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Figure 1: Set Streams interface: In the main visualization, each row is a specific set intersection, and each column represents a timestep;
changing set membership is visualized by streams. The example shows as elements the most frequent authors of the IEEE VIS conference
series and their contributions to the conference tracks as set memberships changing across time. Marked in orange are the contributors
of SciVis/Vis in 1990–1992, marked in green the authors who have contributed to all three tracks in 2014–2015. Marked in black are the
common elements of these two sets of authors; author van Wijk is additionally highlighted in yellow on user selection.

Abstract
In many applications, membership of set elements changes over time. Since each element can be present in multiple sets, the sets
also overlap. As a result, it becomes challenging to visualize the temporal change in set membership of elements across several
timesteps while showing individual set intersections. We propose Set Streams, a visualization technique that represents changing
set structures on a timeline as branching and merging streams. The streams encode the changing membership of elements with
set intersections. A query-based selection mechanism supports a flexible comparison of selected groups of elements across
the temporal evolution. The main timeline view is complemented with additional panels to provide details about the elements.
While the proposed visualization is an application-independent visualization technique for dynamic sets, we demonstrate its
effectiveness and applicability through three diverse application examples and expert feedback.

1. Introduction

Classification of data items into categories guides many data anal-
ysis tasks. If not measured or determined from an external source,
analysts formulate criteria for automatic classification or work
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through the data items in a manual or semi-automatic classifica-
tion process. Often, these categories reflect the central high-level
abstractions that provide the main structure for the data, like the
professional role or main expertise of a person, the market position
of a company, the dominating types of crimes in an area, etc. Since
each category is well-defined and contains several data items, it can
be modeled as a set. Whereas this data structure is simple, the anal-
ysis becomes complex when data items belong to more than one
set, and as a result, sets overlap. Additionally, in many practically
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relevant scenarios, the data changes over time and makes the anal-
ysis even more challenging: roles of persons are adapting, market
positions are changing, and crime hotspots are shifting. Whereas
there exist techniques for visualizing static sets or dynamic parti-
tions, hierarchies, or graphs, only surprisingly few techniques have
been suggested for visualizing dynamic sets. In particular, we lack
techniques that show the flow of elements between the set intersec-
tions over time.

We hence propose a novel technique to support the visual explo-
ration of dynamic sets highlighting changing element membership
as streams on a timeline. As illustrated in Figure 1, the main vi-
sualization shows time from left to right as part of a grid where
rows represent individual set intersections. Each cell of the grid
shows a particular set intersection at a specific timestep, with the
fill level of the rectangle quantifying the number of associated el-
ements. The glyphs in the first column of the grid identify the set
intersections. For understanding the visualization, it is crucial to
note that elements are only represented once across all set inter-
sections per timestep: if they belong to multiple sets, they are only
visualized as part of the most specialized set intersection (i.e., the
intersection of all sets the element is part of; we call this exclu-
sive intersection). Only this allows us to connect nodes of adjacent
timesteps with streams to form a linearly arranged, timeline-based
Sankey diagram; streams are sometimes metaphorically also called
flows, rivers, or ribbons. These streams represent and quantify in
their width groups of elements that perform equivalent set mem-
bership changes between two timesteps, or unchanged elements if
the stream flows horizontally. To support an interactive exploration,
the visualization approach features a query-based selection mech-
anism that allows a coloring-based comparison of different groups
of elements. Further views provide details on the set elements.

Our approach can be considered as a new information visual-
ization technique, with additional options to support data explo-
ration. Since the approach is intended to be general and application-
independent, we have not tailored it for a specific use case, but in-
stead show its versatile applicability in a diverse set of application
examples. In summary, our contributions include

• an application-independent, novel technique for visualization of
dynamic overlapping sets (Section 4.1),
• a versatile querying technique for visual selection of elements

across the dynamic sets (Section 4.2),
• three application examples complemented with feedback from

domain experts to demonstrate the effectiveness and generality
of proposed techniques (Section 5), and
• an interactive web-based tool that implements the proposed tech-

niques [AB20].†

2. Related Work

The visualization of set membership is an established area and sev-
eral approaches have been developed to visualize static sets, as sur-
veyed by Alsallakh et al. [AMA∗16]. We take inspiration from Up-
Set [LGS∗14] and adopt a grid-based layout where individual set

† Hosted at: https://vis-tools.paluno.uni-due.de/
setstreams/

and set intersections are shown in separate rows. However, Up-
Set, as well as most other set visualization techniques, is limited
to static set structures—developing visualization techniques for dy-
namic sets is listed as open research challenge in the literature sur-
vey [AMA∗16, Section 6.1].

