## Appendix 1: Statistical analysis results for Study I

 Table 1: Statistical results for the tests performed on understandability assessment measures compared within participants of ATL-Viz group.

| Dependent       | Statistics                                                                                   |                                                  |  |  |
|-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| variable        | ATL-Viz ATL-Viz Control                                                                      |                                                  |  |  |
| Task completion | $Z = -3.40, p < .000, p_{adjusted} < .006$                                                   |                                                  |  |  |
| time (seconds)  | $\overline{Mdn} = 2\overline{88.9}, \overline{IQR} = \overline{1}9\overline{8}.\overline{4}$ | $\overline{Mdn} = 456.7, IQR = 253.0$            |  |  |
| Number of       | $Z = -3.94, p < .000, p_{adjusted} < .000$                                                   |                                                  |  |  |
| errors          | $\overline{\overline{Mdn}} = \overline{15.0}, \overline{IQR} = \overline{10.0}$              | $\bar{M}d\bar{n} = 50.0, \bar{I}Q\bar{R} = 22.5$ |  |  |

Table 2: Statistical results for the tests performed on understandability assessment measures compared within participants of RAD-Viz group

| Dependent        | Statistics                                                            |                                                                                                           |  |  |
|------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Variable         | RAD-Viz                                                               | RAD-Viz Control                                                                                           |  |  |
| Task completion  | $Z = -3.64,  p < .000,  p_{\text{adjusted}} < .000$                   |                                                                                                           |  |  |
| time (seconds)   | $\overline{Mdn} = 2\overline{6}5.0, \overline{IQR} = 9\overline{7}.4$ | $\left[\overline{Mdn} = \overline{498.2}, \overline{IQR} = \overline{2}1\overline{2}.\overline{2}\right]$ |  |  |
| Number of        | Z = -3.26, p = .0                                                     | 01, $p_{\text{adjusted}} < .000$                                                                          |  |  |
| errors (percent) | $\overline{Mdn} = \overline{10.0}, \overline{IQR} = \overline{30.0}$  | $\bar{M}dn = 40.0, \bar{I}Q\bar{R} = 27.5$                                                                |  |  |

**Table 3:** Statistical results for the tests performed on understandability assessment measures compared between participants of ATL-Viz and RAD-Viz groups

| Dependent                         |                    | Statistics |                    |                   |  |  |  |
|-----------------------------------|--------------------|------------|--------------------|-------------------|--|--|--|
| Variable                          | ATL-Viz            | RAD-Viz    | ATL-Viz (control)  | RAD-Viz (control) |  |  |  |
| Task completion<br>time (seconds) | U = 1.286, p = .49 |            | U =292, p = .381   |                   |  |  |  |
| Number of<br>errors(percent)      | U = .892, p = .763 |            | U = 1.46, p = .381 |                   |  |  |  |

## Appendix 2: Statistical analysis results for Study II

Table 4 presents the results for within-participant of each VA interface group (ATL-Viz and RAD-Viz) performed in Study II (Section 4.5 of the paper). For each group comparison was made between four conditions. For example, for ATL-Viz the conditions were: low complexity as visualised on ATL-Viz, low complexity as visualised on the control display, high complexity as visualised on ATL-Viz and high complexity as visualised on the control display. Table 5 presents the statistical results for comparison between the two VA interface groups (ATL-Viz and RAD-Viz). For each dependent variable, two display conditions were compared once for the low-complexity scenario and once for the high-complexity scenario. Choice of statistical tests were made based on the number of conditions and data type. Median and IQR values are reported whenever a significant effect was observed. Coloured dots mark the conditions whose effect was significant.

Table 4: Results for statistical tests performed on decision-making measures

| com                   | pared within participal | nts of each VA group tes | ted     |         |
|-----------------------|-------------------------|--------------------------|---------|---------|
| Dependent<br>Variable |                         | stati                    | stics   |         |
|                       | ATL-Viz                 | ATL-Viz                  | RAD-Viz | RAD-Viz |
|                       | AIL-VIZ                 | Control                  | KAD-VIZ | Control |
| Number of             |                         |                          |         |         |

