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Figure 1: Our motion retargetting model retargets the source motion capture data (top row) to diverse characters with different bone lengths
(the other rows). Not only the input motions but also the target characters are unseen during training.

Abstract
Motion retargetting refers to the process of adapting the motion of a source character to a target. This paper presents a motion
retargetting model based on temporal dilated convolutions. In an unsupervised manner, the model generates realistic motions
for various humanoid characters. The retargetted motions not only preserve the high-frequency detail of the input motions
but also produce natural and stable trajectories despite the skeleton size differences between the source and target. Extensive
experiments are made using a 3D character motion dataset and a motion capture dataset. Both qualitative and quantitative
comparisons against prior methods demonstrate the effectiveness and robustness of our method.

CCS Concepts
• Computing methodologies → Neural networks;

1. Introduction

Motion retargetting is the process of adapting the motion of a
source character to another called a target, whose skeleton size is

different from the source’s. The retargetted motion should not only
look natural but also preserve the features of the source motion.

Deep learning has made a profound impact on numerous areas
in science and engineering, but only very recently a few works for
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solving motion retargetting in the deep learning framework were re-
ported. The state of the art is the work of Villegas et al. [VYCL18]
They proposed an architecture that combines recurrent neural net-
works (RNNs) with analytic forward kinematics, which computes
skeleton’s joint positions given the joint rotations. They showed
promising results but also revealed limitations.

RNNs maintain a hidden state of the entire past. This prevents
parallel computation and makes it hard to train RNNs properly
[BSF94, PMB13, GAG∗17]. In contrast, convolutional neural net-
works (CNNs) allow to precisely control the maximum length of
dependencies to be modeled. In general, motion retargetting may
not require a long-term dependency between the frames of a mo-
tion sequence, e.g., between the frames longer than four seconds.
Therefore, CNNs are the more attractive choice for motion retarget-
ting. In a dilated convolutional network [YK16], the filter can skip
input frames with a certain step and therefore we can use param-
eters fewer than regular dense convolutions to model a short-term
dependency in the motion sequence.

In addition, the loss functions used in the generative adversarial
network (GAN) of Villegas et al. [VYCL18] are proven to be in-
sufficient, i.e., a source motion is not always naturally retargetted
to the skeletons of different sizes. Their model also has difficulties
in processing a long sequence of motions because it outputs the po-
sition offsets of the skeleton’s root (hip or pelvis), making errors
accumulated.

This paper presents a motion retargetting model built upon tem-
poral dilated convolutional networks, where the receptive fields are
defined to be suitable for motion retargetting. We train our model
with a skeleton-specific objective function in an unsupervised way.
The key elements of our main contributions can be summarized as
follows:

• An effective and efficient model based on temporal dilated con-
volutions, which are tailored to the intrinsic features of motion
retargetting.
• A novel objective function designed to meet the basic require-

ment of motion retargetting, i.e., smooth retargetting to a char-
acter of different skeleton size.
• An unsupervised learning framework that works on the typical

character animation data with little preprocessing required.
• A solution to the problem of retargetting a long (in principle,

unlimitedly long) sequence of motions.

Using our model, we made extensive evaluations including com-
parisons with the baseline techniques such as the work of Villegas
et al. [VYCL18]. Both qualitative and quantitative results prove that
our model retargets quite naturally both a virtual character’s motion
and a real human motion to diverse characters†.

This paper is organized as follows. Section 2 reviews the related
studies. Section 3 presents our motion retargetting model, and Sec-
tion 4 describes the adversarial learning and loss functions. Sec-
tion 5 presents the experiment setup, and Section 6 reports the ex-
periment results. Section 7 concludes the paper.