Dynamic Set Visualization. Some approaches have already
started to address this challenge. TimeSets [NXWW16] shows the
temporal changes in sets by extending KelpFusion [MRS∗13].
However, it models events as elements that occur only at a single
timestep. Hence, set memberships of elements in TimeSets do not
change over time, unlike in our model. Valdivia et al. [VBP∗20]
visualize dynamic hypergraphs, where each hyperedge between
nodes can be considered as a set. However, inferring temporal
changes is difficult because tracing the same or similar hyperedges
across time is not directly supported. BubbleSets [CPC09] places
elements vertically where the horizontal axis represents time. It
shows set membership and evolution of elements by computing
overlays while using colors for individual sets. Animation-based
approaches visualize individual changes in sets with time; to reduce
the user’s gaze shift while watching the animation, grouping and se-
quence of the temporal changes is optimized [MWTI19]. Individ-
ual changes are easy to follow in an animation. However, if there
are many changes across time, it becomes difficult to track and re-
call them. Our approach focuses on visualizing temporal changes
through static visual elements on a timeline to provide an overview
of all changes in sets across multiple timesteps.

Visualizing Dynamic Partitions. Visualizing dynamic changes
in partitions (i.e., sets without overlap) is a related area. Rosvall
and Bergstrom [RB10] present the base technique of visualizing
dynamically changing non-overlapping communities as branching
and merging flows. Other approaches extend or modify this ap-
proach by linking it to geographic visualizations [vLBA∗12] or by
adding information about underlying graph structures [VBAW15].
Our approach has been inspired by these approaches and we bor-
row their base layout (which makes them visually similar to ours),
but in contrast to these approaches, we focus on explicitly visualiz-
ing overlaps of dynamic set structures instead of non-overlapping
partitions interpreted as dynamic communities. Additionally, the
proposed visualization addresses several challenges: ensuring scal-
ability, enabling a flexible query-based selection, and finally visu-
alizing results of query on existing visualization.

Visualizing Dynamic Hierarchies and Graphs. Neighboring ar-
eas are visualizing dynamic changes in structures such as hierar-
chies (i.e., sets with only subset relationships) and graphs (i.e., a
generalization of relational data). If only allowing inclusion rela-
tions between sets, the sets form a hierarchy. Visualizing the evolu-
tion of such hierarchical sets becomes a problem of hierarchy com-
parison and evolution [GK10]. While most approaches in this area
focus on the comparison of two hierarchies, few approaches also
cover the representation of sequences of hierarchies, for instance,
to show the evolution of hierarchically structured code [TA08] or
clusters in a dynamic graph structure [VBW16]. Dynamic graph
visualization [BBDW17] is related as overlapping set structures
can also be transformed into graphs, for instance, a bipartite graph
or a hypergraph. However, most dynamic graph visualization tech-
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niques, at least timeline-based ones, are not prepared to handle such
special types of graphs.

3. Design Considerations

We started this project with some fundamental considerations,
which guided the overall design of the visualization. They are based
on insights and related approaches from literature as well as long-
term experience developing visualization approaches for discrete
dynamic data. We introduce icons for identifying the three resulting
design decisions and use these icons for referencing the decisions
throughout the paper.

Get a temporal overview. For showing temporal changes
in a visualization, temporal encoding as an animation and
spatial encoding as timelines are the two most common

forms of encoding. Whereas animation often provides an easy-
to-understand representation, it is also known to have limitations
regarding a good readability of non-trivial data [TMB02]: “An-
imations are often too complex or too fast to be accurately per-
ceived. Moreover, many continuous events are conceived of as se-
quences of discrete steps.” For instance, in context of dynamic
graph visualization, first approaches were animation-based, but the
research focus is shifting more and more to timeline-based ap-
proaches [BBDW17]. For our approach, we also favor a spatial
encoding on a timeline because a primary goal is providing an
overview of time. A resulting challenge is though that we have
to find a condensed representation of the set structures. Since we
want to show several timesteps juxtaposed from left to right on one
screen, ideally, these should have the form of a column or vertical
stripe. We ruled out alternative, less common encodings of time,
for instance, in color or in other visual variables such as shape,
size, etc. as they make comparing the state of the data at a certain
timestep difficult.