| Variable                                                                     |                                                                                              | stati                                | stics                                                                                                                               |                                      |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                              | ATL-Viz                                                                                      | ATL-Viz<br>Control                   | RAD-Viz                                                                                                                             | RAD-Viz<br>Control                   |
| Number of<br>clicks made<br>regarding<br>conflicts<br>on the<br>radar screen | $\chi^2 = 43.63,  p < .000$                                                                  |                                      | $\chi^2 = 47.48,  p < .000$                                                                                                         |                                      |
|                                                                              | BS: 0 (0)••<br>CM: 0 (0)••                                                                   | BS:17 (11.0)••<br>CM: 18.5 (10.75)•• | BS: 0 (0)••<br>CM: 0 (0)••                                                                                                          | BS: 17 (11.0)••<br>CM: 15.5 (10.0)•• |
| Number of<br>conflicts<br>solved<br>on the<br>radar screen                   | $\chi^2 = 54.0$                                                                              | ), <i>p</i> < .000                   | $\chi^2 = 50.6$                                                                                                                     | 5, <i>p</i> < .000                   |
|                                                                              | $\begin{bmatrix} -\overline{BS}; 0(0) \bullet \bullet \\ 0(0) \bullet \bullet \end{bmatrix}$ | BS: 5 (0)••<br>CM: 5 (0)••           | $ \begin{array}{c} \overline{\mathbf{BS}}; \ \overline{0} \ \overline{(0)} \bullet \bullet \\ 0 \ (0) \bullet \bullet \end{array} $ | BS: 5 (0)••<br>CM: 5 (0)••           |
| Number of<br>conflicts<br>solved<br>with the<br>order of<br>urgency          | $\chi^2 = 2.45, p = .48$                                                                     |                                      | $\chi^2 = 5.77, p = .12$                                                                                                            |                                      |
| Number of<br>ROCD<br>& HDG<br>resolutions<br>made on the<br>radar screen     | $\chi^2 = 51.8,  p < .000$                                                                   |                                      | $\chi^2 = 49.9$                                                                                                                     | 9, <i>p</i> < .000                   |
|                                                                              | BS: 0.0 (0.0)<br>CM: 0.0 (0.0)                                                               | BS: 3 (1.2)<br>CM: 4 (2.2)           | BS: 0 (0)••<br>CM: 0 (0)••                                                                                                          | BS: 4 (1.0)<br>CM: 4 (1.7)           |
| Time to<br>first interaction<br>(seconds)                                    |                                                                                              | $\chi^2 = 50.7,  p < .000$           |                                                                                                                                     | p, p < .000                          |
|                                                                              | BS: 3.0 (3.0) CM: 2.0 (1.2)                                                                  | BS: 13.5 (8.7)<br>CM: 17.5 (8.7)     | BS: 4.5 (3.7)<br>CM: 5.0 (2.0)                                                                                                      | BS: 11.5 (8.0)<br>CM: 15 (8.0)       |
| Number of<br>conflict<br>ignored                                             | $\chi^2 = 12.7$                                                                              | 7, p = .005                          | $\chi^2 = 9.43$                                                                                                                     | 3, p = .024                          |
|                                                                              | BS: 0.0 (0.0)<br>CM: 0.0 (0.0)                                                               | BS: 0.0 (1.0)<br>CM: 0.0 (1.0)       | BS: 0.0 (0.0)<br>CM: 0.0 (0.0)                                                                                                      | BS: 0.0 (0.0)<br>CM: 0.0 (0.0)       |
|                                                                              |                                                                                              |                                      | С                                                                                                                                   | ontinued on next page                |

