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Packable Springs
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(a) input object (b) packable springs (c) laser cut spring parts (d) assembled springs (e) clay surface

Figure 1: Given an input object (a), we construct a spring representation (b), such that the springs consist of a small number of packable parts,
which can be flattened to a plane. This allows us to laser cut the springs from a small number of flat material sheets (c) and easily assemble
them to form their intended shape in 3D (d). This structure can serve as formwork for a multitude of different materials and applications, e.g.
for sculpting with clay (e).

Abstract
Laser cutting is an appealing fabrication process due to the low cost of materials and extremely fast fabrication. However, the
design space afforded by laser cutting is limited, since only flat panels can be cut. Previous methods for manufacturing from flat
sheets usually roughly approximate 3D objects by polyhedrons or cross sections. Computational design methods for connecting,
interlocking, or folding several laser cut panels have been introduced; to obtain a good approximation, these methods require
numerous parts and long assembly times. In this paper, we propose a radically different approach: Our approximation is based
on cutting thin, planar spirals out of flat panels. When such spirals are pulled apart, they take on the shape of a 3D spring
whose contours are similar to the input object. We devise an optimization problem that aims to minimize the number of required
parts, thus reducing costs and fabrication time, while at the same time ensuring that the resulting spring mimics the shape of
the original object. In addition to rapid fabrication and assembly, our method enables compact packaging and storage as flat
parts. We also demonstrate its use for creating armatures for sculptures and moulds for filling, with potential applications in
architecture or construction.

1 Introduction

Digital fabrication enables fast creation of real world objects from
digital models. Many fabrication techniques exist today, ranging
from state-of-the-art technologies such as 3D printing, to more
traditional CNC milling or hot wire foam cutting. Laser cutting is a
particularly appealing fabrication method, since it is extremely fast
and affords a large variety of materials, including cheap yet durable

options like plywood or acrylic glass. The main drawback of laser
cutting is its restriction to flat shapes. Consequently, a multitude of
research works explore design for laser cutting based fabrication and
offer computational approaches to help users navigate the design
space to reach their creative goals. For example, Hildebrand et
al. [HBA12] use planar slices with prefabricated slits and assemble
a representation of the input 3D shape by sliding them together.
Another example can be found in [CSaLM13], where the authors
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(a) input shape (b) remeshed shape (c) segmented shape (d) optimized shape (e) packable springs

Figure 2: To construct a spring representation of an input shape (a), we first remesh it to create horizontal layers w.r.t. the spring direction (b)
and then optimize for a desired normal orientation for each layer (c). This results in n segments (red and green areas). We repeat (b) and (c) to
find an optimal spring direction to reduce the number of segments and thus the required number of packable parts. To create the springs, we
optimize the shape (d) such that each segment becomes “monotonic” by only minimally straying from the original appearance of the shape.
Any spring (e) that lies on the optimized surface consists of at most n packable sub-springs. More than one spring might be needed to cover
several “hills” of a segment. The spring representation in (e) consists of 2 springs or 3 packable parts.

use a small number of planar polygonal primitives that form a closed
surface. Many more techniques exist for attaching, interlocking and
folding the flat panels to approximate a given 3D object, and each
technique reveals its own design space.

In this paper, we present a radically different fabrication method
based on laser cutting. We propose packable springs, a spring-like
representation of an object that can be compressed to a flat state
(Figures 1, 3). We draw inspiration from the field of spring design
in mechanical engineering, where in some cases it is desirable for
a spring to take up minimal space when compressed. For example,
the packability of a cylindrical spring is limited, but a conical spring
can be perfectly packed (Fig. 3, right). The packable spring repre-
sentation thus has an advantage with regard to storage and shipping
of the 3D object. However, a more surprising result is that packable
springs can be laser cut using a small number of seemingly rigid
material sheets: cutting a thin spring out of a flat panel produces
an elastic object that can be lifted out of the plane to assume a 3D
shape that approximates the input surface.

We define the packability of a spring as the minimal number
of layers it has when compressed. The packability of a cylindrical
spring is equal to the number of its turns, while the packability of a
(sufficiently thin) conical spring is 1. An hourglass shaped spring
(i.e., two cones connected at their apexes) has a packability of 2. In
our setting, the packability of a spring directly influences the number
of panels required to be cut, each panel forming one sub-spring. The
entire fabricated object is assembled out of one or several springs,
each consisting of possibly multiple sub-springs. Our goal is, given
a 3D object, to find the best packable spring representation that
strikes a balance between packability and similarity to the original
shape (Fig. 1).

Figure 3: Illustration of the packability of a cylindrical spring
(left) and a conical spring (right). The cylindrical spring cannot be
completely flattened and its packability value is the number of its
turns. The conical spring can be flattened completely in this case,
hence its packability value is 1.

A naive approach to this problem is to initialize a spring directly
on the shape as a spiraling curve on its surface, and then attempt to
improve its packability. This quickly proves to be a rather difficult
task, since it calls for an optimization of challenging quantities, such
as the number of self intersections of the spring when projected
to the ground plane. Furthermore, whenever one varies the desired
parameters of the spring, such as the slope, direction, density of
windings, etc., a new instance of the optimization problem must
be solved. We propose a different approach: Instead of optimizing
the spring, we optimize the surface in such a way that any spring
designed on it is well packable.