Follow elements across time. Our focus for analyzing tem-
poral changes is on the elements that change their set
membership over time. For representing this, we consider

the metaphor of a flow of elements through a temporal, but static
structure of set intersections. If an element changes its attributes
and moves from one set to another, we want to draw a connecting
line. This is a popular representation widely used and often called
Sankey diagram (which dates back to works from the 19th cen-
tury by Minard, 1869 and Sankey, 1898). A Sankey diagram can
be linearized to be used on a timeline while highlighting the tem-
poral changes in groups of items through bands or ribbons, which
is sometimes called alluvial diagram [RB10]. However, such flow-
based diagrams are not directly applicable to overlapping sets. To
work around the overlap problem, elements can get represented
multiple times if they contribute to several sets [BMBW15]. But
this takes away the focus from the elements changing their mem-
bership and the overlap of sets, and shifts it to a simpler aggrega-
tion of the data. Since this shift of focus would be against our goals,
we explore an alternative approach: we artificially flatten the over-
lapping sets by considering each non-empty exclusive intersection
of sets as an independent node. Through that, we can get a non-
overlapping categorization of elements on which we can apply a
flow-based encoding. Finally, branching and merging streams rep-
resent set membership changes in the visualization.

Compare groups of elements. One issue in streams, how-
ever, is that individual elements or groups of elements
get absorbed by the stream. An element that flows into

a stream, in the next timestep, cannot be discerned from the other
elements of the stream anymore. We hence need a mechanism to
highlight elements of interest across time. While, during an explo-
ration, the elements that are of interest might change frequently,
this mechanism requires an interactive selection of individual ele-
ments and groups of elements. Such selections are commonly high-
lighted in a visualization using color. Since we have not used color
for encoding another variable already, we can follow this approach.
However, we want to go a step ahead of regular selections and also
support the comparison of different groups. At least two different
groups of elements should be comparable. For a color-based en-
coding of this, we need four different colors: one for non-selected
elements, one for elements of the first group, one for elements of
the second group, and one for elements that are in both selected
groups. We further require a flexible querying approach to select
such groups with respect to different criteria, for instance, based on
their set membership at a point in time.

Beyond these specific considerations, when designing the ap-
proach, we followed general best practices and accepted guidelines
for information visualizations, such as consistently using colors,
reducing visual complexity and clutter where possible, and intro-
ducing expressive labels.

4. Set Streams Visualization Approach

The above design considerations already outline a timeline-based
visualization approach that builds on Sankey diagrams and color-
coded selections of one or two groups of elements. However, this
only provides a sketch still leaving out many details of the visual-
ization design. Also, additional features, encodings, and views are
necessary to complete the sketched approach to a full-fledged in-
teractive visualization technique. For describing the encodings and
interactions in an exact and reproducible way, we build on a formal
data model introduced in the following before discussing details of
the visualization approach. The full interface is shown in Figure 1
for a small dataset and in Figure 2 for a larger one.

Let F = {S1,S2, . . . ,Sn} be a family of n base sets, where each
set Si ⊂ V contains elements from a universe V . The power set of
this family of base setsP(F) describes every possible combination
of these sets with |P(F)|= 2n. For each family of sets Fj ∈ P(F),
we can compute a set intersection (or overlap) of the contained sets
I(Fj) =

⋂
S∈Fj

S. An element v ∈V might belong in multiple inter-
sections, for instance, v ∈ S1,S2,S3⇒ v ∈ I({S1,S2}), I({S2,S3}).
As we want to avoid repeated encoding in different intersections for
showing the flow of elements , we further define an exclusive set
intersection

IF (Fj) = {v ∈V |(∀S ∈ Fj : v ∈ S)∧ (∀S′ ∈ F \Fj : v /∈ S′)}

(i.e., each element included is not included in another base sets that
is not considered in the intersection). In the above example (v ∈
S1,S2,S3), v /∈ IF ({S1,S2}), I({S2,S3}), but v ∈ IF ({S1,S2,S3}) if
also v /∈ S4,S5, . . . ,Sn. Note that, if an element v ∈ V is not con-
tained in any Si ∈ F , then v ∈ IF (∅). Hence, the set of all exclu-
sive intersections over F forms a partition of V . To model temporal
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Figure 2: Training of a multi-label classifier for image classification: The timeline shows the predicted labels for each image across various
epochs (training stages) of the classifier. The last column represents the ground-truth assignment of labels. The exclusive intersection of
labels ‘junk’ and ‘mains’ is selected in Epoch 29 (orange) and highlighted on hovering.

changes with m timesteps, we introduce a sequence of families of
base sets F = (F1,F2, . . . ,Fm) over the same universe V , where
each Fk = {Sk

1,S
k
2, . . . ,S

k
n} consists of the same number of n base

sets. Through this, we can follow a set, which represents a categor-
ical attribute of the elements, across time.

