in the text, such as (MCRK3). All the experiments are con-
ducted on a desktop machine with a Ryzen 7 5800X @ 3.80GHz
CPU, 32GM RAM and a nVidia GeForce RTX 2080 SUPER graph-
ics card. In order to visualize the simulation results, we use the con-
figuration of [QZG*19] for 2D cases and use Houdini to render the
3D effects.
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Table 2: Simulation configuration and performance.

Scene Domain/m2,m3 Resolution CFL ∆t/s Solver Avg. comp. time/ms

Taylor Vortex(Fig. 7 and Fig. 8) 2π×2π 256 × 256 ∞

0.025 SF 83
0.025 MC 85
0.025 MC+BDF2 82
0.050 MC+R 156
0.050 MC+R2 155
0.025 MC+Ours 68

2D Vortex Leapfrogging(Fig. 9) 4π×2π 512 × 256 ∞

0.1 MC+BDF2 147
0.2 MC+R 273
0.2 MC+R2 275
0.1 MC+Ours 130

Vortex Sheet(Fig. 10) 2π×2π 256 × 256 ∞

0.025 SF 78
0.025 MC 79
0.025 MC+BDF2 79
0.050 MC+R 141
0.050 MC+R2 146
0.025 MC+Ours 60

3D Smoke Plumes(Fig. 11) 5×20×5 128 × 512 × 128 ∞

0.04 SF 3023
0.04 MC 3144
0.04 MC+BDF2 3053
0.04 MC+R 3531
0.04 MC+R2 3578
0.04 MC+Ours 1216

Dam Break(Fig. 12) 32×16×16 128 × 64 × 64 ∞ 0.05 FLIP99 52
0.05 FLIP99+Ours 54

Taylor Green Vortex(Fig. 13 and Fig . 14) 2π×2π 256 × 256 ∞ ⧸ ⧸ ⧸

In order to validate the algorithm proposed in this paper, we
have conducted the following experiments. Firstly, we compare the
computational overhead of different solvers in different experimen-
tal scenarios to verify the efficiency of our algorithm, as shown in
Sec. 4.1. Secondly, in order to test the preservation of fluid energy
and vorticity, we test our algorithm in some 2D scenes, as shown in
Sec. 4.2. For fairness, reflection(R) and second-order reflection(R2)
solver use twice the time step size of other algorithms[ZNT18] in
2D scenes. Then, we test some 3D scenes (smoke and water) to
verify the practicability of our algorithm, as shown in Sec. 4.3.
Finally, we conduct rigorous numerical experiments to verify the
second-order time accuracy of our algorithm, as shown in Sec. 4.4.

4.1. Performance

In order to compare the computational overhead of various solvers,
we test these solvers on multiple data set with different configura-
tions. The performance data as shown in Tab. 2.

In most scenarios, our algorithm shows its theoretical efficiency:
we obtains the effect of second-order accuracy with the same (or
even less) computational overhead as the first-order advection-
projection algorithm. In contrast, as mentioned in the paper of
[ZNT18], the computational overhead of R and R2 solver is twice
that of other algorithms due to its additional advection and projec-
tion operations.

In addition, we find that our algorithm showed dramatic perfor-
mance improvements in 3D smoke scene(high resolution scene).

This is because our method has applied the nearly correct pres-
sure gradient to the velocity field before performing the most
time-consuming pressure projection, resulting in the input velocity
field of Helmholtz-Hodge decomposition is almost non divergence.
Therefore, the conjugate gradient solver only needs a few iterations
to meet the convergence requirements. At the same time, this is also
the reason why the computational cost of the R and R2 solver in this
scene is not twice as high as that of the traditional algorithm. The
reflection operation makes the input velocity field of the second
Helmholtz-Hodge decomposition accurate enough and only needs
a small number of iterations to exit. Therefore, the main computa-
tional cost of the R and R2 solver in this scene comes from the first
pressure projection process, resulting in an efficiency close to that
of the traditional algorithm. This result proves that our algorithm
has potential performance improvement beyond theory.