† Code is available at http://bit.ly/retargetting-tdcn

2. Related Work

With the success of deep learning, there has been a surge in mod-
els that can directly predict 3D poses from images [LC14, PHK16,
TKS∗16, ZSZ∗16, RS16, PZDD17, MRC∗17, SSLW17, VRM∗17,
TRA17]. Many approaches for modeling human motions tried to
use temporal information since a model that infers a motion for
each frame causes unstable and inconsistent predictions for a se-
quence. Tekin et al. [TRLF16] proposed a 3D pose regression di-
rectly from 3D HOG (Histograms of Oriented Gradients) features
of a spatio-temporal volume on which a person is always centered
using CNNs. Mehta et al. [MSS∗17] devised a real-time system for
3D pose estimation, which utilizes CNNs trained with bone-length
constraints and predicts smooth 3D poses with temporal filtering.
Lin et al. [LLL∗17] used LSTMs [HS97] to estimate 3D poses from
a sequence of images. They performed a multi-stage refinement to
exploit spatial and temporal constraints. Hossain et al. [HL18] also
proposed sequence to sequence learning models using LSTMs to
focus on predicting temporally consistent 3D poses by learning the
temporal context of a sequence. Katircioglu et al. [KTS∗18] used
bidirectional LSTMs to improve temporal consistency of 3D poses
decoded from the structural latent representation.

A prevalent way to model 3D human poses with a sequence
is to use RNNs [FLFM15, JZSS16, MBR17, GSAH17]. Recently,
Aksan et al. [AKH19] proposed a structured prediction layer that
could be combined with various architectures while decompos-
ing the body pose predictions into individual joints. On the other
hand, there exist multiple cases of successfully modeling sequen-
tial networks without using RNNs [vdODZ∗16,KES∗16,VSP∗17].
Butepage et al. [BBKK17] used a feed-forward network for the
encoding-decoding framework and compared the results of differ-
ent temporal encoder structures. Pavllo et al. [PFGA19] proposed
a 3D pose estimation network that uses temporal dilated convolu-
tions with excellent performances. Since these networks directly
infer the xyz-coordinates, however, they are not suitable for motion
retargetting which maps a source motion to a target character of
different proportions while retaining important constraints such as
the root joint trajectory. Further post-processing is also required to
meet the bone-length constraints to integrate with character anima-
tion.

Gleicher [Gle98] used a spacetime constraints solver to compute
motion retargetting while retaining the characteristics of the origi-
nal motion. Lee and Shin [LS99] proposed a hierarchical approach
where motion retargetting was decomposed into per-frame Inverse
Kinematics (IK), followed by B-spline curve fitting for smooth re-
sults. Choi and Ko [CK00] developed an online retargetting algo-
rithm based on the per-frame IK. Monzani et al. [MBBT00] pro-
posed to use an intermediate simplified skeleton to perform mo-
tion retargetting. Tak and Ko [TK05] suggested a per-frame algo-
rithm that filters input motion to obtain a physically plausible one.
Villegas et al. [VYCL18] proposed a neural kinematic framework
that performs a one-step feed-forward prediction by encoding and
decoding temporal information using GRUs [Mai90], whereas the
other methods require iterative optimization. Recently, Aberman et
al. [AWL∗19] used temporally structured representations for video
motion retargetting between 2D skeleton poses.

Our motion retargetting framework is designed along the line of
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Figure 2: Motion retargetting model based on temporal dilated convolutional network.

Villegas et al. [VYCL18], but we replaced the RNNs with temporal
dilated convolutions for stable training. It makes our model more
stable for a larger sized mini-batch and augmented dataset during
training time. Our model can be used in example-based methods
such as motion style transfer or motion synthesis [BH00,GMHP04,
HPP05]. We also introduce the PatchGAN [IZZE17] approach into
our discriminator to preserve the high-frequency detail of the input
motions.

3. Motion Retargetting Model

Section 3.1 describes our neural kinematic framework. The core
of the framework is the temporal dilated convolutional network.
Section 3.2 presents the network tailored for motion retargetting.

3.1. Neural Kinematic Framework

Figure 2a shows the overall architecture, where a motion sequence
performed by a source skeleton is mapped to a target. We denote
the source and target by A and B, respectively. Their skeletons have
the same number of joints. The input consists of the source motion
sequence, xA

1:T where T is the frame count, and the target skeleton
s̄B in the default pose.