| Dependent             |                                                                | continueu irom pres                | 10                                                             |                                                        |  |
|-----------------------|----------------------------------------------------------------|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--|
| Variable              | statistics                                                     |                                    |                                                                |                                                        |  |
|                       |                                                                | ATL-Viz                            | DAD U                                                          | RAD-Viz                                                |  |
|                       | ATL-Viz                                                        | Control                            | RAD-Viz                                                        | Control                                                |  |
| Time to               |                                                                | ł                                  |                                                                |                                                        |  |
| have CD&R tasks       | $x^2 - 30^{-2}$                                                | 7, p < .000                        | $\gamma^2 - 10.1$                                              | 2, $p < .000$                                          |  |
| accomplished          | $\lambda = 50.7$                                               | r, p < .000                        | $\lambda = 19.1$                                               | 2, p < .000                                            |  |
| (seconds)             |                                                                |                                    |                                                                |                                                        |  |
|                       | . ,                                                            | BS: 143.5 (55.2)                   |                                                                | BS: 111.5 (60.7)                                       |  |
| 1                     | CM: 74.5 (42.0)                                                | CM: 165.0 (55.2)                   | CM: 100.0 (81.0)•                                              | CM: 157.0 (60.7)••                                     |  |
| decision-making       | Conflict A: $\chi^2$ :                                         | = 8.66, p = .034                   |                                                                | 22, $p = .75$                                          |  |
| duration<br>(seconds) | Padjuste                                                       | ed > .05                           | $\chi^{-} = 1.2$                                               | 2, p = .75                                             |  |
| (seconds)             | Conflict $\mathbf{R}: \chi^2$                                  | = 16.2, p = .001                   | $x^2 - 40$                                                     | 0, p = .26                                             |  |
|                       |                                                                | = 10.2, p = .001                   | $\chi = 4.0$                                                   | p = .20                                                |  |
|                       | BS: 14.0 (8.7)                                                 | BS: 19.5 (16.2)                    | -                                                              |                                                        |  |
|                       | CM: 11.5 (6.2)                                                 | CM: 26.5 (16.2)                    |                                                                |                                                        |  |
|                       |                                                                | = 22.6, p < .000                   | $\chi^2 = 23.0$                                                | 0, p < .000                                            |  |
|                       | BS: 13.5 (6.0)                                                 | BS: 27.5 (16.5)                    | BS: 16.5 (11.0)                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |
|                       | CM: 11.0 (12.2)••                                              | CM: 30.0 (16.5)                    | CM: 16.5 (10.7)•                                               | CM: 35.5 (18.5)••                                      |  |
|                       | Conflict D: $\chi^2$                                           | = 10.4, p = .02<br>BS: 22.0 (15.5) | $\chi^2 = 8.1$                                                 | $4, p = .04 \\ \overline{BS: 13.5(18.5)} $             |  |
|                       |                                                                |                                    |                                                                |                                                        |  |
|                       | CM: 14.0 (12.0)                                                | CM: 25.0 (15.5)•                   |                                                                | CM: 32.0 (18.5)                                        |  |
|                       | Conflict E: $\chi^2 = 16.2, p = .001$                          |                                    | $\chi^2 = 11.66, p = .008$                                     |                                                        |  |
|                       | Padjuste                                                       | $_{ed} > .05$<br>flict A           | $p_{\text{adjusted}} > .05$                                    |                                                        |  |
| Resolution            |                                                                |                                    |                                                                | 50                                                     |  |
| strategy              | $p_{(BS)} = .39$                                               | , $p_{(CM)} = .09$<br>flict B      | $p_{(BS)} = .93$ , $p_{(CM)} = .52$                            |                                                        |  |
|                       |                                                                |                                    |                                                                |                                                        |  |
|                       | $p_{(BS)} = 1.0$                                               | , $p_{(CM)} = 1.0$<br>flict C      | $p_{(BS)} = .93$ , $p_{(CM)} = .78$                            |                                                        |  |
|                       | Com                                                            | linet e                            |                                                                |                                                        |  |
|                       | P(BS) = .97                                                    | , $p_{(CM)} = .98$<br>flict D      | $p_{(BS)} = .51$ , $p_{(CM)} = .51$                            |                                                        |  |
|                       | $p_{(PS)} = 1.0$                                               | $p_{(CM)} = 1.0$                   | $p_{(BS)} = .70$ , $p_{(CM)} = .40$                            |                                                        |  |
|                       | Con                                                            | , $p_{(CM)} = 1.0$<br>flict E      | r (bs)                                                         |                                                        |  |
|                       | $p_{(BS)} = .41, p_{(CM)} = .59$<br>$\chi^2 = 19.84, p < .000$ |                                    | $p_{(BS)} = .14$ , $p_{(CM)} = .16$                            |                                                        |  |
| 337 11 1              | $\chi^2 = 19.8$                                                | 4, <i>p</i> < .000                 | $p_{(BS)} = .14, p_{(CM)} = .16$<br>$\chi^2 = 12.77, p = .005$ |                                                        |  |
| Workload              |                                                                | ed > .05                           |                                                                | $_{\rm ed} > .05$                                      |  |
| 1                     |                                                                |                                    |                                                                |                                                        |  |

 Table 4 – continued from previous page

BS stands for the baseline scenario (low complexity) and CM stands for the complex scenario (high complexity).

ROCD stands for rate of climb or descent.

HDG stands for heading.

CD&R stands for conflict detection and resolution.