Cutting our springs from a small number of material sheets results
in just a few pieces that need to be put together, making manual
assembly fast and simple. To hold the springs in place, additional
holders along the silhouette of the object can be used. The fabricated
objects preserve the creases and surface texture of the original object
well, and can be used as a basis for traditional methods in arts and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

252



K. Wolff, R. Poranne, O. Glauser & O. Sorkine-Hornung / Packable Springs

construction. One application that we found particularly appealing
is armatures for sculpting. An armature is a simple structure used
as a solid base for a sculpture. Artists usually construct wooden
armatures and then place the material on them (e.g. clay) and form it
to shape before gradually adding more detail. Our fabricated springs
are well suited to be used as armatures, particularly for novices,
thanks to their simplicity and detailed surface texture approximation.
We found that by flattening a ball of clay and draping it over our
springs we can easily create a sculpture that preserves many of the
details of the original shape (Fig. 1 (e), Fig. 22 and Fig. 19 (left)).

Another application for our springs is moulds or formwork for
creating solid shapes (Fig. 22, second object). This is done simply
by extruding material into the spring object. The windings of the
spring can be made tight enough such that viscous materials do not
excessively leak out. Here, we only experiment with construction
foam, but as shown in [Mes17], concrete can also potentially be
used to create load bearing structures in architectural scale.

2 Related work

We review the most related literature on fabrication by cutting and
wire based shape representations, as well as works concerned with
the packing and stacking of objects.

Fabrication by laser cutting. Laser cutting is a fast and cheap
method that has been explored as a fabrication tool in several works.
A common strategy to utilize it for general shapes is to divide
them into planar components that are assembled by different means.
McCrae et al. [MSM11] create shape representations by arranging
planar slices to optimize the perception of the original object, but
they do not investigate the assembly of these slices. We compare to
this method in Fig. 4. In [HBA12] objects are semi-automatically
fabricated by cutting planar slices with slits and sliding them to-
gether to assemble a representation of the volume of the input shape,
favoring arrangements of orthogonal slices. The works [SP12,SP13]
also use a slit mechanism to compose 3D models, taking into ac-
count constraints on fabrication, assembly, rigidity and the resulting
structure, and extending the approach to provide a more detailed for-
mulation of the assembly of nonorthogonal slices. In [CPMS14], the
planar slices are aligned to smooth cross fields, visually enhancing
the approach.

Another class of approaches focuses on fabricating surfaces. Chen
et al. [CSaLM13] form a closed surface by using a small number
of laser cut planar polygonal primitives. We use this method on the
Cat model in Fig. 4 for comparison. Song et al. [SDW∗16] combine
3D printing and 2D laser cutting to support the fabrication of large
3D objects by an interior structure assembled from planar pieces. A
method to approximate arbitrary 3D surfaces with auxetic materials,
which can be cut from planar sheets, is proposed in [KCD∗16], but
also here a 3D printed model is needed for reference to form the
object. Several works also allow for bending of the prefabricated
pieces: works such as [MS04, STL06, MGE07] represent the input
model through multiple planar, but foldable strips, usually made of
paper, which can be glued together. An interactive tool for designing
surfaces made from flexible interlocking quadrilateral elements of a
single size and shape was presented in [SCGT15], while Pottmann
et al. [PHD∗10] propose a method to fit a freeform shape with

Figure 4: Representations of the Cat model from Fig. 1 by two
previous methods for fabrication using laser-cut pieces. Top row:
[CSaLM13] utilizes 24 surface- and 58 connector-pieces to form a
closed surface. Bottom row: [MSM11] creates an abstraction of the
mesh by combining 13 planar slices. Both methods do not guarantee
that their results are suitable for fabrication. In comparison, our
method uses 3 laser-cut pieces for the spring and 3 for the holder to
fabricate the Cat shape in Fig. 1 (d).

single-direction bendable panels. All these methods utilize cutting
to make 2D planar pieces, which then necessitate manual sorting
and assembly into the 3D shape. In contrast, we propose to directly
lift the cut spring shape out of the 2D plane, making the manual
assembly easier and quicker.

Several methods utilize laser cutting for fast fabrication. The
methods in [MKB13, UCM∗15] create a 3D object by folding and
stretching a laser-cut workpiece and additionally use the laser cutter
to weld. This eliminates the need for manual assembly. The frame-
work of [BGM∗15] allows for fast fabrication of 3D objects by
extracting straight and curved plates from a 3D model and substi-
tuting them with laser cut parts. In contrast to our method, these
techniques either require the design of suitable objects or the exis-
tence of certain structures in the 3D object that can be substituted.

Fast fabrication has also been explored in the field of 3D printing.
We only mention a few papers here that address similar problems.
Vanek et al. [VGB∗14] develop a framework to convert a shape into a
segmented shell by hollowing its inner parts to save 3D printing time
and support material. Hu et al. [HLZCO14] decompose a 3D volume
into pyramidal building blocks, which can be 3D printed without
support structures. Such a decomposition generally cannot be used
to create a spring representation, but conversely, the decomposition
of our approximated shapes (Fig. 1 (d)) is pyramidal.