For each frame t in [1,T ], xA
t is a combination of qA

t and rA
t ,

where qA
t (∈ R4N for N joints) represents the unit quaternions that

describe the joint rotations of the source skeleton and rA
t (∈ R3)

represents the root joint position. Taking qA
t and s̄A (the source

skeleton in the default pose) as input, the forward kinematics (FK)
module, fFK , outputs pA

t (∈ R3N), which represents the joints’ lo-
cal coordinates with respect to the root:

pA
t = fFK(q

A
t , s̄

A) (1)

The input to the temporal dilated convolutional network (TDCN)
is a sequence of frames, each of which contains pA

t , qA
t and rA

t of the
source and s̄B of the target. In order to generate a retargetted motion
for every input frame, the left end of the input sequence is padded
with pA

1 , qA
1 and rA

1 , and the right end with pA
T , qA

T and rA
T . The

padded sequence, denoted as x̃A
1:T , and the target skeleton s̄B are

then fed to TDCN, fT DCN . It outputs the target motion sequence,
x̂B

1:T :

x̂B
1:T = fT DCN(x̃

A
1:T , s̄

B) (2)

where each component x̂B
t is a combination of the root joint’s global

position r̂B
t (∈ R3) and the unit quaternions, q̂B

t (∈ R4N). The FK
module converts q̂B

t to p̂B
t , which represents each joint’s local coor-

dinates with respect to the root:

p̂B
1:T = fFK(q̂

B
1:T , s̄

B) (3)
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Figure 3: The discriminator’s structure.

It is combined with r̂B
t to determine the joint’s global coordinates

in the retargetted motion.

3.2. Temporal Dilated Convolutional Network

We have tailored the TDCN proposed by Pavllo et al. [PFGA19]
to the need of motion retargetting. Figure 2b shows its structure.
Our TDCN first applies a convolutional layer to the input frame
of pA

t , qA
t , rA

t and s̄B. The first convolutional layer is denoted as
“3d1, 1024.” The first element implies that the filter size is three,
i.e., three frames are convolved, and the dilation factor is one. The
second element denotes 1024 output channels.

The convolution is followed by three ResNet-style blocks. Each
block is surrounded by a skip-connection that slices the residuals
symmetrically and adds them to subsequent features [HZRS16].
For the i-th block, the dilation factor for convolution is 3i. For
example, it is 32 = 9 for the second block. In each block, such a
convolution is followed by a linear projection denoted as 1d1.

Note that, in our TDCN, the receptive field is limited to 81
frames, i.e., the TDCN can see at a time a local sequence of 81
frames. Conceptually speaking, a window slides over xA

1:T , and x̂B
t

is generated using the input motions that can be seen through the
window.

Each of the seven layers up to this point (colored in yellow in
Figure 2b) is followed by batch normalization [IS15], leaky recti-
fied linear units [XWCL15], and dropout [SHK∗14]. For the sake
of simplicity, however, they are not depicted in Figure 2b.

The features produced by the last block are converted to high-
level features by an additional convolutional layer (colored in

cyan). Finally, a simple fully-connected layer maps the high-level
features to q̂B

t and r̂B
t .

4. Unsupervised Motion Retargetting

Our unsupervised motion retargetting adopts adversarial cycle con-
sistency training [ZPIE17]. Section 4.1 presents adversarial learn-
ing for motion retargetting, and Section 4.2 presents cycle consis-
tency training and loss functions.

4.1. Discriminator for Adversarial Learning

For adversarial learning, the network in Figure 2b works as the gen-
erator. It provides the retargetted motion sequence for the discrim-
inator, which is also a temporal dilated convolutional network. See
Figure 3. Its structure is similar to the generator’s shown in Fig-
ure 2b, but the receptive field is limited to 31 frames.

In the framework proposed by Villegas et al. [VYCL18], the en-
tire sequence of motions was input to the discriminator. In this way,
however, the high-frequency detail of the local motions may not be
properly generated. Advance to Figure 5a and see the characters in
the last column. The target’s limb joints do not correctly follow the
source’s.