| Dependent<br>Variable                                                        | statistics                                                                                                                                                                                                                                |                                         |                                                                       |                                                |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|
|                                                                              | ATL-Viz                                                                                                                                                                                                                                   | RAD-Viz                                 | ATL-Viz<br>Control                                                    | RAD-Viz<br>Control                             |
| Number of<br>clicks made<br>regarding<br>conflicts<br>on the<br>radar screen | $U_{(BS)} = .51, p_{(BS)} = .93$<br>$U_{(CM)} = .77, p_{(CM)} = .79$                                                                                                                                                                      |                                         | $U_{(BS)} = .76, p_{(BS)} = .87$<br>$U_{(CM)} = 1.31, p_{(CM)} = .47$ |                                                |
| Number of<br>conflicts<br>solved on<br>the radar<br>screen                   | $U_{(BS)} = .80,$<br>$U_{(CM)} = 1.07$                                                                                                                                                                                                    |                                         | Not                                                                   | applicable                                     |
| Number of<br>conflicts solved<br>with the<br>order of urgency                | $U_{(BS)} = 1.84$<br>$U_{(CM)} = 1.90$                                                                                                                                                                                                    |                                         |                                                                       | $.18, p_{(BS)} = .46$<br>$.19, p_{(CM)} = .19$ |
| Number of<br>ROCD & HDG<br>resolutions made<br>on the<br>radar screen        | $U_{(BS)} = .58,$<br>$U_{(CM)} = .58,$                                                                                                                                                                                                    | $p_{(BS)} = 1.0$<br>$p_{(CM)} = 1.0$    |                                                                       | $p.69, p_{(BS)} = .19$<br>57, $p_{(CM)} = 1.0$ |
| Time to<br>first interaction<br>(seconds)                                    | $U_{(BS)} = -1.4$<br>$U_{(CM)} = -3.3$<br>$\overline{BS}: \overline{3.0} (\overline{3.0}) \bullet$<br>CM: 2.0 (1.2) •                                                                                                                     | $p_{(CM)} < .000$                       |                                                                       | $.20, p_{(BS)} = .55$<br>86, $p_{(CM)} = .79$  |
| Mouse hover<br>duration over<br>glyph<br>(seconds)                           | Confl<br>$U_{(BS)} =79$<br>$U_{(CM)} = .15$                                                                                                                                                                                               | $p, p_{(BS)} = .17$<br>$p_{(CM)} = .67$ | Not                                                                   | applicable                                     |
|                                                                              | $\begin{array}{c} \text{Conflict B:} \\ U_{(BS)} =57, p_{(BS)} = .25 \\ U_{(CM)} = -1.17, p_{(CM)} = .08 \\ \overline{\text{BS: } 8.5} (\overline{5.7}) \overline{} \overline{\text{BS: } 12.0} (\overline{9.7}) \overline{} \end{array}$ |                                         | Not                                                                   | applicable                                     |
|                                                                              | Conflict C:<br>$U_{(BS)} = -1.72, p_{(BS)} = .02$<br>$U_{(CM)} =96, p_{(CM)} = .12$                                                                                                                                                       |                                         | Not                                                                   | applicable                                     |
|                                                                              | $\begin{array}{c} \hline & U_{(CM)} & U_{(CM)} & U_{(CM)} \\ \hline & Conflict D: \\ U_{(BS)} =70, p_{(BS)} = .20 \\ U_{(CM)} =91, p_{(CM)} = .14 \end{array}$                                                                            |                                         | Not                                                                   | applicable                                     |
|                                                                              | $Confl U_{(BS)} =31 U_{(CM)} =70$                                                                                                                                                                                                         | ict E:<br>$p_{(BS)} = .38$              | Not                                                                   | applicable                                     |
|                                                                              |                                                                                                                                                                                                                                           |                                         | Contin                                                                | ued on next page                               |

Table 5: Results for statistical tests performed on decision-making measures compared between participants of ATL-Viz and RAD-Viz groups

/

Table 5 – continued from previous page

| Dependent<br>Variable                                     | statistics                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                                                                                                   |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Variable                                                  |                                                                                                                                                                                                                                                               |                                                                              | ATL-Viz                                                                       | RAD-Viz                                                                                                                                           |  |