4.1. Timeline Visualization

The timeline-based visualization of set evolution forms the
main view of the visual interface. It has a grid-like structure. While
timesteps are organized from left to right, the rows represent the
different exclusive intersections.

The icons at the left of each row identify the respective exclusive
intersection IF (Fj): Each base set Si ∈ F is represented as a small
rectangle, while those that are involved in the exclusive intersec-
tion (Si ∈ Fj) are marked in darker gray and connected by a line.
Empty exclusive intersections (i.e., if IFk (Fj) = ∅ in all timesteps
k = 1,2, . . . ,m) are not shown as rows to save space. Only indi-
rectly represented is the set of elements not contained in any of the
base sets IFk (∅) as discussed below. The rows are ordered by de-
fault based on the cardinality of the respective family of sets |Fj|
(i.e., how many base sets are contained therein). This allows adding
headlines to each group of rows that have the same cardinality,
starting with exclusive 1-set intersections, followed by exclusive
2-set intersections, etc.

A cell of the grid represents a particular exclusive set intersec-
tion at a specific timestep. To display the state of each of theses

intersections, we draw a rectangular box in each grid cell as a node
of the Sankey diagram. The number of elements contained in the
respective exclusive intersection |IFk (Fj)| is encoded by the height
of the gray bar inside the box of the cell. If the set or the set in-
tersection is empty at a particular timestep (i.e., does not contain
any exclusive element), we do not draw the box at the correspond-
ing column. Hovering over a cell highlights the timestep label, the
row, and participating sets in the respective intersection.

Curved lines connect the nodes from left to right through the
grid and form the branching and merging streams. Each element
contributes to exactly one stream per transition from one timestep
to the next according to which exclusive intersection it belongs
at the earlier and the later timestep. Formally, two nodes repre-
senting the exclusive intersections IFk (Fj) and IFk+1(Fj′) are con-
nected if w := |IFk (Fj)∩ IFk+1(Fj′)| > 0. Additionally, the width
of the stream encodes the number of elements w undergoing the
same transition between the two timesteps. The elements added in
a timestep (i.e., that are not present in the previous timestep) are
shown by streams originating from above placed at the left of the
corresponding timestep. Similarly, elements that do not belong to
any set in any of the next timesteps are shown going down at the
right side of current timestep. Elements that belong to some sets
not in the next but in later timesteps are shown by streams which
go upwards above the first row of the grid; they rejoin in the respec-
tive later timestep similar to incoming streams. To avoid unneces-
sary clutter, we sort the edges based on the vertical position of their
destination. Hence, we first draw streams that are going upwards,
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followed by the one that connects the same exclusive intersection
in the next timestep, and finally those that are going downwards.

A cardinality distribution at each timestep is shown by a his-
togram placed above the corresponding column of a timestep. Each
bar represents a cardinality c of the family of sets involved in re-
spective exclusive intersections. The height of the bar is determined
by how many elements are in the respective exclusive intersections
at timestep k that have cardinality c:

|
⋃

Fj∈P(Fk):|Fj|=c

IFk (Fj)|

The rows of the grid can be interactively aggregated and sorted, de-
viating from the default arrangement as described above. Rows can
be aggregated based on their cardinality of participating sets, treat-
ing the union of all exclusive intersections with this cardinality as
the aggregated representation in a single row (similar to what a bar
in the histogram represents). We also include other options of sort-
ing the rows (exclusive set intersections): by decreasing order of the
number of contained elements in a selected timestep k (|IFk (Fj)|)
or summed across all timesteps (∑m

k=1 |IFk (Fj)|). Additionally, as
shown in Figure 3, rows can be sorted by the decreasing order of
their stability, which is computed as the ratio of stable elements
to all elements contained in the intersection at a timestep, summed
across all timesteps. We also include an option to sort rows based on
their similarity, which is computed as number of elements switch-
ing their membership between two exclusive intersections across
all timesteps; we use a greedy approach: place the exclusive inter-
section with the highest number of incoming elements first and then
always place the most similar one next. Finally, the rows can also
be sorted by assigning priority to a set, which first lists all exclu-
sive intersections in which the set is involved and sorts them with
increasing cardinality, followed by the remaining set intersections
in default order. Figure 3 demonstrates the aggregation and sort-
ing features where all rows with cardinality three are aggregated
and then sorted based on their stability. Collapsing and expanding
as well as sorting rows can be triggered by respective drop-down
selections at the top of the timeline visualization.