In the context of generating realistic high-frequency images us-
ing GANs, patch-based discriminators [IZZE17, LW16, ZPIE17]
have been proposed to address a similar problem. They classify the
local image patches as either real or fake. By the same token, we
provide a local sequence of the motions for the discriminator.

4.2. Cycle Training and Loss Functions

Let G and D denote the generator and discriminator, respectively.
For cycle consistency training, G first retargets A’s motion se-
quence, xA

1:T , to B to produce x̂B
1:T , and then retargets x̂B

1:T back
to A to produce x̂A

1:T :

x̂B
1:T = G(xA

1:T , s̄
B) (4)

x̂A
1:T = G(x̂B

1:T , s̄
A) (5)

Figure 4 illustrates the cycle. We have six loss terms: (1) Lc stands
for the cycle consistency loss, (2) Lt for the joint twist loss, (3)
Lh for the height loss, (4) La for the adversarial loss, (5) Lr for
the regularization loss, and (6) Lo for the orientation loss. Our full
training objective is defined as follows:

min
G

max
D

Lc +λtLt +λhLh +λaLa +λrLr +λoLo (6)

where λ∗ represents the weight of each loss term.

Cycle consistency loss. Lc is the standard term in cycle training,
which minimizes the difference between xA

1:T and x̂A
1:T :

Lc(xA
1:T , x̂

A
1:T ) = ‖xA

1:T − x̂A
1:T ‖2

2 (7)

where xA
t includes pA

t as well as qA
t and rA

t which are all defined in
Section 3.1. Similarly, x̂A

t includes p̂A
t as well as q̂A

t and r̂A
t .

Joint twist loss. There is no explicit label for retargetted rotation
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Figure 4: Adversarial cycle consistency training.

in the unsupervised learning framework. Consequently, we may of-
ten encounter excessive twisting of a joint. Lt constrains the joint
rotation:

Lt(q̂B
1:T , q̂

A
1:T ) =‖max(0, |E(q̂B

1:T )−α|)‖2
2+

‖max(0, |E(q̂A
1:T )−α|)‖2

2 (8)

where E(·) converts a quaternion into a rotation angle. Any angle
exceeding α is penalized. In the current implementation, α = 100◦.

Height loss. Suppose that a tall source character (A) makes a stride
and this is retargetted to a short target character (B). Then, B’s mo-
tions should be smaller than A’s. The height loss is in charge of
achieving this effect.

With the local coordinates of the joints in A and B, i.e., pA
1:T and

p̂B
1:T , the local motion differences are defined between two adjacent

frames:

dA
2:T = pA

2:T − pA
1:T−1 (9)

d̂B
2:T = p̂B

2:T − p̂B
1:T−1 (10)

Let us normalize their magnitudes using the heights of A and B,
which are denoted asH(s̄A) andH(s̄B), respectively:

lA
t =

‖dA
t ‖

H(s̄A)
(11)

l̂B
t =

‖d̂B
t ‖

H(s̄B)
(12)

Then, a loss is defined as follows:

smoothL1(l
A
2:T − l̂B

2:T ) (13)

where

smoothL1(x) =

{
0.5x2, if |x|< 1
|x|−0.5, otherwise

(14)

is a robust L1 loss that is less sensitive to outliers than the L2 loss.

Without loss of generality, we assume that the motions are made
around or across the origin of the global coordinate system. Then,
the magnitudes of the root position vectors, rA

t and r̂B
t , can be nor-

malized:

mA
t =

‖rA
t ‖

H(s̄A)
(15)

m̂B
t =

‖r̂B
t ‖

H(s̄B)
(16)

With mA
t and m̂B

t , the loss in Equation (13) is extended to define the
height loss:

Lh(x
A
1:T , x̂

B
1:T ) = smoothL1(l

A
2:T − l̂B

2:T )+λgsmoothL1(m
A
2:T − m̂B

2:T )
(17)

In the current implementation, λg = 5.