|                                                           | ATL-Viz                                                                                                                                                                                                                                                       | RAD-Viz                                                                      | Control                                                                       | Control                                                                                                                                           |  |
| Total mouse<br>hover duration<br>over glyphs<br>(seconds) |                                                                                                                                                                                                                                                               | $0, p_{(BS)} = .08$<br>$4, p_{(CM)} = .09$                                   | Not applicable                                                                |                                                                                                                                                   |  |
| decision-making<br>duration<br>(seconds)                  | Conflict A:<br>$U_{(BS)} =38, p_{(BS)} = .34$<br>$U_{(CM)} = .17, p_{(CM)} = .69$<br>Conflict B:<br>$U_{(BS)} =83, p_{(BS)} = .16$<br>$U_{(CM)} = -1.0, p_{(CM)} = .11$<br>Conflict C:<br>$U_{(BS)} =26, p_{(BS)} = .40$<br>$U_{(CM)} = -1.1, p_{(CM)} = .09$ |                                                                              | $U_{(CM)} = U_{(CM)} = U_{(BS)} = U_{(CM)} = 1$ $U_{(BS)} = U_{(BS)} = 0$     | $.54, p_{(BS)} = .98$<br>$1.7, p_{(CM)} = .27$<br>$1.0, p_{(BS)} = .65$<br>$.37, p_{(CM)} = .44$<br>$1.4, p_{(BS)} = .45$<br>$80, p_{(CM)} = .17$ |  |
|                                                           | $Confl U_{(BS)} = .35 U_{(CM)} = .32 Confl$                                                                                                                                                                                                                   | ict D:<br>$p_{(BS)} = .83$<br>$p_{(CM)} = .80$<br>ict E:<br>$p_{(BS)} = .93$ | $U_{(BS)} = 1$ $U_{(CM)} = -1$ $U_{(BS)} = 2$                                 | $1.9, p_{(BS)} = .19$<br>$1.9, p_{(CM)} = .50$<br>$2.05, p_{(BS)} = .15$<br>$31, p_{(CM)} = .38$                                                  |  |
| Time to<br>have CD&R tasks<br>accomplished<br>(seconds)   |                                                                                                                                                                                                                                                               | $B, p_{(BS)} = .27$<br>$T, p_{(CM)} = .18$                                   |                                                                               | $.97, p_{(BS)} = .17$<br>$.34, p_{(CM)} = .81$                                                                                                    |  |
| Resolution<br>strategies                                  | Conflict A<br>$p_{(BS)} = .31$ , $p_{(CM)} = .13$                                                                                                                                                                                                             |                                                                              | $p_{(BS)} = .7$                                                               | 76, $p_{(CM)} = .39$                                                                                                                              |  |
|                                                           | Conflict B<br>$p_{(BS)} = .70$ , $p_{(CM)} = .30$                                                                                                                                                                                                             |                                                                              | $p_{(BS)} = 1$                                                                | .0, $p_{(CM)} = .92$                                                                                                                              |  |
|                                                           | Conflict C<br>$p_{(BS)} = .30$ , $p_{(CM)} = .81$                                                                                                                                                                                                             |                                                                              | $p_{(BS)} = .9$                                                               | $P5, p_{(CM)} = 1.0$                                                                                                                              |  |
|                                                           | Conflict D<br>$p_{(BS)} = .99$ , $p_{(CM)} = .99$                                                                                                                                                                                                             |                                                                              | $p_{(BS)} = .3$                                                               | $32, p_{(CM)} = .77$                                                                                                                              |  |
|                                                           |                                                                                                                                                                                                                                                               | lict E $p_{(CM)} = .99$                                                      | $p_{(BS)} = .9$                                                               | $95, p_{(CM)} = .63$                                                                                                                              |  |
| Workload                                                  |                                                                                                                                                                                                                                                               | $p_{(BS)} = .50$<br>$p_{(CM)} = .35$                                         | $ \begin{array}{ c c } U_{(BS)} = - \\ U_{(CM)} = - \end{array} \end{array} $ | $31, p_{(BS)} = .38$<br>$23, p_{(CM)} = .42$                                                                                                      |  |