4.2. Query-based Selection

To support the comparison of different groups of elements across
time , we propose a visual query technique. We face two chal-
lenges: (i) the specification of queries should be simple and intu-
itive, and (ii) various different groups of elements should be se-
lectable. Finally, the resulting selection needs to be overlaid on the
timeline-based visualization.

After experimenting with different solutions and discarding
more complex ones, we decided to embed the query into a short
sentence where different parameters are selectable. This makes the
query readable and self-explanatory, while still providing sufficient
flexibility to specify various queries. The query includes the fol-
lowing parameters:

• Set Operation: In a drop-down selection field, user can select
both the non-exclusive intersection I(Fj) and the exclusive in-
tersection IF (Fj). In addition, a set union operation is available,
which is defined as U(Fj) =

⋃
S∈Fj

S.

• Base Sets: Marking checkboxes in a list, users can activate arbi-
trary combinations of base sets to specify Fj.
• Timestep: Finally, users choose the timestep k from a drop-down

selection field.

We allow the specification of two of such queries, which can be
added and cleared with respective buttons. Both resulting groups
of elements—Group A and Group B—get assigned a distinct color
(A: orange; B: green). These colors are used to highlight the re-
spective streams in the visualization. Since elements can be shared
between the two groups, a third color (black) is necessary to visu-
ally discern the shared elements if both groups are activated.

Besides specifying the query through the above parameterized
sentence, groups of elements can also be selected by interacting
with the visualization. Clicking on a node in the stream visualiza-
tion, which represents an exclusive intersection IFk (Fk

j ), the equiv-
alent query gets activated, automatically selecting the parameters
exclusive intersection, checking the respective sets of Fk

j , and se-
lecting timestep k. As a result, all elements and streams that relate
to the node get highlighted as Group A by default, or Group B if
toggling the respective radio button on the left side of the query.
Similarly, clicking on an edge selects the respective elements of
this transition. As an edge selection goes beyond what can be rep-
resented in the query form described above, we switch to an alter-
native sentence describing the respective selection.

4.3. Linked Views

We further enrich the user interface with additional, linked views
to provide details on demand. A list at the right side of the visual-
ization shows all elements in individual rows. A search bar enables
finding specific element by their name, which are then marked with
a blue dot in the list (Figure 2). The colored bars at the beginning
of a row indicate that the element is part of the currently selected
groups . Single elements can be highlighted from the list by
click. A panel above the element list contains additional details of
the dataset, for instance, the name of the highlighted element or,
if available, an image. The selected single element is highlighted
in yellow as another overlay on the stream visualization. The el-
ement list is ordered and shows first the search results, then the
selected elements of Group A+B, Group A, Group B, and last all
other elements. Alphabetic order is the secondary sorting criterion
(if nothing is selected/prioritized and for sorting within the groups).

5. Application Examples

We discuss the usefulness and generality of the proposed system
through three application examples covering areas such as biblio-
metrics, software engineering, and machine learning. We comple-
ment this with feedback provided by experts users from the three
fields, who evaluated and extended the discussed examples.

5.1. Expertise of Researchers

Expertise and background of researchers can be estimated by the
publication channels or keywords of their publications. The re-
searchers form the elements while the fields, as identified by the
channels, represents the sets. Visualizing this information across
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Figure 3: Software evolution: Contributors of the Linux project form the elements, assigned to different parts of the system (‘fs’, ‘net’, ‘arch’,
‘kernel’, and ‘drivers’) according to their code contributions within a year (2008–2017). Exclusive 3-set intersections are aggregated. Rows
are sorted based on stability. Intersections of ‘arch’ and ‘drivers’ are selected for the year 2008 (orange) and 2017 (green).

time, we can observe, for instance, new topics or venues trending.
The evolution of set memberships shows what researchers worked
on before moving to the new topic and if they continued working
on the previous topics. Other insights relate to the connectivity of
sub-communities and their historic development. We demonstrate
this application with a dataset covering the most frequent authors
of the IEEE VIS conference series and its tracks. Please also note
the two other examples available in the interactive tool, covering
keyword-based classifications of researchers in the visualization
and the broader computer science community.

Dataset. The Visualization Publication Data Collection [IHK∗17]
with publication data of IEEE VIS serves as a sample (1990–2015,
2752 publications). The different tracks of the conference series
represent the sets: SciVis/Vis (the original Vis conference is consid-
ered here as a predecessor of SciVis), InfoVis, and VAST. Authors of
publications form the elements. We filter the authors with a mini-
mum of 15 publications, which results in 48 authors. We aggregate
publications over periods of three years each to one timestep.