Adversarial loss. Consider the normalized magnitudes of the root
motion differences between two adjacent frames:

δ2:T =
‖r2:T − r1:T−1‖

H(s̄) (18)

The discriminator, D, computes the scores for A’s real motion se-
quence and B’s fake one:

hA
2:T = D(lA

2:T ,δ
A
2:T ,BA) (19)

hB
2:T = D(l̂B

2:T , δ̂
B
2:T ,BB) (20)

where lA
t and l̂B

t are defined in Equations (11) and (12), respectively,
and BA and BB represent the bone lengths of A and B, respectively.

As we randomly sample the skeletons during training, B can be
identical to A. Then, xA

1:T = x̂B
1:T . The adversarial loss is defined by

distinguishing between two cases:

La(xA
1:T , x̂

B
1:T ) =

{
(hA

2:T )
2 +(1−hB

2:T )
2 if A 6= B

‖xA
1:T − x̂B

1:T ‖2
2 if A = B

(21)

where xA
t includes pA

t as well as qA
t and rA

t , and x̂B
t includes p̂B

t as
well as q̂B

t and r̂B
t .

La is basically taken from Villegas et al. [VYCL18] but is dif-
ferent from two aspects: (i) In regular GANs, the sigmoid cross
entropy loss function often leads to the vanishing gradient prob-
lem [MLX∗17]. In order to mitigate this problem and also improve
the training stability, we use the least square loss function. (ii) The
inputs to the discriminator, i.e., lA

t , δ
A
t , l̂B

t and δ̂
B
t , are normalized,

and the discriminator uses shorter clips than the generator, as men-
tioned in Section 4.1.

Regularization loss. Inspired by the work of Pavllo et al. [PGA18],
we use a penalty term with respect to the unit quaternions.

Lr(q̂B
1:T , q̂

A
1:T ) = (1−‖q̂B

1:T ‖)2 +(1−‖q̂A
1:T ‖)2 (22)

This loss function acts as a regularizer that leads to better training
stability.

Orientation loss. The height loss Lh accounts for each joint’s
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pt rt

training dataset M SD M SD

Villegas et al. [VYCL18] 5.95 36.95 40.06 80.30
ours (balanced) 5.74 45.12 51.59 106.33

Table 1: Dataset statistics: M stands for mean and SD for standard
deviation.

translation or displacement, but does not handle the characters’ ori-
entation. Let θt denote the root joint’s quaternion. Then, the orien-
tation loss Lo optimizes the following objective:

Lo(θ
A
1:T , θ̂

B
1:T ) = smoothL1(E(θ

A
1:T )−E(θ̂B

1:T )) (23)

5. Experiment Setup

For training our model, we used the Mixamo dataset [MIX], which
contains approximately 2400 motion clips for 71 characters. For
test, we used not only the Mixamo dataset but also Human3.6M
motion capture dataset [IPOS14], which is extracted from 15 kinds
of actions made by 7 subjects. Focusing on the Mixamo dataset,
this section briefly presents the dataset used for training and test.
As will be presented in Section 6, the baseline models used for
comparisons were built upon the work of Villegas et al. [VYCL18]
and therefore this section also presents their dataset.

Training dataset. We used 1646 non-overlapping motion clips for
nine characters in Mixamo (AJ, Big Vegas, Kaya, Malcolm, Peas-
ant Man, Regina, Remy, Shae, and Warrok Kurniawan). The dataset
size was the same as that of Villegas et al. [VYCL18] but we used
two more characters to make the data better balanced. We also per-
formed random scaling, i.e., we scaled pt and rt with random fac-
tors in [0.5,1.5]. Table 1 compares the statistics of two datasets.
The larger the standard deviation is, the better balanced the dataset
is. Section 6 presents the benefit brought by this balanced dataset.