Wire based representation. Wires are a low-cost and easily de-
formable material and have been used in several works to represent
planar shapes and freeform surfaces. Iarussi et al. [ILB15] present
a method to assist the creation of wire wrapped jewelry. Igarashi
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Figure 5: Parameters: h (spacing of spring turns), d (spring width),
hm (material thickness), nz

t (z-component of the triangle normal nz,
which needs to be bigger than a minimal value amin).

et al. [IIM12] introduce a system for designing and constructing
3D beadwork, the art of stringing beads together using a wire to
make a 3D shape. Regular wire meshes are used in [GSFD∗14] to
represent freeform surfaces, but again, a fabricated 3D reference
model is needed to guide the forming deformation of the wire mesh.
An assembly of planar wire shapes has been used to create stable
structures in [MLB16]. Existing methods use simply bent wires, but
due to the limitations of currently available consumer-grade wire
bending machines, it is not possible to produce springs like the ones
presented in this paper. We therefore do not currently use metal
wires, although more advanced industrial machines or robotic wire
bending could be potentially employed.

Instead of using metal wire, the works of [HZH∗16, WPGM16]
address the creation of feasible fabrication sequences for general rod
meshes produced via thermoplastic extrusion. In [SFG∗13, PTC∗15,
RA15], surfaces are represented with rod and beam structures of
different properties. However, these approaches do not consider
packability or spring representations.

Packability. Tightly packing several objects or parts of an ob-
ject in a space that is as small as possible has obvious advantages
for storage and shipping, and is therefore of great interest. Li et
al. [LAZ∗12] regard the problem of stacking multiple instances
of the same object (e.g., a chair) along a stacking direction and
optimize the object’s shape with respect to maximal stackability.
In [LHAZ15], space-saving furniture is designed by applying a min-
imum amount of modification to an object such that it can be folded.
Jacobson [Jac17] generalizes the self-similar nesting of Matryoshka
dolls to arbitrary solid objects and finds the largest scale replica of an
object that nests inside itself. Yu et al. [YCC17] approximate shapes
by telescopic structures for applications where mechanisms must be
compact in size. Luo et al. [LBRM12] address how to partition large
objects into smaller parts that are feasible for 3D printing. Yao et
al. [YCL∗15] focus on the partitioning and packing of a single 3D
object, taking into account several metrics like printability, assembly
and interface area. Guseinov et al. [GMB17] 3D print a flat piece

Figure 6: Different generalized cones. Note that the shape of a
generalized cone can differ significantly from a normal cone (right).

Figure 7: The two packable parts of a sphere. The top half is a
contracting generalized cone, and the bottom half is an expanding
one. This is reflected in the normal orientation w.r.t. the z-axis (left):
the normals of the contracting cone face upward and those of the
expanding cone face downward. An arbitrary spring on the sphere
has two packable sub-springs (middle). The whole spring is not
packable (right). When the spring crosses the horizontal boundary
between areas of different normal orientation (small black dot), it
switches from one packable sub-spring to the next.

of material, which takes on the shape of a smooth, doubly curved
surface in 3D. Similarly, we consider the usage of as few sheets of
material as possible.

3 Method overview

Our goal is to create a spring representation of a given 3D object that
is as packable as possible, i.e., it can be cut from as few flat material
sheets as possible. We assume force is applied perpendicularly to
the flat panel the spring is cut out of, i.e., in the vertical z direction.
Although springs can be deformed in other directions, potentially
expanding the design space for packability, they tend to buckle in
this case. Using a straight extension/contraction path also enables
us to easily construct the final object by letting the spring fall onto
the holders and then slightly tweak its positioning.

Packable springs. We define a spring as a space curve γ(t) =
(x(t),y(t),z(t))T such that its vertical component is monotonically
increasing: z(t1)< z(t2) for t1 < t2. Since we are interested in fab-
ricating these springs, d denotes the desired horizontal width of
the rectangular profile (see Fig. 1 (d) and Fig. 5). But for now, to
simplify the method introduction, we assume that springs are 1D,
i.e., have vanishing width d. A packable spring is a spring whose
projection on the xy plane is not self-intersecting. An n-packable
spring is a piecewise packable spring with n packable sub-springs.
A given curve can be described as an n-packable spring in several
ways, but there exists a minimal integer n such that the curve cannot
be an (n−1)-packable spring. The question we ask is, how to mod-
ify the curve as little as possible in order to reduce the minimal n
as much as possible. Note that more than one spring is needed for
objects that are topologically not similar to a cylinder and that each
of these springs can consist of several packable parts.

Generalized cones. Instead of attempting to optimize a single
curve, we propose a different strategy. We optimize the surface itself,
such that any spring lying on it will be n-packable. Our approach
is based on the observation that any spring on an upright cone is
packable. More generally, we can define the notion of generalized
cones, which can be expanding or contracting. Let S be a shape and
denote by Ω(t) the intersection of the shape with the plane z = t.
Then S is an expanding generalized cone if for every t1<t2, Ω(t1)⊂
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Figure 8: Constant slope (left) vs. constant spacing of turns (right).
The difference is particularly apparent in the middle part.