Findings. Figure 1 shows the resulting visualization for this
dataset. First, investigating the general structure, we clearly ob-
serve the origin of the conference series in the SciVis/Vis track, from
which first the InfoVis track is branching (1996–1998) and later the
VAST track (2005–2007). The introduction of the VAST track was
successful in the sense that the established researchers represented
in this dataset also started publishing in this track from the begin-
ning. However, nobody immediately switched to only publishing
at the VAST track, but instead new people came in that started with
the VAST track only. From 2005, in general, the many diagonal con-
nections between the nodes show good mobility between the tracks.

Also, mainly in the last two timesteps, all combinations of tracks
are non-empty and populated by multiple authors; this shows that
the tracks do not separate the community. In the period of 2005–
2010, the situation was clearly not as balanced between the tracks
yet, but still more focused on SciVis/Vis. Second, we contrast par-
ticular groups of authors. For instance, as marked in Figure 1, we
can compare the group of early contributors (marked in orange) and
the group of recent generalists (marked in green). The groups only
share one researcher (van Wijk, in black, but also highlighted in
yellow). Many of the early contributors are still active in the com-
munity (only few orange edges leading out at the bottom) and have
spread across all combinations of tracks. Further, it is interesting to
note that the recent generalists all started their contributions to the
conference with contributions to SciVis/Vis (green incoming edges
all lead to the exclusive SciVis/Vis node).

5.2. Software Evolution

Studying the evolution of a software project provides insights on
the team structure, the status of the development, and expertise ar-
eas. Both software developers as well as team leaders or managers
rely on such information to find the right person to ask about a
certain part of the system, to keep up-to-date with the develop-
ment, or to understand the history of the existing projects when
boarding a new team. Similar data has been studied by others with
stream-based visualizations, for instance, focusing on code struc-
ture [TA08] or also discussing developer contributions [BMBW15].

Dataset. As an example of a large software system, we investi-
gate the evolution of Linux from 2008 to 2017. We split the project
into five main development parts that we call modules. Contributors
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are assigned to a module if their commits to the project repository
changed some files in the respective module. Filtering the Linux
developers to those that made at least 100 commits, the resulting
dataset contains 111 contributors (elements). To focus our analysis,
as shown in Figure 3, we aggregate all exclusive 3-set intersections
and sort the rows based on stability of the exclusive intersections.

Findings. Despite investigating a range of ten years, the overall
structure of the contributors stays quite stable. For instance, there
exists a stable set of generalists across time (the third row) who con-
tributed to all modules throughout the whole period (Jiri Kosina,
Greg Kroah-Hartman, David S. Miller, Linus Torvalds, Al Viro). A
remarkable intersection that leads to another consistent pattern is
between the modules arch and drivers. These two modules seem to
be closely interlinked. In Figure 3, the (non-exclusive) intersection
of both modules is marked in orange for 2008 and green for 2017.
We find that 22 committers were common in the two selections.
Most of these common committers (black) are either generalists or
contributed only in drivers and arch (thick black lines in respective
rows). Also, inflowing green edges and outflowing orange edges in-
dicate the entering and leaving of respective contributors. The his-
tograms reveal a consistent spike in the 2-set intersections, which
relates to this as well. Comparing the different modules with each
other, we observe that developers who only contribute to one mod-
ule can be found for drivers and fs mostly.

5.3. Multi-Label Classification

Labeling—assigning labels to elements such as images—can be
characterized as supervised classification and is a standard machine
learning problem. When the labeling is not restricted to assigning
exactly one label per element, but multiple labels can be assigned,
showing the results of the labeling process becomes a problem of
visualizing overlapping sets. And a temporal component needs to
be considered when data analysts who set up the learning approach
want to study the training process. Visualizing the evolution of the
multi-label classification can help to understand the progress of the
learning process, can hint at elements that are harder to label cor-
rectly, or can provide indicators for improved learning strategies.

Dataset. As an example for multi-labeling, we consider an image
classification scenario where images of dishes are classified accord-
ing to the type of dish.‡ Since one dish can be, for instance, both
junk food as well as a main dish, the labels overlap. In our set visu-
alization, the images form the elements while the labels are the sets.
The specific dataset contains 200 images and 6 labels. We visualize
the results of training a convolutional neural network. Since there
are too many training epochs, we focus on the last epochs of train-
ing. To also include the ground truth (i.e., the correct labeling that
was manually created for the training and test data), we add it as
the last timestep. As important contextual information, we further
list the accuracy for each timestep.