## /

## Appendix 3: Statistical analysis results for comparing dependent measures between ATCos and Novices

Table 6: Results of two-sided Mann-Whitney U test performed on decisionmaking (study II) measures compared between novices and ATCos. Median and IQR values are reported whenever the effect was significant.

| Traffic complexity | statistics                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | ATL-Viz                                                                                                             | RAD-Viz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATL-Viz<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RAD-Viz<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| low                | U = 3.95, p = .161                                                                                                  | U = 3.60, p = .074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U = 6.44, p = .174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U = 4.62, p = .676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| high               | U = 4.06, p = .209                                                                                                  | U = 3.84, p = .139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U = 6.67, p = 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 4.92, p = .911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| low                | U = 4.12, p = .209                                                                                                  | U = 4.92, p = .839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| high               | U = 4.09, p = .196                                                                                                  | U = 4.73, p = .503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| low                | U = 5.0, p = .96                                                                                                    | U = 5.0, p = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U = 4.78, p = .731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U = 4.15, p = .271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| high               | U = 5.23, p = .799                                                                                                  | U = 5.92, p = .334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U = 4.81, p = .743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U = 5.23, p = .799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| low                | U = 5.11, p = .97                                                                                                   | U = 3.42, p = .36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = 3.37, p = .10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 1.72, p = .009 $111.5(8.0)$ $22.0(19.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| high               | U = 3.04, p = .043 $2.0(1.25)$ $5.0(3.5)$                                                                           | U = 3.75, p = .56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = 3.35, p = .09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 3.30, p = .30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| low                | U = 4.09, p = .34                                                                                                   | U = 2.60, p = .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| high               | U = 3.21, p = .06<br>41.5(28.25)<br>54.0(81.5)                                                                      | U = 1.69, p = .008 $48.5(40.5)$ $112.0(71.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| low                | U = 3.40, p = .003 $0.0(0.0)$ $0.0(2.0)$                                                                            | U = 3.81, p = .13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = 6.36, p = .188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U = 6.08, p = .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| high               | U = 3.40, p = .003 $0.0(0.0)$ $0.0(1.0)$                                                                            | U = 1.63, p < .000 $0.0(0.0)$ $2.0(3.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U = 5.95, p = .376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U = 8.14, p < .000 $4.0(1.75)$ $0.0(0.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| low                | U = 6.06, p = 1.0                                                                                                   | U = 4.36, p = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = 6.42, p = .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 4.78, p = .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| high               | U = 5.26, p = .61                                                                                                   | U = 4.36, p = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = 6.03, p = .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 5.20, p = .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| low                | U = 2.02, p = .002 $83.5(42.0)$ $196(141.5)$                                                                        | U = 1.09, p = .001 $93.0(38.75)$ $218.0(135.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U = 4.18, p = .39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = 1.84, p = .013 $111.5(60.75)$ $176.0(62.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | complexity<br>low<br>high<br>low<br>high<br>low<br>high<br>low<br>high<br>low<br>high<br>low<br>high<br>low<br>high | ATL-Viz         ATL-Viz         low $U = 3.95, p = .161$ high $U = 4.06, p = .209$ low $U = 4.09, p = .209$ low $U = 4.09, p = .209$ high $U = 4.09, p = .209$ low $U = 4.09, p = .209$ low $U = 5.0, p = .96$ high $U = 5.0, p = .96$ high $U = 5.23, p = .799$ low $U = 5.23, p = .799$ low $U = 5.0, 1, p = .97$ low $U = 3.04, p = .043$ $U = 0.01, 20$ $U = 3.04, p = .043$ low $U = 3.21, p = .06$ high $U = 3.40, p = .003$ low $U = 3.04, p = .003$ low $U = 3.20, p = .002$ | stat           ATL-Viz         RAD-Viz           low $U = 3.95, p = .161$ $U = 3.60, p = .074$ high $U = 4.06, p = .209$ $U = 3.84, p = .139$ low $U = 4.12, p = .209$ $U = 4.92, p = .839$ high $U = 4.09, p = .196$ $U = 4.73, p = .503$ low $U = 5.0, p = .96$ $U = 5.0, p = .303$ low $U = 5.23, p = .799$ $U = 5.92, p = .334$ low $U = 5.11, p = .97$ $U = 3.42, p = .36$ high $U = 3.04, p = .043$ $U = 3.75, p = .56$ low $U = 3.21, p = .06$ $U = 1.69, p = .008$ high $U = 3.21, p = .06$ $U = 1.69, p = .008$ high $U = 3.40, p = .003$ $U = 3.81, p = .13$ low $U = 3.40, p = .003$ $U = 3.81, p = .13$ high $U = 3.40, p = .003$ $U = 1.63, p < .000$ high $U = 3.40, p = .003$ $U = 1.63, p < .000$ high $U = 3.40, p = .003$ $U = 1.63, p < .000$ high $U = 3.40, p = .003$ $U = 1.63, p < .000$ high $U = 3.40, p = .003$ <td>statistics           complexity           ATL-Viz         RAD-Viz         ATL-Viz<br/>Control           low         <math>U = 3.95, p = .161</math> <math>U = 3.60, p = .074</math> <math>U = 6.44, p = .174</math>           high         <math>U = 4.06, p = .209</math> <math>U = 3.84, p = .139</math> <math>U = 6.44, p = .174</math>           high         <math>U = 4.06, p = .209</math> <math>U = 3.84, p = .139</math> <math>U = 6.67, p = 113</math>           low         <math>U = 4.12, p = .209</math> <math>U = 4.92, p = .839</math>         Not applicable           high         <math>U = 4.09, p = .196</math> <math>U = 4.73, p = .503</math>         Not applicable           low         <math>U = 5.0, p = .196</math> <math>U = 5.0, p = .10</math> <math>U = 4.78, p = .731</math>           high         <math>U = 5.23, p = .799</math> <math>U = 5.92, p = .334</math> <math>U = 4.81, p = .743</math>           low         <math>U = 5.11, p = .97</math> <math>U = 3.42, p = .36</math> <math>U = 3.37, p = .10</math>           high         <math>U = 5.04, p = .043</math> <math>U = 3.75, p = .56</math> <math>U = 3.35, p = .09</math>           low         <math>U = 4.09, p = .34</math> <math>U = 2.60, p = .08</math>         Not applicable           high         <math>U = 3.21, p = .06</math> <math>U = 1.69, p = .008</math>         Not applicable           high         <math>U = 3.40, p = .003</math> <math>U = 1.63, p &lt; .008</math>         Not applicable</td> | statistics           complexity           ATL-Viz         RAD-Viz         ATL-Viz<br>Control           low $U = 3.95, p = .161$ $U = 3.60, p = .074$ $U = 6.44, p = .174$ high $U = 4.06, p = .209$ $U = 3.84, p = .139$ $U = 6.44, p = .174$ high $U = 4.06, p = .209$ $U = 3.84, p = .139$ $U = 6.67, p = 113$ low $U = 4.12, p = .209$ $U = 4.92, p = .839$ Not applicable           high $U = 4.09, p = .196$ $U = 4.73, p = .503$ Not applicable           low $U = 5.0, p = .196$ $U = 5.0, p = .10$ $U = 4.78, p = .731$ high $U = 5.23, p = .799$ $U = 5.92, p = .334$ $U = 4.81, p = .743$ low $U = 5.11, p = .97$ $U = 3.42, p = .36$ $U = 3.37, p = .10$ high $U = 5.04, p = .043$ $U = 3.75, p = .56$ $U = 3.35, p = .09$ low $U = 4.09, p = .34$ $U = 2.60, p = .08$ Not applicable           high $U = 3.21, p = .06$ $U = 1.69, p = .008$ Not applicable           high $U = 3.40, p = .003$ $U = 1.63, p < .008$ Not applicable |