Ω(t2), and it is a contracting generalized cone if Ω(t2)⊂Ω(t1). As
with regular cones, any spring on a generalized cone is packable.
The space of generalized cones is rather limited (see Fig. 6), but
we can easily interleave contracting and expanding cones to obtain
the much larger shape space of piecewise generalized cones (see
Fig. 7 and Fig. 21). Any spring designed on a shape made of m
stacked cones is n-packable, with n ≤ m (n = m for shapes that
are topologically similar to a cylinder). Thus, our approach is to
optimize the input shape such that the result is comprised of a small
number of generalized cones, while remaining similar to the original
shape.

Spring design. The spring shape is determined by several proper-
ties, including the slope (defined by an angle α), the space between
turns h, the direction (clockwise or counterclockwise) and the mate-
rial thickness hm (see Fig. 5 for an illustration of these parameters).
Springs with constant slope can be easily defined, but only springs
with even spacing between turns guarantee a minimum distance of
windings when projected to the xy plane and thus a minimal material
thickness of windings. Moreover, we consider springs with uniform
spacing to be more visually pleasing (Fig. 8, right). This leaves the
thickness d and the spacing of turns h, which both influence the
maximal possible slope in the shape optimization (Sec. 4.2). Before
optimizing the input shape, we define a minimal value h for the
spacing between windings and a maximal value d for the wire width,
which may not be exceeded when generating the spring. To create
an even spacing between windings, we locally adjust the slope of
the spring while computing its edges (Sec. 5).

Fabrication. Once a spring on the optimized shape is designed,
we cut each packable sub-spring with a laser cutter from a flat
material sheet. To assemble the pieces, we add a holder that keeps
the desired shape of the spring in 3D (see Fig. 1 (c)-(d)).

Summary. In the following section, we separate the shape opti-
mization for packability (Fig. 2 (a)-(d) and Sec. 4) from the compu-
tation of the spring on the surface of the object (Fig. 2 (e) and Sec. 5).
This allows for fast design of the spring, postponing decisions like
material thickness and spacing of windings, which can radically
change the overall appearance of the spring. Once the shape is opti-
mized for packability, we can guarantee for any spring designed on
the shape’s surface to consist of not more than the defined maximum
number of packable sub-springs.

4 Packability optimization

In this section we explain our approach for packability optimization.
The process consists of two steps: First, we segment the shape into
regions that should become generalized expanding and contracting
cones after optimization, and at the same time we optimize for the
orientation of the spring axis, i.e., the z direction. In the second
stage, we solve an optimization problem to modify the shape and
project it onto the space of generalized cones determined by the first
step. An important aspect of our algorithm is that we only modify
the x and y coordinates of the points on the surface, keeping their
z coordinates fixed. Allowing surface points to move only in the
x and y directions is sufficient in order to span the entire space of
applicable shapes of joined generalized cones, and it considerably
reduces the number of variables in the optimization.

4.1 Segmentation

For each point p on the surface, with normal np, we assign a value

fp = sign(nz
p) =±1,

where nz
p stands for the z component of np (the z-axis points up and

equals the axis of the spring). The scalar fp induces a segmentation
of the surface into up- and down-facing regions (see Fig. 9). A
generalized cone has the same value fp everywhere: fp =+1 if it
is contracting and fp = −1 if it is expanding. As mentioned, any
spring on a generalized cone surface is packable. A spring on a
general surface is packable as long as its windings do not cross a
boundary between segments or contain another segment between
them. Otherwise, there is a risk that the spring’s projection onto the
xy plane self-intersects (see Fig. 10).

A shape consisting solely of contracting and expanding general-
ized cones has horizontal boundaries between segments of differ-
ent fp values (see Fig. 7). Whenever a spring crosses a boundary
between regions of different fp, it switches from one packable sub-
spring to the next. But when considering general input shapes, these
boundary lines are not necessarily horizontal (see Fig. 9), which
means a spring on the surface can cross the same boundary line more
than once, potentially increasing the number of needed packable
sub-springs. This implies that an ideal shape is made of stacked
generalized cones, which is equivalent to having only horizontal
boundary lines between fp regions. In this case we can guarantee
that these boundary lines are crossed only once by any spring on

Figure 9: Examples of boundaries between regions with different
values fp for different spring axes (z directions) shown by the arrows.
The Cat and Superman are colored w.r.t. a vertical axis (left) and a
horizontal axis (right). Regions with fp = 1 are in green, fp =−1
in red. The borders between regions are not planar.
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Figure 10: When the boundary between different regions is not
horizontal, a spring can cross it many times, increasing the number
of necessary packable sub-springs (left). Even if a spring does not
cross boundaries (right), but encloses regions of different fp (the
chin of the bunny), packability is not guaranteed. The arrow marks
the z direction for both meshes.

the surface, so that the number of packable sub-springs is smaller
or equal to one plus the number of horizontal boundary lines (equal
for shapes topologically similar to cylinders).

Our first step is to decide which parts should be expanding and
which contracting, which is essentially equivalent to placing hor-
izontal boundary lines. This step depends solely on the original
surface normals, and is separated from the shape optimization stage.