4.2. 2D Results

Taylor Vortex. We follow the settings in [McK07]: two vortices are
placed close to each other, and the initial distance between them
will cause the two vortices to merge or separate after a period of
time. [QZG*19] and [McK07] set this distance to 0.81 and 0.8 re-
spectively so that their algorithm can separate two vortices. Our
algorithm can accept the a even smaller distance 0.79, which is
closer to the critical separation distance. The experimental results
are shown in Fig. 7. It is worth noting that BDF2 and R2 have
achieved amazing results, and our algorithm is slightly worse than
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Figure 7: Taylor Vortices results at t = 7.5 seconds, with initial
distance 0.79. Color indicates the vorticity magnitude.

the above two, but better than other algorithms. As analyzed in Sec.
3.4, this is due to the introduction of large errors into the pressure
field by using low-precision advection. In this scenario, better re-
sults can be obtained by directly using the lagging pressure field.

Figure 8: Evolution of total kinetic energy of fluid with time on the
Taylor Vortex scenario, normalized by the initial energy.

At the same time, we also calculated the change of the total
kinetic energy of the fluid with the advance of time, as shown in
Fig. 8. Since no energy is injected into the scene after initialization,
a good kinetic energy conservation algorithm can maintain the ini-
tial energy. We find that both the R, R2 solver and our method can
achieve this goal.

2D Vortex Leapfrogging. We follow the settings in [QZG*19],
two vortex pairs are initialized with the same energy intensity on
the left side of the scene and advance them over time. The ex-
perimental results are shown in the Fig. 9 first column. It can be
seen that BDF2 produces wrong velocity field prediction, and our
method produces similar results as the R solver. In contrast, the R2

solver performs better, which is due to its modification of the ad-
vection term. In other words, compared with the other schemes, its
treatment of the advection term is more accurate. In order to elimi-
nate the influence of advection accuracy, we uniformly improve the

Figure 9: Two vortex pairs leapfrogging results at t = 70 seconds,
the density field is visualized.

accuracy of the advection algorithm (change the backtrace mod-
ule of MC from RK1 to RK3), then the advantage of our algo-
rithm in correcting the pressure gradient term can be shown. As in
Fig. 9 second column, our method maintains the vortex motion to
the greatest extent and has no asymmetry and other errors. There-
fore, the computational cost saved by our method can be used for
more accurate advection, so as to achieve the optimal compromise
between computational cost and effect.

Figure 10: Vortex sheet results at t = 15 seconds, color indicates
the vorticity magnitude.

Vortex Sheet. A disc-shaped region in the center of the scene is
initialized with a rigid rotation. As time goes on, it will produce
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SFRK3 MCRK3 MCRK3+BDF2 MCRK3+OursMCRK3+R MCRK3+R2

Figure 11: Smoke plumes scenario with different solver at t = 6.0 seconds, a hot smoke rising with buoyancy, visualized with density(top)
and Shannon’s entropy(down).
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Figure 12: Dam Break scenario with different solver at frame 60, 120, 150, 220, visualized with realistic rendering, streamline, fluid velocity,
fluid vorticity and fluid pressure.
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some vortex motion at the edge and gradually merge to produce
interesting phenomena. The experimental results are shown in the
Fig. 10. The R solver, R2 solver and our solver have better saved
the vorticity and achieved satisfactory results.

4.3. 3D Results

Smoke Plumes. In order to verify the effectiveness and usability of
the algorithm, we designed a 3D smoke plumes scene. We set up
a spherical smoke emitter which emits hot smoke into the scene.
We give the smoke entering the scene a buoyancy acceleration, and
the smoke will rise rapidly over time and produce complex and
interesting fluid phenomena.