‡ https://nanonets.com/blog/multi-label-classification-using-deep%

2Dlearning/

Findings. A general observation from Figure 2, both from the ac-
curacy and the set evolution, is that the training is toggling: between
higher (> 70%) and lower (≤ 68%) accuracy as well as between
classifying most elements as mains only and as junk and mains. In-
terestingly, the changes in accuracy and sets do not align (i.e., the
changes appear in different epochs)—this shows that, even when
accuracy indicates a quite stable transition, bigger changes might
actually happen behind the scenes. Marking the exclusive intersec-
tion of junk and mains in Epoch 29 (orange group in Figure 2) as
an example for this, we observe: (i) the state with respect to this in-
tersection was similar in Epoch 22 and 25 (though having different
accuracy rates), (ii) only about half of the marked elements are cor-
rectly classified while the others spread with respect to the ground
Truth, (iii) before, in Epoch 28, many of the marked elements were
(mostly wrongly) classified as dessert. Exploring different exam-
ples with on-demand individual highlights, we can find stable ex-
amples that are in most epochs classified with the correct label(s),
but also unstable outliers of particular relevance for further improv-
ing the machine learning approach. For instance, the highlighted
picture of a cheesecake in Figure 2 (yellow) should be classified as
dessert, but jumped around different exclusive intersections until,
in Epoch 29 and 30, finally being classified correctly.

5.4. Expert Feedback

To confirm the validity and usefulness of the findings described
above as well as to receive general feedback, we invited different
expert users to test the approach as part of an online study. We used
our professional network to recruit at least one expert for each ap-
plication example. In total, 5 expert users (E1–E5) participated, E1
and E2 having significant experience in bibliographic analysis, E2
and E3 in software evolution research, and E5 in training classifiers.
We provided them the tool (including a tutorial) and a preliminary
version of the paper (including everything except this section on
expert feedback). As part of an online questionnaire, we initially
asked them to go through the tutorial and explore the tool before
starting the questionnaire, which all participants confirmed. The
first task was to reproduce the observations described in the result
section of the respective application example (each participant was
assigned the application example fitting his/her expertise). Second,
the experts were asked to extend the analysis of the application ex-
ample and report the insights found. Then, the experts were invited
to comment on (a) the sorting and aggregation and (b) the query-
based selection capabilities of Set Streams. The study concluded
with options to provide overall feedback on most and least use-
ful features, missing information or features in the tool, additional
analysis tasks that could be performed, and additional remarks. The
study was designed to take about 60 minutes. The questionnaire and
all responses are available in the supplementary material [AB20].

Reproduced and Extended Findings. All experts commented
that they were able to reproduce most of our findings, while some
of them had problems due to clutter (E1) or relating the findings
with the figure (E4). The experts were able to extend the analysis
and discovered: most common exclusive set intersections (InfoVis
and VAST – E1; arch, kernel, and module – E3), stability of element
memberships in at-least one set across all timesteps (E2), uncom-
mon exclusive set intersections (kernel and drivers – E4; net and
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arch – E4), and unusual behavior of some elements not belong-
ing to any set in a few timesteps (E5). Although the experts found
additional insights, one expert (E3) commented that the analysis
becomes difficult without being closely associated with the dataset
and without having a specific question in mind.

Functionalities. All experts liked the functionality of sorting
rows: based on a timestep (E4), based on the ground truth to get
overview of dataset (E5), and based on the priority of specific sets
(E1). The experts also liked the aggregation functionality and com-
mented that it helped to reduce the clutter (E1). However, E1 and
E4 also mentioned that using dropdown lists for these features is
not intuitive and E3 suggested that it could be improved by pro-
viding more information on the sorting criteria via tooltip. All five
expert liked the query-based selection feature: it is self-explanatory
and flexible (E1), formulating queries by selection is easy (E5),
and it was useful to compare two groups of elements (E1 and E4).
However, the experts also commented that differentiating gray and
colored edges becomes difficult (E3 and E5) and too many choices
could confuse the users (E1 and E2).

Overall Feedback. Three experts (E1, E4, and E5) mentioned that
they found the query-based selection to be most useful. In contrast,
the answers are too brief and diverse to identify less useful features.
The experts suggested using natural language to describe the selec-
tion (E4), tooltips to convey extra information (E1 and E3), and in-
tegrating domain-specific information such as, classification accu-
racy of an element at a specific epoch (E5). Expert E2 commented
that Set Streams already supports too many tasks and could be lim-
ited to reduce visual complexity. Experts E3 and E4 also mentioned
that it is difficult to perform free-exploration tasks in Set Streams.
Expert E5 suggested to stabilize the ordering of names in the el-
ement list and provide a search feature. We have already incorpo-
rated the latter two suggestions for the final version.