Layer orientation optimization. We begin by discretizing the
problem. Given an object, we remesh it such that it consists of
horizontal layers (see Fig. 2 (b)). We emphasize that the specific
remeshing technique is not critical, as long as most vertices of the
resulting mesh lie on evenly spaced horizontal slices. In our case,
we first intersect the mesh with horizontal planes, which results
in a planar polygon for each slice. We then use adaptive remesh-
ing as described in [DVBB13], while using the created polygons
as constraints for edge positioning. Note that this can also create
additional vertices that lie in between slices to create a more even
mesh. The number of slices depends on the desired resolution. We
used 30 slices on average in our examples. We define a slice as all
horizontal edges of the same z-coordinate and the same connected
component, and a layer refers to all connected faces between two
slices. We use s to refer to a slice and l to refer to a layer. See
Fig. 2 (b) for a visualization of the layers. Each layer l is assigned a
variable fl ∈ {−1,1} that represents whether the layer will lie on
an expanding or contracting general cone after shape optimization.
In other words, all triangles in the same layer should face the same
way, either upwards or downwards, depending on fl . We optimize
the values fl w.r.t. two objectives:

• Small amount of switches of the values fl between consecutive
layers, to limit the total number of required generalized cones.

• Minimal mismatch between the original normal directions of the
triangles in a layer and the chosen fl .

We solve the following meta-problem:

min
f

Emismatch( fl , l)

s.t. Eswitches(f)< K,
(1)

where K is a positive integer, f = ( f1, . . . , fL)T, the function
Emismatch( fl , l) measures the total mismatch between the orienta-

tions of the triangles in layer l and fl , and Eswitches(f) counts the
number of sign switches in f. There are many ways to formulate the
two energies; we propose rather straightforward definitions:

Emismatch( fl , l) =−
1
F ∑

l
fl ∑

t∈l
nz

t (2)

Eswitches(f) =
Lpairs

∑
p=1

1
2
| fp1 − fp2 | ,

where nz
t is the z component of the unit normal of triangle t in the

remeshed input mesh. Note that we measure the mismatch between
the estimated orientation of a layer fl and a triangle normal nt only
along the z-axis. To count the number of switches we regard the
number of adjacent pairs of layers Lpairs and the layer values fp1

and fp2 for each pair p; F is the total number of triangles in the
mesh. Dividing Emismatch by F allows us to compare Emismatch for
different mesh orientations and thus for different remeshings. The
inner sum (∑t∈l nz

t ) in (2) is constant, hence the minimization is a
pure linear binary program. We use [Gur16] to solve it.

Spring orientation optimization. In the above segmentation op-
timization, we assume a given orientation of the model w.r.t. the
z-axis; the orientation of slices and the number of segments deter-
mined by the optimization relies on this orientation. As the segmen-
tation takes less than a second for most of our meshes, we randomly
sample 100 points on a unit sphere as different z directions, and
for each direction we repeat the segmentation. We then pick the
direction with the smallest Emismatch value and treat it as the z axis.

4.2 Shape optimization

Once the target orientation of each layer is fixed (Fig. 2 (c)), the next
step is to adjust the shape to match the layer orientations (Fig. 2 (d))
while staying as close as possible to the original shape and maintain-
ing its appearance. An additional consideration is that physically
fabricated springs are not just 1D curves, but have a certain width d.
We therefore formulate a constraint for the maximal slope of each
generalized cone, such that we can guarantee packability for each
physical sub-spring. In this section, we use vi = (xi,yi,zi) to denote
vertex positions, and stack them in V = (X ,Y,Z). Recall that only
X and Y vary, while Z remains fixed.

Slope constraints. To guarantee the physical packability of sub-
springs, we need to limit the slope of each generalized cone, which
is equivalent to constraining the z-component of the unit normal of
each triangle nz

t to be greater than a given minimum amin. This amin
depends on parameters such as the expected width of the spring
cross section d and the spacing between the windings of the spring
h. We describe how to derive amin at the end of this section.

The slope constraints are formulated for each triangle t by∣∣nz
t
∣∣= ∣∣nz

t (vt1 ,vt2 ,vt3)
∣∣> amin, (3)

where nz
t is now a function of the vertex positions vt1 ,vt2 ,vt3 of

triangle t. However, we also need to ensure that the triangle normals
of a layer are in the half-space defined by fl , i.e.,

nz
t fl > 0, ∀t ∈ l. (4)

We can combine (3) and (4) into one constraint and write it more
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explicitly:

nz
t fl > amin ⇒

1
2At

(e1
t × e2

t )
z fl > amin ⇒

Ct := (e1
t × e2

t )
z fl−2amin At > 0, ∀t ∈ l, (5)

where At is the area of triangle t, and e1
t ,e2

t are two of its edge
vectors, e.g. e1

t = vt2 − vt1 and e2
t = vt3 − vt1 ; (e1

t × e2
t )

z is the z
component of their cross product. We note that the constraints in (5)
are quadratic inequalities w.r.t. X and Y .