The experimental results are shown in Fig. 11. We can see
that the traditional algorithms (SF, MC) produce much less de-
tails than the second-order methods(MC+BDF2, MC+R, MC+ R2,
MC+Ours). And our method can capture the most vortical struc-
ture. In order to make a better comparative observation, we visual-
ized the streamline of the scene, and Shannon’s entropy is used for
coloring. The results are shown in the second row of Fig. 11.

Dam Break. We initialize a hexahedral initial water area on the
left of the scene and let it develop freely under the action of gravity
and solid wall. When the wave head hits another wall, it will pro-
duce an interesting wave like effect. The experimental results are
shown in Fig. 12(in order to better simulate the free surface fluid,
we use FLIP99[ZB05] as the advection scheme of current scene).

In order to better show the advantages of our method, we vi-
sualize the scene in different ways in Fig. 12: realistic rendering,
streamline, fluid velocity, fluid vorticity and fluid pressure. The re-
sults demonstrate that first-order advection-projection framework
produces serious numerical viscosity, and our method can better
capture and retain the energy and details of the fluid.

4.4. Numerical Results

Taylor-Green Vortex. In order to verify that our method has second-
order accuracy in time, we choose Taylor-Green Vortex which has
analytical solution. Similar to many other papers, we ran it to 1s,
and computed the RMS error in velocity with respect to the ana-
lytical solution. Fig. 13 shows the log-log plot of this error as a
function of time. For more intuitive comparison, we visualize the
experimental data when ∆t = 0.1 (MC+R=0.2), as shown in Fig. 14.

The experimental results show that BDF2, R solver and our
method all have second-order time accuracy, which is consistent
with the theory. In terms of error scale, our method is slightly
smaller than BDF2, and slightly larger than the reflection solver
(the two error sources are described in Sec. 3.3 and Sec. 3.4. To
sum up, firstly, we ignore some changes when explicitly advanc-
ing the pressure gradient, and secondly, the inaccurate advection
operation on pressure and pressure gradient introduce another er-
ror). However, compared with the R solver, we save half the time
overhead, and BDF2 has wrong and asymmetric calculation results
in many cases, so we think our method will have great application
potential.

Figure 13: The log-log plot of RMS error in velocity as a function
of time.

Figure 14: The visualization plot of RMS error in velocity.

5. Conclusions

By modifying the reflection solver with the idea of explicit mid-
point method, we get a new algorithm that does not lose its accu-
racy too much and reduces the computational overhead to half or
even more.

In addition, our scheme does not modify the advection term and
projection process in the original framework, so can be seamlessly
integrated into any existing advection-projection fluid simulation
program. Our scheme is also completely parallel. We have designed
a large number of 2D and 3D effects and numerical experiments,
and compared some mainstream methods to verify the accuracy
of our algorithm. The results show that our algorithm greatly im-
proves the time accuracy of advection-projection method under the
premise of small space-time overhead, and produces convincing re-
sults.

5.1. Limitations

Even if we consider the influence of pressure gradient on fluid mo-
tion with second-order time accuracy, the error of advection opera-
tion still exists, and because we need to explicitly advect the pres-
sure and its gradient, the selection of advection algorithm is more
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important. In order to achieve better visual effect in more general
scenes, we suggest to use the computational power saved by our
algorithm for high-order advection schemes, to get the best com-
promise between performance and effect.

5.2. Future Work

There are still many interesting works about our algorithm.

Boundary Conditions. As mentioned in Sec. 3.5, the introduction
of explicit pressure makes us have to consider additional pressure
boundary conditions. In this paper, we simply specify it without
in-depth research. We think it may be one of the potential research
directions.

Combination with other methods. Our method only makes a sim-
ple modification to the original advection-projection method, and
therefore we can enjoy its benefits. For example, we can combine
some interesting schemes (artificially injected vorticity) with our
method to obtain more interesting simulation results.

Improvement of advection term. As mentioned in the article, we
only make a second-order correction to the pressure gradient term
in the Navier-Stokes equation, and the choice of advection term
is arbitrary. The combination of a BDF2 type advection with our
method may have a potential accuracy improvement.
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