6. Discussion and Future Work

Testing the visualization in different application examples has
helped us identify important characteristics of the approach. We
discuss advantages and limitations with respect to central dimen-
sions. Our approach can be considered a base technique for dy-
namic set visualization and is extensible in various directions.

Data Ordering. Ordering and grouping the rows of the grid by
degree of the intersections provides a clear structure . Elements
move down in this structure if they generalize (i.e., they take mem-
bership in additional sets), but stay within the same group of rows
if they only switch a set membership. Unchanged set membership
leads to a stable horizontal line. Some visual clutter is produced
by crossing streams. Proposed sorting criteria were found useful
during the analysis of different datasets. Sorting based on the sim-
ilarity of intersection reduces the number of crossings. However,
other reordering methods—like suggested for other alluvial dia-
grams [VBAW15] and similar to edge crossing reduction for lay-
ered graph layouts such as in the Sugiyama algorithm [STT81]—
could also be implemented. The lines between the timesteps can be
bundled to reduce the number of overlaps with individual thin lines.

Data Aggregation. Along similar lines, more versatile data aggre-
gation could help to focus on specific aspects. Currently, we aggre-
gate the elements within the same exclusive intersection IF (Fj) and
make subgroups and individual elements selectable on demand. We
also enable aggregation of exclusive intersections based on their
cardinality, which simplifies the representation. Since the set in-
tersections represented by the rows are mutually exclusive , in
general, aggregation of arbitrary rows would be possible (the ex-
clusive sets form a partition of V ; when aggregating two or more of
these intersections by set union, the resulting family of sets is still
a partition of V ). However, it would be challenging to design an
easy-to-use interface for such a versatile aggregation mechanism.

Selection. We have restricted the selection mechanism to two
groups. Selecting only one group would not have allowed to com-
pare groups, but just to contrast the elements of the group to all
other elements. Supporting the selection of more than two groups
of elements might be desirable, but cannot be easily implemented
based on a color-based selection highlighting—the number of re-
quired colors grows exponentially with the number of selected
groups because all possible overlaps between the selections need to
be considered. If the selected groups do not significantly overlap,
it might be sufficient to assign one color per group and an addi-
tional one for all overlaps. However, in the examples we studied,
the overlap of the intersections was of particular interest. Alterna-
tively, a selection can be handled just as a static or dynamic set and
included as such into the main visualization. This would support se-
lection of arbitrary numbers of groups, however, comes at the cost
of significantly changing the streams with every new selection and
potentially destroying the users’ mental map of the visualization.

Scalability. Our approach scales well with the number of elements
as demonstrated with hundreds of elements. Only reading and se-
lecting thin lines representing few elements becomes difficult. With
respect to time, like other approaches based on Sankey diagrams
on a timeline , we can show about a dozen timesteps before
readability gets affected. However, a rapid temporal scrolling tech-
nique [BBV∗12] could be implemented for longer time sequences.
The most limited dimension of scalability is the number of base
sets, especially if there exists overlap between them in various com-
binations. The worst case is that we need to show all 2n exclusive
intersections. This is a typical problem of set visualizations. For
instance, region-based or line-based overlay techniques [AMA∗16,
Section 4.2] do not scale any better if sets significantly overlap.
Some approaches circumvent the problem by just showing overlaps
of maximum two sets, but this limits the analytical power. Interac-
tive filtering techniques can be explored to reduce the number of
elements and set intersections. An interactive aggregation approach
(see above) might also improve this aspect of scalability.

Applicability. We have kept the approach general to show that the
idea is applicable in diverse scenarios. The only exception with a
slight scenario-specific adaption is the details panel, which shows
different content depending on the loaded dataset. For real-word
usage of the approach, we would still recommend tailoring the ap-
proach to the application at hand—only through this, the full po-
tential of the approach can be used, such as showing application
specific statistics or image thumbnails in the intersection nodes as
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part of the stream visualization . Target users of the approach
could include professionals of diverse kinds, for instance, commit-
tee members of academic conference to find reviewers based on
their publication pattern, software maintainers of a repository, and
machine learning practitioners, among others.

7. Conclusion

We have presented a novel technique for visualizing dynamic sets.
According to our design considerations, it provides an overview of
time on a timeline , where the flow of elements between set in-
tersections is indicated through branching and merging streams
and groups of elements can be interactively selected for compar-
ison . While the application examples have demonstrated the
versatility and usefulness of the approach, we rather consider it as
a base technique that can be extended in various directions. Be-
sides tailoring it to specific applications, open research challenges
involve alternative and extended strategies for ordering and aggre-
gations of set intersections as well as for multi-group selections.
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