Energy. While the optimized shape must adhere to (5), it should
stay close to the input surface S not only in terms of distance, but
also the overall appearance. We propose to model this as follows:

min
X ,Y

wprox Eprox(V )+wsmooth Esmooth(V )+wsim Esim(V )

s.t. Ct > 0 ∀t, (6)

where Eprox(V ) measures geometric proximity to the original shape,
Esmooth(V ) measures the quality of the optimized shape, Esim(V ) is
a similarity measure to be discussed below, and wprox,wsmooth,wsim
are scalar weights. We define Eprox(V ) as the simple point-wise
distance from the original shape:

Eprox(V ) = ∑
i

A(vi)‖vi− v̄i‖2, (7)

where A(vi) is the Voronoi area of vertex i, and v̄i are the original
vertex positions. For Esmooth(V ) we use the Laplacian energy, see
the formula in [BS08]. The similarity term requires a little bit more
thought, and we devote the following paragraph to this discussion.

The similarity energy. Optimizing for packability distorts the
original shape, and we always run the risk of getting a result that is
distant from the input shape. In such cases we still want to preserve
the fine surface details (see Fig. 15). One approach to cope with this
problem is to add a distortion measure to the optimization. A full
discussion on distortion measures is outside the scope of this paper;
we refer the reader to [RPPSH17]. In a nutshell, distortion optimiza-
tion aims to preserve the shape of individual triangles as much as
possible, while the whole shape is deformed due to other energies
and constraints. A typical consideration for shape optimization with
minimal distortion is whether to treat the shape as a surface or a
volume. Using volumes is usually visually preferable, as it better
describes the full object, while a surface approach might cause the
shape to look like a thin shell. However, volumetric meshes require
much more resources due to higher complexity. Another consider-
ation is the type of distortion measure to use, where the two most
common choices are isometric and conformal distortion. Isometric
distortion measures the change in distances, and is most commonly
used to mimic elastic materials. Conformal distortion measures the
change in angles, but completely ignores scaling.

Various combinations of distortion measures and shape represen-
tations are used in literature, but, we argue that none of them are
quite appropriate for the space of generalized cones. In this space,
it is reasonable to ask a cylinder and a cone to have similar energy
values, since both of them have perfectly round slices, and neither
isometric nor conformal distortion allows this. We therefore propose
a different formulation that allows exactly that. Our energy is con-
formal, but applied not on the surface or the volume, but per slice.

Figure 11: Our similarity energy is not applied to the surface or the
volume, but on the triangulated slices.

We consider each slice of the shape separately, and ask to minimize
the conformal distortion introduced to it during deformation. In
practice, we triangulate each layer and use the discretized conformal
distortion from [Lip12] (see Fig. 11).

Optimization. Our optimization problem (6) is sparse, non-
convex due to Esim and with quadratic constraints. We solve it
by sequential quadratic programming using WORHP [BW13]. We
provide the solver with analytical gradients and Hessians for the
constraints and the energies Eprox and Esmooth. For Esim we com-
pute the gradients using the SVD formulas from [RPPSH17] and
use the cotangent Laplacian as an approximation for the Hessian,
as suggested in [KGL16]. We experimented with different sets of
parameters, and found that the defaults work best.

Maximal slope. To guarantee packability for physical springs de-
signed on generalized cones, the minimum distance between neigh-
boring winding profiles must be equal to the thickness of the wires
d (see Fig. 5). Therefore the angle α must satisfy α≥ arctan(h/d).
Since α = cos(amin), we can relate α to amin as follows:

amin = cos(arctan(h/d)) =
(
1+(h/d)2 )−1/2

. (8)

We usually choose the smallest possible d (1-2 mm for wood) and set
amin to a small value (0.05-0.2) to avoid large shape deformations.
We then calculate h from the equation above. The relation of these
values is further discussed in the next section.

5 Spring design

After optimizing the shape of our object, we can guarantee a maxi-
mum number of n packable sub-springs for any spring we design on
the optimized shape. Springs can then be created in many different
ways. Springs with a uniform slope are easy and fast to compute
given a starting point and an orientation (clockwise or counter-
clockwise), as we show below. However, the distance between the
windings in such a spring (Fig. 8, left) is related to the horizontal
circumference of the object and therefore not constant. The resulting
spring may look irregular and, most importantly, does not guarantee
a minimal distance between the windings when projected to the
xy plane, which we must ensure in order to be able to physically
fabricate the spring while avoiding burning through and breakage.
We thus focus on springs that give the impression of uniform vertical
spacing between windings. Let us first describe how to generate a
simple spring with a uniform slope, and then adjust the slope locally,
such that we obtain uniform vertical distances between windings.
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Figure 12: On the left we show the intersection of a plane of a face
(red) with a cone that represents all possible spring directions with
an angle θ to the ground plane (green). On the right we show a cut
and flattened cylinder to determine the needed angle θ

′ to guarantee
a minimal spacing h between windings.

Uniform slope. A spring with a uniform slope w.r.t. the ground
plane g (or, more precisely, a constant angle between the spring
tangent and the spring axis ns) is called a helix. We create such a
spring (a polyline) by consecutively generating line segments on the
mesh faces. Let θ be the chosen constant angle of incline (π/2−θ is
then the angle between the tangent and the axis). Given a face f and
a point p on its border, we can now represent all possible directions
of the next spring edge by a cone with its apex at p, its axis equal
to the spring axis and an opening angle of π/2− θ (see Fig. 12,
left). When we intersect the plane of the face f with this cone, we
get zero, one or two straight lines. If there is no intersection, the
face is too flat to continue the spring creation and p is therefore one
of the spring’s endpoints. If we get one or two intersections, these
represent the next spring segment, clockwise or counterclockwise,
and we consistently choose one of them.