Test dataset. We collected motion sequences of six characters
(Malcolm, Mutant, Warrok Kurniawan, Sporty Granny, Claire, and
Liam) from the Mixamo website, which stores motions in 52 pages.
Table 2 lists the character-page combinations. The test dataset was
collected along the guideline by Villegas et al. [VYCL18]:

1. Both the input motion and the target character are seen during
training.

2. The input motion is seen during training but the target character
is not.

3. The input motion is not seen during training but the target char-
acter is seen.

4. Neither the input motion nor the target character is seen during
training.

The specific combinations of the input motion and target charac-
ter are listed in Table 3. For evaluations, we also collected “as
groundtruth” the Mixamo motions made by the target characters.

Data preprocessing. The characters in the Mixamo dataset have
different numbers of joints. For both training and test, we selected

test dataset

character page

Malcolm 28,51
Warrok W Kurniawan 18,52
Liam 23,45
Mutant 33,45,52
Claire 52
Sporty Granny 51

Table 2: Animation pages for test dataset.

scenario input→target page

(1)
Kaya→Warrok W Kurniawan 18
Big Vegas→Malcolm 28

(2)
Peasant Man→Liam 23
AJ→Mutant 33

(3)
Sporty Granny→Malcolm 51
Claire→Warrok W Kurniawan 52

(4)
Mutant→Liam 45
Claire→Mutant 52

Table 3: Combinations of the input motion and target character for
each test scenario.

the following 22 joints: Root, Spine, Spine1, Spine2, Neck, Head,
LeftUpLeg, LeftLeg, LeftFoot, LeftToeBase, RightUpLeg, Right-
Leg, RightFoot, RightToeBase, LeftShoulder, LeftArm, LeftFore-
Arm, LeftHand, RightShoulder, RightArm, RightForeArm, and
RightHand.

Training detail. Every motion sequence used for training our
model was composed of 81 consecutive frames, which were ran-
domly sampled from the raw motion clips of Mixamo. For training
the discriminator, we sampled the motion clips performed by the
character, which was taken as the target by the generator. We used
the Adam optimizer [KB15] with a learning rate of 1e−4 and mo-
mentum parameters, β1 = 0.5 and β2 = 0.999.

We trained our model with a batch size of 128 and a learning rate
of 1e−4 using PyTorch. Each batch had 128 pairs of a source char-
acter’s motion sequence and a target character. In 50% of the pairs,
we made the target identical to the source, i.e., A = B. We used a
dropout rate of 0.1 for the generator. For the objective function pre-
sented in Equation (6) of Section 4.2, λt = 10, λh = 10, λa = 1,
λr = 0.1, and λo = 1.

6. Evaluation

For comparisons, we used four baseline models. (i) We took the
original work of Villegas et al. [VYCL18] It is called ‘Baseline.’
(ii) We replaced RNNs in Baseline with dense convolutions. It is
called ‘Baseline-dense.’ (iii) We replaced RNNs in Baseline with
TDCNs. It is called ‘Baseline-dilated.’ (iv) We added the height
loss function (Lh) to Baseline, where the root-position offsets are
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input groundtruth ours Baseline

(a)

input groundtruth ours Baseline

(b)

Figure 5: Qualitative comparisons: (a) The front view of the retargetted motions. (b) The top view of the root joint’s trajectories.

normalized. It is called ‘Baseline-height.’ All baseline models were
trained from scratch. Section 6.1 quantitatively compares the re-
sults of our model and four baseline models using the Mixamo
dataset. Section 6.2 qualitatively compares the results of our model
and Baseline using the Human 3.6M dataset.

6.1. Quantitative Comparison

For quantitative evaluation, we used mean square error (MSE) be-
tween the joints’ global coordinates of the retargetted character and
those of the groundtruth. Table 4 shows the results. The numbers in
parentheses represent the four scenarios presented in Table 3. Ta-
ble 4 reports the MSEs for short and long motion sequences. A
short sequence was composed of 120 frames (for 4 seconds). In the
work of Villegas et al. [VYCL18], every test sequence was short.
However, motion retargetting in reality requires us to take the ‘en-
tire’ sequence of the source motions. It is more difficult to perform
retargetting with longer sequences. In our test, long sequences had
at maximum 1130 frames and at minimum 121 frames. Their mean
was 228.