© 2022 The Author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

 Table 6 – continued from previous page

| Dependent<br>Variable                    | Traffic    | n previous page                                                                                                                                                                                                                                       | stati                                                                                                                                                                                                                                                               | stics                                                                                                                                                       |                                                                                                                                                                                                          |
|------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| variable                                 | complexity | ATL-Viz                                                                                                                                                                                                                                               | RAD-Viz                                                                                                                                                                                                                                                             | ATL-Viz                                                                                                                                                     | RAD-Viz                                                                                                                                                                                                  |
|                                          | high       | U = 1.71, p < .001<br>74.5(42.0)<br>188.0(136.5)                                                                                                                                                                                                      | U = 1.66, p = .007<br>100.0(81.0)<br>185.0(45.0)                                                                                                                                                                                                                    | Control $U = 4.65, p = .70$                                                                                                                                 | Control<br>U = 2.12, p = .03<br>157.0(74.5)<br>201.0(66.0)                                                                                                                                               |
| decision-making<br>duration<br>(seconds) | low        | A: $U = 3.48, p = .12$<br>B: $U = 2.32, p = .006$<br>14.0(8.75)<br>30.0(38.0)<br>C: $U = 3.07, p = .049$<br>13.5(6.0)<br>34.0(20.5)<br>D: $U = 2.30, p = .006$<br>13.5(17.0)<br>42.0(36.5)<br>E: $U = 2.32, p = .006$<br>15.0(11.25)<br>39.0(34.5)    | A: $U = 3.24$ , $p = .276$<br>B: $U = 1.57$ , $p = .006$<br>14.5(11.5)<br>48.0(31.0)<br>C: $U = 1.99$ , $p = .019$<br>16.5(11.0)<br>26.0(18.0)<br>D: $U = .877$ , $p < .001$<br>16.0(14.75)<br>41.0(20.0)<br>E: $U = 2.18$ , $p = .031$<br>15.0(20.0)<br>32.0(14.0) | A: $U = 4.45, p = .56$<br>B: $U = 3.71, p = .18$<br>C: $U = 4.43, p = .54$<br>D: $U = 2.90, p < .033$<br>22.0(15.5)<br>33.0(10.0)<br>E: $U = 4.70, p = .74$ | A: $U = 2.54, p = .073$<br>B: $U = 1.90, p = .015$<br>42.0(14.5)<br>C: $U = 2.36, p = .049$<br>18.5(18.5)<br>33.0(17.0)<br>D: $U = 1.87, p = .014$<br>13.5(18.5)<br>33.0(20.5)<br>E: $U = 3.45, p = .38$ |
|                                          | high       | A: $U = 3.65, p = .16$<br>B: $U = 1.88, p = .001$<br>111.5(6.25)<br>38.0(18.0)<br>C: $U = 2.32, p = .006$<br>11.0(12.25)<br>29.0(29.0)<br>D: $U = 1.66, p < .001$<br>14.0(12.0)<br>48.0(41.0)<br>E: $U = 2.90, p = .033$<br>14.0(13.75)<br>30.0(28.5) | A: $U = 2.54, p = .07$<br>B: $U = 2.05, p = .02$<br>15.0(15.0)<br>29.0(5.0)<br>C: $U = 1.24, p = .002$<br>29.0(11.5)<br>D: $U = 1.94, p = .016$<br>13.5(9.0)<br>46.0(39.0)<br>E: $U = 3.51, p = .413$                                                               | A: $U = 5.09, p = 1.0$<br>B: $U = 4.5, p = .59$<br>C: $U = 3.62, p = .16$<br>D: $U = 3.48, p = .12$<br>E: $U = 5.56, p = .64$                               | A: $U = 2.21, p = .03$<br>26.5(10.25)<br>37.0(16.0)<br>B: $U = 1.81, p = .01$<br>22.0(12.5)<br>36.0(28.5)<br>C: $U = 3.12, p = .22$<br>D: $U = 3.48, p = .39$<br>E: $U = 4.33, p = 1.0$                  |
| Resolution<br>strategies                 | low        | A: $p = .43$<br>B: $p = .86$<br>C: $p = 1.0$<br>D: $p = 1.0$<br>E: $p = .05$                                                                                                                                                                          | A: $p = .06$<br>B: $p = .35$<br>C: $p = .37$<br>D: $p = .51$<br>E: $p = .65$                                                                                                                                                                                        | A: $p = .23$<br>B: $p = .28$<br>C: $p = .61$<br>D: $p = .86$<br>E: $p = .29$                                                                                | A: $p = .001$<br>$p_{adjusted} = .28$<br>B: $p = .14$<br>C: $p = .75$<br>D: $p = .56$<br>E: $p = .02$<br>$p_{adjusted} = .19$                                                                            |
|                                          | high       | A: $p = .71$<br>B: $p = .60$<br>C: $p = .18$<br>D: $p = .84$<br>E: $p = .05$                                                                                                                                                                          | A: $p = .18$<br>B: $p = .10$<br>C: $p = .33$<br>D: $p = 1.0$<br>E: $p = .82$                                                                                                                                                                                        | A: $p = .70$<br>B: $p = .15$<br>C: $p = .03$<br>$p_{adjusted} = .22$<br>D: $p = .85$<br>E: $p = .56$                                                        | A: $p = .003$<br>$p_{adjusted} = .46$<br>B: $p = .34$<br>C: $p = .03$<br>$p_{adjusted} = .37$<br>D: $p = .55$<br>E: $p = .14$                                                                            |
| Workload                                 | low        | U = 4.62, p = .677                                                                                                                                                                                                                                    | U = 4.81, p = .578                                                                                                                                                                                                                                                  | U = 6.197, p = .264                                                                                                                                         | U = 7.331, p = .023 $50.0(27.5)$ $40(22.5)$                                                                                                                                                              |
|                                          | high       | U = 4.04, p = .316                                                                                                                                                                                                                                    | U = 3.84, p = .232                                                                                                                                                                                                                                                  | U = 6.64, p = .117                                                                                                                                          | U = 7.30, p = .026 $69.0(21.25)$ $50(32.5)$                                                                                                                                                              |