Local slope adjustments. As discussed before, a spring with uni-
form slope cannot guarantee that the physical, flattened spring
of a given width d does not self-intersect. We must guarantee
a given minimal distance h between windings (Fig. 8), so that
amin ≤ cos(arctan(h/d)) holds (or h ≥ d tan(arccos(amin)), see
Eq. (8)). We thus locally adapt the angle θ for each face. If our
shape were a simple cylinder with circumference c, we could cal-
culate the angle as θ

′ = arctan(h/c) (see Fig. 12, right). For an
arbitrary shape, we can calculate the circumference c of the object
at p by horizontally slicing the mesh and computing the length of
the resulting polygon. We then recalculate θ

′ for each face as above,
intuitively approximating our shape by thin cylindrical layers.

In some areas of the shape, we do not need to enforce the minimal
distance h if the shape is sufficiently flat in the corresponding layer.
We can relax this requirement in favor of better shape coverage by
the spring. Each layer is assigned a minimal face slope αl , which
is the minimum of all its face’s slopes and which is equal to α in
most layers. In layers with αl > α, we can calculate a local winding
height hl = d/ tan(αl) and compute the local slope as described
above w.r.t. hl . See the Cat’s face in Fig. 1 (c) and (d).

Fabrication. To fabricate the generated spring, we project each
packable sub-spring onto the xy-plane and cut it from a sheet of ma-
terial (e.g., plywood) with a laser cutter. Due to small deformations
of the material during cutting, we do not allow for “wire” diam-
eters d smaller than 1 mm. After cutting, the sub-springs exhibit
spring-like properties and can be elastically deformed to take on

n = 1 2 4 6 7 10

Figure 13: Different amounts n of generalized cones used to ap-
proximate the input shape. Top: different results of the layer ori-
entation optimization. Bottom: the object after shape optimization.
To make the effect of choosing a higher n more visible, we chose a
non-optimal spring axis here.

their intended 3D shape. To keep the springs in this position, we
additionally laser cut a holder (see Fig. 1 (d) and Fig. 17). We manu-
ally select two or more orthogonal planes with their intersection axis
approximately in the center of the structure, such that all spring parts
are supported. The holders have small indents on the sides, which
fixates the spring’s position vertically. The spring itself is engraved
at the top to prevent horizontal movement. The laser cutting pattern,
including the engravings, is automatically generated.

6 Experimental results

Performance. Since we remesh all input objects, the running time
depends on the chosen number of slices instead of the size of the
input mesh. For the examples included in this work, the number
of slices ranges from 20 to 120, resulting in 8k to 13k triangles
per mesh. The following running times were computed on a 64
bit machine with 32 1.2 GHz CPUs and 64 GB RAM. The layer
orientation optimization is fast thanks to being a small linear binary
problem and takes not more than a second for all models. The shape
optimization takes about 20 seconds to 30 minutes, depending on
the number of slices and the chosen parameters.

Number of sub-springs. When segmenting the shape and opti-
mizing the target orientation of each layer, we can choose a K to
constrain the number of sub-springs in Eq. (1). Choosing a big K
leads to more sub-springs, which in general results in a more faithful
representation of the shape. Choosing K bigger than the number
of slices leads to the maximum possible amount of sub-springs.
Nevertheless, in many cases it is preferable to choose fewer, e.g. for
artistic reasons or to decrease the number of needed material sheets.
Fig. 13 shows the influence of the chosen number of generalized
cones on the appearance of the object after shape optimization.

Maximal slope. Choosing the maximal slope, or equivalently the
value of amin, influences the maximal possible spring cross section
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amin = 0.01 0.1 0.2

amin = 0.3 0.4 0.5

Figure 14: Results for different slope values amin. A value of 0.2 is
typically sufficient to fabricate a laser cut physical spring. The input
mesh is shown in Fig. 17.

input wprox = 1.0 1.0 0 spring
mesh wsim = 0 1.0 1.0

Figure 15: Different combinations of the geometric proximity weight
wprox and the similarity weight wsim. With higher wsim we are able
to retain more small details of the shape (middle, especially visible
at the ear and main body), but with wprox being much smaller than
wsim the shape drifts away from the original (middle right). For
better visualization of this effect we chose a non-optimal spring
axis. For comparison, we also show the spring with optimal spring
orientation for this model (right).

width d and smallest allowable spacing of windings h. A bigger
value amin leaves more freedom in the choice of d and h, which in
turn influences fabrication and appearance: a smaller h results in a
better “coverage” of the shape. On the other hand, a bigger amin also
leads to greater distortion of the shape, see Fig. 14. A bigger d is
favorable due to the following reasons: Laser cutters are able to cut
with very high precision, but we found that the material can deform
slightly under heat, which results in broken pieces for d smaller than
2 mm. A higher d therefore minimizes these problems and results
in a more stable fabricated object.