Table 4 shows that our model outperformed all baseline mod-
els for both short and long. Note that our model showed similar
performances for short and long. In contrast, the baseline models
significantly degraded for long, including Baseline-height, where
the root-position offsets are normalized. We believe that the base-
line models suffer from the artifact because they output the position
offsets of the skeleton’s root, making errors accumulated, whereas
our model directly outputs the root positions.

Baseline-height performed the best among the baseline models.
This proves the strong impact of the height loss (Lh). It is inter-
esting to find that Baseline-dense and Baseline-dilated performed
mostly worse than Baseline. This indicates that simply modifying
the architecture of the generator does not guarantee performance
improvements.

We conducted an ablation study in order to validate the effec-
tiveness of several features of our model. In Table 4, A1 through
A5 denote our models with a feature’s absence or modification.

• A1: TDCN was replaced by the typical dense convolutional net-
work, which had 6.5 times more parameters than TDCN. Com-
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input groundtruth ours Baselineinput groundtruth ours Baseline

Figure 6: Dancing motion retargetting.

short long

model (1) (2) (3) (4) avg. (1) (2) (3) (4) avg.

Baseline: Villegas et al. [VYCL18] 4.79 1.22 3.99 18.31 7.08 26.14 4.64 8.38 45.34 21.12
Baseline-dense: Baseline w/ dense conv. 4.45 1.73 3.85 19.71 7.44 23.66 4.75 9.14 35.37 18.23
Baseline-dilated: Baseline w/ TDCNs 7.92 4.53 7.63 26.26 11.59 30.14 9.41 11.24 49.43 25.06
Baseline-height: Baseline w/ Lh 2.72 0.88 3.29 6.63 3.38 14.86 2.65 9.13 14.89 10.38

ours 2.21 0.82 2.70 4.06 2.45 1.65 0.78 3.00 4.49 2.48

A1: ours w/ dense conv. 1.58 0.99 3.00 4.21 2.45 1.63 0.80 3.49 6.33 3.06
A2: ours trained w/ unbalanced dataset 3.74 2.71 3.71 9.60 4.94 3.99 2.80 4.89 13.14 6.20
A3: ours w/o Lh 6.90 1.70 5.26 25.23 9.77 12.27 2.25 6.23 51.66 18.10
A4: ours w/o patch-based discriminator 2.31 1.28 3.70 4.30 2.90 1.97 1.24 4.23 5.31 3.19
A5: ours w/ causal conv 1.65 1.15 2.86 5.54 2.80 2.03 0.83 3.58 8.39 3.71

Table 4: Quantitative comparisons using normalized mean square error (MSE).

pared with our full model, A1 showed similar performances for
short but significantly degraded for long. As A1 was trained with
81-frame sequences, we argue that A1 was overfitted to short se-
quences. It is interesting to find that A1 excelled ours only for
scenario (1), which consists of known motions and known skele-
tons. We argue that A1 was overfitted also to known motions
and skeletons. In contrast, dilated convolutions counteract over-
fitting, as reported by Pavllo et al. [PFGA19] in their ablation
studies.

• A2: Our model was trained not with the balanced dataset but with
the dataset used by Villegas et al. [VYCL18] A2’s performances
were degraded by more than 50% for both short and long. Note
however that A2 performed better than Baseline. We also tested
the reverse, i.e., Villegas et al. [VYCL18] was trained with the
balanced dataset, but the resulting performance was too poor to
be worth being reported. Our speculation is twofold: (1) The
vanilla GAN requires a vast amount of hyperparameter tuning
for the new (balanced) dataset because it uses Jensen-Shannon
divergence as the loss function. (2) Our model uses the least
squares loss function and so it performs more stably.

• A3: The height loss (Lh) was removed from the objective func-
tion of our model. From the outset, Lh was designed to handle

the height differences among characters. Its strong impact was
clearly proved in our ablation study.
• A4: We added a convolution layer to our discriminator such that

it sees the same number of frames (81 frames) as the generator.
Being forced to see longer sequences (than ours), the discrimina-
tor often misses high-frequency details. A4’s performances de-
graded more for long because the missed details, i.e., the errors,
are accumulated.
• A5: Note that our model uses not only the past frames but also

the future ones. In order for a model to be used for live or real-
time motion retargetting, it should use only the past frames. To
this end, we tested our TDCN with a causal convolution. The
performance was worse than our original TDCN but better than
Baseline.