© 2022 The Author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

 Table 7: Statistical results for the tests performed on understandability assessment measures compared between novices and ATCos.

 Median and IQR values are reported whenever the effect was significant.

| Dependent                         | Statistics                                 |                                                 |                   |                   |  |  |
|-----------------------------------|--------------------------------------------|-------------------------------------------------|-------------------|-------------------|--|--|
| Variable                          | ATL-Viz                                    | RAD-Viz                                         | ATL-Viz (control) | RAD-Viz (control) |  |  |
| Task completion<br>time (seconds) | U = 5.28, p = .85                          | U = 1.51, p = .003 $265.3(97.4)$ $453.3(105.2)$ | U = 3.96, p = .29 | U = 3.63, p = .49 |  |  |
| Number of<br>errors               | U = 7.88, p = .003 $15.0(10.0)$ $0.0(0.0)$ | U = 5.08, p = .46                               | U = 6.56, p = .13 | U = 5.39, p = .31 |  |  |

Appendix 4: Description of RAD-Viz interface

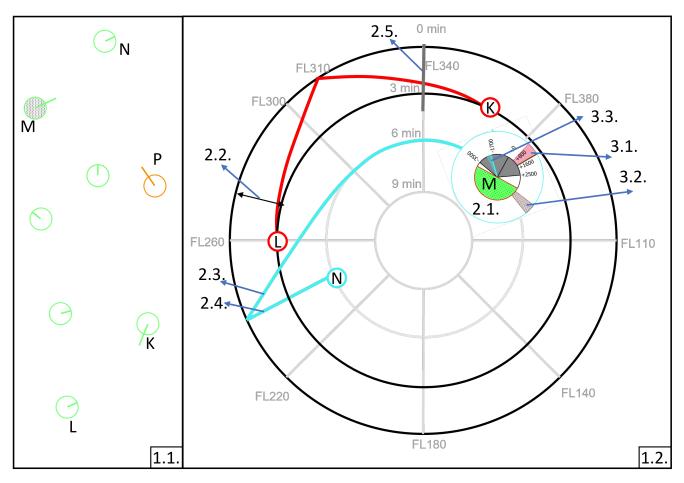



Figure 1: Schematic representation of RAD-Viz interface.

Figure 1 depicts a schematic description of RAD-Viz interface showing the same traffic scenario depicted on ATL-Viz schematic description in Section 3.2. of the paper. Similar to ATL-Viz, RAD-Viz interface consists of a radar screen (1.1.) and the time-altitude display (1.2.). The radar screen is identical on both interfaces. However on RAD-Viz time-altitude display, aircraft glyph are mapped on inverted axes of the polar graph compared to ATL-Viz. On RAD-Viz, the flight level information is depicted on the angular axis and time remaining to conflict is depicted on the radial axis. The numbered visual items correspond to the structural properties obtained from the functional layers of the WDA (see sections 3.1. and 3.2. in the paper). 2.1. depicts the glyph and its visual components (heading and ROCD solution spaces). The outermost black circle indicates separation loss occurrence (zero time). The other black circle, points the most imminent conflict and expands towards the zero time reference circle as time passes. 2.2. indicates time to conflict. 2.3. indicates vertical trajectory profile and 2.4. indicates altitude criteria to avoid for resolving the current conflict. 2.5. indicates altitude criteria to avoid potential conflicts. Upon hovering mouse over the glyph, the solution spaces are shown in details (as depicted in the figure). 3.1. indicates heading criteria to avoid current conflicts, 3.2 indicates heading criteria to avoid potential conflicts. 3.3 indicates ROCD criteria to avoid current conflicts. Various heading and rate of climb values can be explored by right clicking on the outer and inner circles of the glyph respectively. To apply the changes, a confirmation box will appear upon left clicking on the outer circle where the selected values can be confirmed. As can be seen from the figure, the time-altitude display shows four out of eight aircraft shown on the radar screen are in conflict. Aircraft K and L will lose separation in 3 minutes at flight level(FL) 310. Aircraft M and N will lose separation at FL240. Aircraft M is selected (indicated by the green half circle inside the glyph. If M is sent to FL 340 or its heading is changed to the patterned section (3.2. on the glyph), it will have conflict with aircraft P.