Proximity vs. similarity. When optimizing the shape in Eq. (6),
we can set three scalar weights wprox,wsim,wsmooth to influence
the geometric proximity to the input shape, the similarity and the
smoothness of the optimized shape, respectively. Fig. 15 shows
how the choice of wprox and wsim influences the appearance of the
optimized shape. Big values of wsim retain more fine details after
the shape optimization, but the similarity energy only preserves
the overall appearance of each layer, and setting wprox = 0 leads
to layers shifting against each other. Therefore, a balance between
both values (e.g., wsim = wprox) often gives the best results.

Smoothness. Without any smoothing, the optimized shape often
exhibits sharp rims at the transition between contracting and ex-

wsmooth = 0 0.25 0.5 1 2

Figure 16: Results for different amounts of smoothing. Without any
smoothing, hard edges between the generalized cones can appear
(far left), which can be countered by just a bit of smoothing. How-
ever, too high smoothing parameter wsmooth removes too many fine
features (far right).

panding general cones (Fig. 16, left). These non-smooth transitions
happen due to the slope constraints, which can force the optimized
surface away from the original, but suddenly change at the bound-
aries of generalized cones. Eprox forces the optimized surface back
to the input, creating rims. These are almost invisible in the final
spring object (see e.g. Fig. 2 (d) and (e)), since the spring crosses
these discontinuities in a single point and at an angle. Nevertheless,
a small wsmooth is often sufficient to counter these rims if necessary.
Too large wsmooth instead smooths out too many details.

Fabricated results. We show fabricated results for the Cat, Tree
Stump, Venus and Dwarf before and after assembly in Fig. 1 and
Fig. 17. We also fabricated a 90 cm large-scale branching structure
(Fig. 18). Laser cutting the springs and the holders takes ca. 20-
30 minutes, depending on the size of the model. The additional
engraving of the spring at the locations touched by the holder adds
about 5 minutes to the processing time. Manual assembly also takes
approximately 10 to 20 minutes for each model. We provide some of
the generated cutting plans in the additional material. We chose the
materials in our examples for visual purposes, but other materials
(e.g., acrylic glass, cardboard or even metal) would be suitable
as well. Our springs can also be used as formwork for further
production, when the volume of the shape should be filled with
a certain material or as an armature to be covered with different
materials. Fig. 22 shows how our springs can be used with different
materials, like heat-drying polymer clay, construction foam, gypsum,
wallpaper or air-drying clay. When using the spring as formwork,
it serves as both the mold when pouring in the filler material, and
a guide when cutting away excess material. As an armature, it is
a helpful guide for the placement of proportions and detail (see
Fig. 19, left). The springs are also useful for architectural landscape
modeling (Fig. 20) and as decorative elements (Fig. 19, right).

7 Conclusions

We have shown how to optimize an input shape such that a spring
representation can be fabricated from as few material sheets as possi-
ble while staying close to the input shape. Our spring representation
is advantageous compared to e.g. separate loops, as the low number
of pieces makes manual assembly much faster and the alignment
and ordering of pieces easier.
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Figure 17: Packable springs for different input meshes. We show
the input mesh (left), the resulting packable springs (middle) and
the fabricated object (right). We need 9 packable parts for the Venus,
8 for the Dwarf and 1 for the Tree Stump.

Our method is limited to the straight vertical z direction when
compressing or pulling the springs, but we would like to explore how
to incorporate curved directions, and especially individual spring
directions for objects where more than one spring is needed to cover
the shape. The windings of the springs are often perceived as feature
lines. Currently our approach is targeted to maximize surface cover-
age, but adapting the spring to follow features instead might improve
the visual perception of the shape. While we still need an additional
holder to fixate the spring to its target 3D shape, there are other
solutions to explore in future work. When the individual sub-springs
are deformed by gravity, they clearly do not deform uniformly, since
more weight pulls on the upper parts of the spring. The work on
inverse elastic shape design, e.g., [CZXZ14], could be applied to
calculate the optimal radius of the spring, such that it deforms into
its target 3D shape when lifted. For applications in architecture,
where metals are needed for their necessary strength, one could
use sophisticated wire bending machines or robotic arms to fabri-
cate the springs in their 3D form, without dividing into sub-springs.
Packability would still be needed for storage and shipping, with the

Figure 18: Here we show how our method can be used to fabricate
large scale objects with holes. The object is 90 cm tall and consists
of 4 springs or 8 packable parts.

Figure 19: When used as armatures, our springs allow even amateur
artists to create clay objects with correct proportions and help with
the placement of details. When covered with wallpaper, our springs
can be used as decorative lamps.

advantage of “self-assembly” when unpacked, as the compressed
spring springs back into shape. Alternatively to wire bending, cut-
ting metal sheets is possible. The springs can be wrapped in cloth for
tent-like structures or used as formwork for concrete, as a low-cost
fabrication technique in architecture.
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Figure 20: Our springs can also be used for architectural landscape
modeling. Usually these models are fabricated from stacked flat
material sheets, using a lot of heavy material. Our approach can be
a lightweight alternative produced from few pieces (here 3).
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Figure 21: Optimized shapes and final springs for various input models. We highlight the regions with different values fp in green and red for
the optimized shapes. The Easter Island statue, Superman and Chocolate Bunny all consist of 6 packable parts. The Lion Vase and the Pig
consist of 5.

Figure 22: Different possible applications of packable springs. From left to right we used plastic clay, construction foam, gypsum, wallpaper
and clay to cover or fill the shape.
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