6.2. Qualitative Comparison

Figure 5a shows that our model successfully retargetted the motions
of the source to the target despite the differences in their skeleton
sizes. Figure 5b shows the top views of the characters’ root joint
trajectories. Given the same stride count, the trajectory of a tall
character should be longer than that of a short character. Our model
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Figure 7: Motion capture data retargetting.

successfully produced such differences. Figure 6 compares another
set of results with an acrobatic dancer.

The earlier version of our model did not take as input the posi-
tions, pA

t . It implies that the model was designed to ‘learn’ the for-
ward kinematics (FK). The results were not satisfactory. We spec-
ulated that it is hard to learn FK in an unsupervised way. Then,
the model was modified to take the positions, not the rotations, qA

t ,
but suffered from the same problems of Villegas et al. [VYCL18]
shown in Figure 6: The target’s limb joints did not correctly fol-
low the source’s, and complex or rapid motions were not smoothly
retargetted. In contrast, the results were satisfactory when we used
both positions and rotations as input to our model. It would be be-
cause the skip-connections (presented in Figure 2b) help our model
learn how to generate the output rotations, q̂B

t .

Figure 7 shows the results of retargetting the motion capture data
of Human3.6M dataset to six virtual characters of different skele-
ton sizes. Recall that our model was designed to work on 22-joint
characters and were trained using the Mixamo dataset only. The
Mixamo dataset has 25 frames per second. In Human3.6M, the mo-
tion data captured at 50 fps has 32 joints. In a preprocessing stage,
the number of joints was reduced to 22, and the frames were down-
sampled by half, i.e., to 25 fps. It is important to note that the human
actors used for test were never seen during training, i.e., our model
generalizes to such new motions.

7. Conclusion and Future Work

This paper presents a motion retargetting model based on temporal
dilated convolutional networks. It is trained with adversarial cycle
consistency objective in an unsupervised manner to overcome the
lack of training pairs. The success factors of our proposed model
can be listed as follows: (1) Temporal dilated convolutions make
our model more stable and robust when training with various char-
acters. (2) The loss functions make our model reflect the skeleton
size differences quite effectively. (3) The limited receptive fields
of our discriminator allow to capture the high-frequency detail of
input motions.

Our model also has limitations. First of all, our model as-
sumes that the source and target skeletons have the same num-

ber of joints. A solution to retarget motions between heteroge-
neous skeletons would be to project the joint or vertex positions
onto voxels and use 3D CNN to retarget them. Another solution
would be to adopt the existing techniques of learning or build-
ing a mapping function between different character morpholo-
gies [YAH10,SOL13,RTIK∗14]. However, the techniques were de-
veloped in a supervised way, and therefore we should extend them
to our unsupervised learning framework.

Secondly, our model currently does not take into account the
end-effectors such as hand and feet. In order to generate naturally
retargetted motions of such end-effectors, e.g., to avoid the foot-
skating artifact, the objective function should be extended to have
the loss terms elaborately designed for the end-effectors because
people are quite sensitive to the hand and feet motions. Rhodin et
al. [RTK∗15] showed that footskating artifact could be handled us-
ing a weighted vote based on foot contact database. We envision
that, if our network predicts the foot contact in the retargetted mo-
tion, the artifact can be handled using their method.

Thirdly, our model uses the future frames as well as the past
ones. As discussed in Section 6, it prevented our model from being
used for live or real-time motion retargetting. (In contrast, RNNs
work in an online manner.) The causal model, A5, presented in
Table 4 showed a reasonable performance for short, but the perfor-
mance for long requires improvement. We envision that inverse
kinematics supported in real-time game engines can be adopted for
the improvement. Our future work will focus on overcoming the
limitations.
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